Copper and Zinc Co-doped Titanium Dioxide Nanotubes Arrays on Controlling Nitric Oxide Releasing and Regulating the Inflammatory Responses for Cardiovascular Biomaterials

Page: [165 - 172] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Titanium dioxide (TiO2) nanotubes arrays have shown tremendous application foreground due to their unique characters of structure and performance. However, the single bio-function is still the limit on cardiovascular biomaterials.

Methods: The loadability function provides the possibility for the TiO2 nanotubes arrays to realize composite multifunction. The copper can catalyze the release of nitric oxide to promote the proliferation of endothelium cells and improve the anticoagulant. Also, zinc can adjust the inflammatory responses to improve anti-inflammation.

Results: In this patent work, we co-doped the copper and zinc onto TiO2 nanotubes arrays to estimate the hemocompatibility, cytocompatibility and responses of inflammation. The results showed that copper and zinc could introduce better multi-biofunctions to the TiO2 nanotubes arrays for the application in cardiovascular biomaterials.

Conclusion: In summary, the NTs@Cu/Zn sample as a new composite material in this study had significant biocompatibility in vascular implantation and can be used as a potential material for polymer- free drug-eluting stents.

Keywords: Titanium dioxide (TiO2) nanotubes arrays, cardiovascular biomaterials, nitric oxide, anti-inflammation, hemocompatibility, cytocompatibility.

[1]
Hwang S, Meyerhoff ME. Polyurethane with tethered copper(II)-cyclen complex: Preparation, characterization and catalytic generation of nitric oxide from S-nitrosothiols. Biomaterials 2008; 29(16): 2443-52.
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.004] [PMID: 18314189]
[2]
Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 2011; 90(6): 1847-68.
[http://dx.doi.org/10.1007/s00253-011-3213-7] [PMID: 21523480]
[3]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238(5358): 37-8.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[4]
Cheng Y, Yang H, Yang Y, et al. Progress in TiO2 nanotube coatings for biomedical applications: A review. J Mater Chem B Mater Biol Med 2018; 6(13): 1862-86.
[http://dx.doi.org/10.1039/C8TB00149A] [PMID: 32254353]
[5]
Kunrath MF, Hubler R, Shinkai R, et al. Application of TiO2 nanotubes as a drug delivery system for biomedical implants: a critical overview. ChemistrySelect 2018; 3: 11180-9.
[http://dx.doi.org/10.1002/slct.201801459]
[6]
Jin Z, Yan X, Liu G, Lai M. Fibronectin modified TiO2 nanotubes modulate endothelial cell behavior. J Biomater Appl 2018; 33(1): 44-51.
[http://dx.doi.org/10.1177/0885328218774512] [PMID: 29726733]
[7]
Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC. Hemocompatibility of titania nanotube arrays. J Biomed Mater Res A 2010; 95(2): 350-60.
[http://dx.doi.org/10.1002/jbm.a.32853] [PMID: 20629021]
[8]
He W, Elkhooly TA, Liu X, et al. Silver nanoparticle based coatings enhance adipogenesis compared to osteogenesis in human mesenchymal stem cells through oxidative stress. J Mater Chem B Mater Biol Med 2016; 4(8): 1466-79.
[http://dx.doi.org/10.1039/C5TB02482J] [PMID: 32263113]
[9]
Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants. Biomaterials 2015; 44: 36-44.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.022] [PMID: 25617124]
[10]
Junfeng Dong. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film. Mat Sci Eng C Mat Bio Appl 2016; 69: 1175-82.
[11]
Askew SC, Barnett DJ, Mcaninly J, et al. Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols (RSNO). J Chem Soc Perkin Trans 1995; (4): 741-5.
[http://dx.doi.org/10.1039/p29950000741]
[12]
Umek P, Pregelj M, Gloter A, et al. Coordination of intercalated Cu2+ sites in copper doped sodium titanate nanotubes and nanoribbons. J Phys Chem C 2008; 112(39): 15311-9.
[http://dx.doi.org/10.1021/jp805005k]
[13]
Jiang L, Yao H, Luo X, et al. Polydopamine modified copper-doped titanium dioxide nanotube arrays for copper catalyzed controlled endogenous nitric oxide release and improved re-endothelialization. ACS Appl Bio Mater 2020; 3(5): 3123-36.
[http://dx.doi.org/10.1021/acsabm.0c00157]
[14]
Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients 2017; 9(6): 624.
[http://dx.doi.org/10.3390/nu9060624] [PMID: 28629136]
[15]
Chen J, Zhang X, Huang C, et al. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 2017; 105(3): 834-46.
[http://dx.doi.org/10.1002/jbm.a.35960] [PMID: 27885785]
[16]
Alvarez K, Fukuda M, Yamamoto O. Titanium Implants after alkali heating treatment with a [Zn(OH)4]2 complex: analysis of interfacial bond strength using push-out tests. Clin Implant Dent Relat Res 2010; 12 (Suppl. 1): e114-25.
[http://dx.doi.org/10.1111/j.1708-8208.2010.00278.x] [PMID: 20455903]
[17]
Shen X, Zhang Y, Ma P, et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials 2019; 212: 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.008] [PMID: 31100479]
[18]
Pan C, Hu Y, Gong Z, et al. Improved blood compatibility and endothelialization of titanium oxide nanotube arrays on titanium surface by zinc doping. ACS Biomater Sci Eng 2020; 6(4): 2072-83.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00187] [PMID: 33455341]
[19]
Luo X, Yang P, Zhao A, et al. The self-organized differentiation from MSCs into SMCs with manipulated micro/Nano two-scale arrays on TiO2 surfaces for biomimetic construction of vascular endothelial substratum. Mater Sci Eng C 2020; 116: 111179.
[http://dx.doi.org/10.1016/j.msec.2020.111179] [PMID: 32806264]
[20]
Goodman SL, Grasel TG, Cooper SL, et al. Platelet shape change and cytoskeletal reorganization on polyurethaneureas. J Biomed Mater Res A 2010; 23(1): 105-23.
[http://dx.doi.org/10.1002/jbm.820230109] [PMID: 20540095]