Introducing Nanoclay and Silica-based Composites as a New Approach for Improving Chemical and Mechanical Properties of Soil: A Review

Article ID: e041021196958 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Layered silicates (nanoclay) are new types of nanomaterials derived from clay minerals with a wide range of applications in different fields such as catalysts, soil industry, etc. Nanoclays are wide ranges of naturally occurring inorganic minerals with different derivatives. Montmorillonite is a wellknown nanoclay consisting of a 2:1 layered structure with two-silica tetrahedron sandwiching an alumina octahedron. In nature, nanoclays can be found in both crystalline (phyllosilicates) and non-crystalline (imogolite) forms. Nanoclays incorporated into polymer matrices have demonstrated a significant capability to improve the tensile and barrier properties of soil. Nanoclays play a vital role in enhancing soil quality due to their high surface area and porous structure. On the other hand, due to the positive charge of sand grains and the chemical compositions of clay particles, the negatively charged clay particles help create a good condition to improve soil properties. According to the best of our knowledge, there is no review paper to study the role of nanoclays on soil samples. This review paper describes the role of nanoclay compounds in the improved properties of soil samples and introduces different types of modified nanoclay used in soil samples. Reported results showed that nanoclays with complex structures are useful nanomaterials for improving the quality of soil samples.

Keywords: Nanoclay, soil, layered silicates, crystalline, non-crystalline, nanotechnology.

[1]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated den-dritic mesoporous silica-coated reduced graphene oxide nanosheets: A new nanoplatform for curcumin pH-controlled and targeted deliv-ery. Soft Matter, 2018, 14(12), 2400-2410.
[http://dx.doi.org/10.1039/C7SM02248D] [PMID: 29512668]
[2]
Rahimi, H.; Mozafarinia, R.; Razavi, R.S.; Paimozd, E.; Hojjati Najafabadi, A. Processing and properties of GPTMS-TEOS hybrid coatings on 5083 aluminium alloy. Adv. Mat. Res., 2011, 239, 736-742.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.239-242.736]
[3]
Salmanpour, S.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Zareyeea, D. An electrochemical sensitive sensor for determining sulfamethoxazole using a modified electrode based on biosynthesized nio nanoparticles paste electrode. Int. J. Electrochem. Sci., 2019, 14, 9552-9561.
[http://dx.doi.org/10.20964/2019.10.03]
[4]
Ghahramaninezhad, M.; Pakdel, F.; Shahrak, M.N. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst. Polyhedron, 2019, 170, 364-372.
[http://dx.doi.org/10.1016/j.poly.2019.05.058]
[5]
Shojae, K.; Mahdavian, M. Combustion and emission characteristics of biodiesel from vegetable oils in the diesel engine: A review. Curr. Biochem. Eng., 2020.
[http://dx.doi.org/10.2174/2212711906666200224094505]
[6]
Malekmohammadi, S.; Hadadzadeh, H.; Rezakhani, S.; Amirghofran, Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemo-sonodynamic therapy. ACS Biomater. Sci. Eng., 2019, 5(9), 4405-4415.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00237] [PMID: 33438406]
[7]
Javadi, S.M. Applications of ZnO and MgO nanoparticles in reducing zinc pollution level in rubber manufacturing processes: A review. Curr. Biochem. Eng., 2020, 6(2), 103-107.
[http://dx.doi.org/10.2174/2212711906666200224105931]
[8]
Ghahremani-Moghadam, D.; Khaleghian, S. Microstructure and mechanical properties of friction stir welded and processed joints with the addition of nanoparticles: A review. Curr. Biochem. Eng., 2020, 6(2), 82-90.
[http://dx.doi.org/10.2174/2212711906666200401090508]
[9]
Hojjati Najafabadi, A.; Razavi, R.S.; Mozaffarinia, R.; Rahimi, H. A new approach of improving rain erosion resistance of nanocomposite sol-gel coatings by optimization process factors. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2014, 45, 2522-2531.
[http://dx.doi.org/10.1007/s11661-013-2180-2]
[10]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration mem-branes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[11]
Malekmohammadi, S.; Hadadzadeh, H.; Amirghofran, Z. Preparation of folic acid-conjugated dendritic mesoporous silica nanoparticles for pH-controlled release and targeted delivery of a cyclometallated gold(III) complex as an antitumor agent. J. Mol. Liq., 2018, 265, 797-806.
[http://dx.doi.org/10.1016/j.molliq.2018.07.024]
[12]
Orooji, Y.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater., 2020, 389, 122079.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122079] [PMID: 32062394]
[13]
Hojjati Najafabadi, A.; Mozaffarinia, R.; Rahimi, H.; Shoja Razavi, R.; Paimozd, E. Mechanical property evaluation of corrosion protection sol–gel nanocomposite coatings. Surf. Eng., 2013, 29, 249-254.
[http://dx.doi.org/10.1179/1743294412Y.0000000080]
[14]
Hagihghi, R.; Razmjou, A.; Orooji, Y.; Warkiani, M.E.; Asadnia, M. A miniaturized piezoresistive flow sensor for real-time monitoring of intravenous infusion. J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(2), 568-576.
[http://dx.doi.org/10.1002/jbm.b.34412] [PMID: 31106527]
[15]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, pow-erful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal., 2020, 189, 113397.
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[16]
Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal., 2020, 188, 113393.
[http://dx.doi.org/10.1016/j.jpba.2020.113393] [PMID: 32504973]
[17]
Hojjati-Najafabadi, A.; Ghasemi, A.; Mozaffarinia, R. Magneto-electric features of BaFe9. 5Al1. 5CrO19-CaCu3Ti4O12 nanocomposites. Ceram. Int., 2017, 43, 244-249.
[http://dx.doi.org/10.1016/j.ceramint.2016.09.145]
[18]
Roostaee, M.; Sheikhshoaie, I. Magnetic nanoparticles; synthesis, properties and electrochemical application: A review. Curr. Biochem. Eng., 2020.
[http://dx.doi.org/10.2174/2212711906666200316163207]
[19]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[20]
Anbarsooz, M.; Amiri, M.; Rashidi, I.; Javadi, M. Heat transfer augmentation in solar collectors using nanofluids: A review. Curr. Biochem. Eng., 2020.
[http://dx.doi.org/10.2174/2212711906666200225110357]
[21]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. J. Mol. Liq., 2020, 310, 113185.
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[22]
Mulaba-Bafubiandi, A.F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A voltammetric carbon paste sensor modified with NiO nanoparti-cle and ionic liquid for fast analysis of p-nitrophenol in water samples. J. Mol. Liq., 2019, 285, 430-435.
[http://dx.doi.org/10.1016/j.molliq.2019.04.084]
[23]
Zabihpour, T.; Shahidi, S.A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. J. Food Meas. Charact., 2020, 14, 1039-1045.
[http://dx.doi.org/10.1007/s11694-019-00353-8]
[24]
Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen per-oxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manage., 2020, 267, 110629.
[http://dx.doi.org/10.1016/j.jenvman.2020.110629] [PMID: 32349954]
[25]
Karimi, F.; Bijad, M.; Farsi, M.; Vahid, A.; Asari-Bami, H.; Wen, Y.; Ganjali, M.R. Curr. Anal. Chem., 2019, 15, 172-176.
[http://dx.doi.org/10.2174/1573411014666180320114427]
[26]
Orooji, Y.; Haddad Irani-Nezhad, M.; Hassandoost, R.; Khataee, A.; Rahim Pouran, S.; Joo, S.W. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118272.
[http://dx.doi.org/10.1016/j.saa.2020.118272] [PMID: 32229321]
[27]
Gupta, V.K.; Karimi-Maleh, H.; Agarwal, S.; Karimi, F.; Bijad, M.; Farsi, M.; Shahidi, S.A. Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors (Basel), 2018, 18(9), 2817.
[http://dx.doi.org/10.3390/s18092817] [PMID: 30150515]
[28]
Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nano-composite; a powerful electrochemical strategy for determination of tramadol. Microchem. J., 2020, 158, 105179.
[29]
Keyvanfard, M.; Ahmadi, M.; Karimi, F.; Alizad, K. Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Chin. Chem. Lett., 2014, 25, 1244-1246.
[http://dx.doi.org/10.1016/j.cclet.2014.05.018]
[30]
Orooji, Y.; Ghasali, E.; Moradi, M.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int., 2019, 45, 16288-16296.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.154]
[31]
Badv, K.; Omidi, D.A. Effect of synthetic of synthetic leachate on the hydraulic conductivity of clayey soil in urmia city landfill site, Ira-nian Journal of Science & Technology, Transaction B. Engineering (Lond.), 2007, 31, 535-545.
[32]
Safari, E.; Jalili Ghazizade, M.; Abdoli, M.A. A performance-based method for calculating the design thickness of compacted clay liners exposed to high strength leachate under simulated landfill conditions. Waste Manag. Res., 2012, 30(9), 898-907.
[http://dx.doi.org/10.1177/0734242X12448520] [PMID: 22617473]
[33]
Changizi, F.; Haddad, A. Stabilization of subgrade soil for highway by recycled polyester fiber. Rehab. Civil Eng., 2014, 2(1), 93-105.
[34]
Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl. Sci. (Basel), 2018, 8, 1696.
[http://dx.doi.org/10.3390/app8091696]
[35]
Francisca, F.M.; Glatstein, D.A. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci., 2010, 49, 187-193.
[http://dx.doi.org/10.1016/j.clay.2010.05.003]
[36]
Rafiee, R.; Shahzadi, R. Mechanical properties of nanoclay and nanoclay reinforced polymers: A review. Polym. Compos., 2019, 40(2), 431-445.
[http://dx.doi.org/10.1002/pc.24725]
[37]
Floody, M.C.; Theng, B.K.G. Ma.L. Mora, Natural nanoclays: Applications and future trends- A chilean perspective. Clay Miner., 2009, 44, 161-176.
[http://dx.doi.org/10.1180/claymin.2009.044.2.161]
[38]
Mattausch, H. Chapter 5 - Properties and applications of nanoclay composites; Polymer Nanoclay Composites, 2015, pp. 127-155.
[39]
Calabi-Floody, M.; Rumpel, C.; Velásquez, G.; Violante, A.; Bol, R.; Condron, L.M.; Mora, M.L. Role of nanoclays in carbon stabilization in andisols and cambisols. J. Soil Sci. Plant Nutr., 2015, 15, 587-604.
[http://dx.doi.org/10.4067/S0718-95162015005000026]
[40]
Li, Z.; Hu, N. Direct electrochemistry of hemeproteins in their layer-by-layer films with clay nanoparticles J. Electroanal. Chem. (Lausanne), 2003, 558, 155-165.
[http://dx.doi.org/10.1016/S0022-0728(03)00390-5]
[41]
Joussein, E.; Petit, S.; Delvaux, B. Behavior of halloysite clay under formamide treatment. Appl. Clay Sci., 2007, 35, 17-24.
[http://dx.doi.org/10.1016/j.clay.2006.07.002]
[42]
Jeon, H.S.; Rameshwaram, J.K.; Kim, G.; Weinkauf, D.H. Characterization of polyisoprene-clay nanocomposites prepared by solution blending. Polymer (Guildf.), 2003, 44, 5749-5758.
[http://dx.doi.org/10.1016/S0032-3861(03)00466-X]
[43]
Dean, K.; Yu, L.; Wu, D.Y. Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos. Sci. Technol., 2007, 67, 413-421.
[http://dx.doi.org/10.1016/j.compscitech.2006.09.003]
[44]
Tang, Z.; Wu, L.; Luo, Y.; Christie, P. Size fractionation and characterization of nanocolloidal particles in soils. Environ. Geochem. Health, 2009, 31(1), 1-10.
[http://dx.doi.org/10.1007/s10653-008-9131-7] [PMID: 18247138]
[45]
Yao, H.; You, Z.; Li, L.; Goh, S.W.; Lee, C.H.; Yap, Y.K.; Shi, X. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Constr. Build. Mater., 2013, 38, 327.
[http://dx.doi.org/10.1016/j.conbuildmat.2012.08.004]
[46]
Liu, G.; Wu, S.; van de Ven, M.; Molenaar, A.; Besamusca, J. Characterization of organic surfactant on montmorillonite nanoclay to be used in bitumen. J. Mater. Civ. Eng., 2010, 22, 794.
[http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000013]
[47]
Jahromi, S.G.; Khodaii, A. Effects of nanoclay on rheological properties of bitumen binder. Constr. Build. Mater., 2009, 23, 2894.
[http://dx.doi.org/10.1016/j.conbuildmat.2009.02.027]
[48]
Singh, A.; Sangita, D.; Singh, A. Overview of nanotechnology in road engineering. J. Nano Electronic Phy., 2015, 7, 02004.
[49]
Iranpour, B.; Haddad, A. The influence of nanomaterials on collapsible soil treatment. Eng. Geol., 2016, 205, 40-53.
[http://dx.doi.org/10.1016/j.enggeo.2016.02.015]
[50]
Abbasi, N.; Farjad, A.; Sepehri, S. The use of nanoclay particles for stabilization of dispersive clayey soils. Geotech. Geol. Eng., 2018, 36, 327-335.
[http://dx.doi.org/10.1007/s10706-017-0330-9]
[51]
Taha, M.R.; Taha, O.M.E. Influence of nano-material on the expansive and shrinkage soil behavior. J. Nanopart. Res., 2012, 14, 1190.
[http://dx.doi.org/10.1007/s11051-012-1190-0]
[52]
Hosseini, S.J.; Tabarsa, A. Effect of adding nanoclay on the mechanical behaviour of fine-grained soil reinforced with polypropylene fibers. J. Struct. Eng. Geotech., 2015, 5, 59-67.
[53]
Changizi, F.; Haddad, A. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J. Rock Mech. Geotech. Eng., 2015, 7, 367-378.
[http://dx.doi.org/10.1016/j.jrmge.2015.03.013]
[54]
Changizi, F.; Haddad, A. Effect of nanocomposite on the strength parameters of soil. KSCE J. Civ. Eng., 2017, 21, 676-686.
[http://dx.doi.org/10.1007/s12205-016-1471-8]
[55]
Hamdi, N.; Srasra, E. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Manag., 2013, 33(1), 60-66.
[http://dx.doi.org/10.1016/j.wasman.2012.08.012] [PMID: 22980909]
[56]
Baziar, M.H.; Saeidaskari, J.; Alibolandi, M. Effects of nanoclay on the treatment of core material in earth dams. J. Mater. Civ. Eng., 2018, 30(10), 04018250.
[http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002415]
[57]
Swapnil, H. Adsul, T. Siva, S. Sathiyanarayanan, Shirish H. Sonawane, R. Subasri, Self-healing ability of nanoclay-based hybrid sol-gel coatings on magnesium alloy AZ91D. J. Surface & Coatings Tech., 2017, 309, 609-620.
[http://dx.doi.org/10.1016/j.surfcoat.2016.12.018]
[58]
Harianto, T.; Hayashi, S.; Du, Y.J.; Suetsugu, D. Effects of fiber additives on the desiccation crack behavior of the compacted akaboku soil as a material for landfill cover barrier. Water Air Soil Pollut., 2008, 194, 141-149.
[http://dx.doi.org/10.1007/s11270-008-9703-2]
[59]
Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and mechanical behaviour of short polypropylene fiber reinforced and cement stabi-lized clayey soil. Geotext. Geomembr., 2007, 25, 194-202.
[http://dx.doi.org/10.1016/j.geotexmem.2006.11.002]
[60]
Kalkan, E. Influence of silica fume on the desiccation cracks of compacted clayey soils. Appl. Clay Sci., 2009, 43, 296-302.
[http://dx.doi.org/10.1016/j.clay.2008.09.002]