Nanomaterials for the Delivery of Herbal Bioactive Compounds

Page: [425 - 441] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology is a multidisciplinary domain that involves overlapping areas such as nanomaterials, nanoelectronics, and nanobiotechnology. Herbal medicine is a significant component of traditional medicine and has been a part of treating many diseases. Asian people have been using these herbal medicines for decades. Still, herbal extracts' therapeutic efficacy and pharmaceutical application are associated with many factors such as poor bioavailability, low solubility, permeability, and lack of targeting potential. In the present work, we have reviewed thriving strategies for the targeted drug delivery of phytoconstituents and critically explained the most recent progressions on emerging novel nano-phytomedicine-based materials as herbal medicines carriers. Nanotechnologybased clinical trial studies targeting herbal bioactive compounds were discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics, and effectiveness of herbal drugs have facilitated the powerful targeting of specific agents against diseases. This review provides insight into the current progress and future opportunities for nanomedicines as potential curative targets for the delivery of herbal bioactive compounds. This information could be used as a platform for the future expansion of multi-functional nano constructs for the advanced detection of diseases and functional drug delivery of phytoconstituents.

Keywords: Nanomaterial, herbal bioactive, drug delivery, nanocarrier, liposomes, niosomes, phytosomes, hydrogels, dendrimers, nanoparticles, micelles, nanoemulsion.

Graphical Abstract

[1]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[2]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[3]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[4]
Mukherjee, B.; Satapathy, B.S.; Bhattacharya, S.; Chakraborty, R.; Mishra, V.P. Pharmacokinetic and pharmacodynamic modulations of therapeutically active constituents from orally administered nanocarriers along with a glimpse of their advantages and limitations. Nano- Microscale Drug Deliv. Syst. Des. Fabr; Elsevier, 2017, pp. 357-375.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00019-4]
[5]
Sandhiya, V.; Ubaidulla, U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Futur. J. Pharm. Sci., 2020, 6, 1-16.
[http://dx.doi.org/10.1186/s43094-020-00050-0]
[6]
Ahmad, R.; Srivastava, S.; Ghosh, S.; Khare, S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces, 2021, 197111389
[http://dx.doi.org/10.1016/j.colsurfb.2020.111389] [PMID: 33075659]
[7]
Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr., 2010, 50(6), 515-532.
[http://dx.doi.org/10.1080/10408390802565889] [PMID: 20544442]
[8]
Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol., 2013, 75(3), 588-602.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x] [PMID: 22897361]
[9]
Elegbede, J.L.; Li, M.; Jones, O.G.; Campanella, O.H.; Ferruzzi, M.G. Interactions between flavonoid-rich extracts and sodium caseinate modulate protein functionality and flavonoid bioaccessibility in model food systems. J. Food Sci., 2018, 83(5), 1229-1236.
[http://dx.doi.org/10.1111/1750-3841.14132] [PMID: 29701895]
[10]
Sultana, S.; Alzahrani, N.; Alzahrani, R.; Alshamrani, W.; Aloufi, W.; Ali, A.; Najib, S.; Siddiqui, N.A. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J. Drug Target., 2020, 28(5), 468-486.
[PMID: 31984810] [http://dx.doi.org/10.1080/1061186X.2020.1722137]
[11]
Porter, C.J.; Charman, W.N. In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev., 2001, 50(Suppl. 1), 127-147.
[PMID: 11576699 ] [http://dx.doi.org/10.1016/s0169-409x(01)00182-x]
[12]
Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Bergonzi, M.C. Food Nutr. Sci., 2014, 5(13)
[http://dx.doi.org/10.4236/fns.2014.513132]
[13]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr., 2004, 134(12)(Suppl.), 3479S-3485S.
[http://dx.doi.org/10.1093/jn/134.12.3479S]
[14]
Mouhid, L.; Corzo-Martínez, M.; Torres, C.; Vázquez, L.; Reglero, G.; Fornari, T.; Ramírez de Molina, A. Improving in vivo efficacy of bioactive molecules: An overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J. Oncol., 2017, 20177351976
[http://dx.doi.org/10.1155/2017/7351976] [PMID: 28555156]
[15]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013, 2013848043
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[16]
Li, C.; Cui, J.; Wang, C.; Zhang, L.; Xiu, X.; Li, Y.; Wei, N.; Li, Y.; Zhang, L. Encapsulation of vinorelbine into cholesterol-polyethylene glycol coated vesicles: Drug loading and pharmacokinetic studies. J. Pharm. Pharmacol., 2011, 63(3), 376-384.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01227.x] [PMID: 21749385]
[17]
Chen, Z.Q.; Liu, Y.; Zhao, J.H.; Wang, L.; Feng, N.P. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomedicine, 2012, 7, 1115-1125.
[http://dx.doi.org/10.2147/IJN.S28761] [PMID: 22403491]
[18]
Momin, J.K.; Jayakumar, C.; Prajapati, J.B. Potential of nanotechnology in functional foods. Emir. J. Food Agric., 2013, 25, 10-19.
[http://dx.doi.org/10.9755/ejfa.v25i1.9368]
[19]
Shelat, K.J.; Vilaplana, F.; Nicholson, T.M.; Gidley, M.J.; Gilbert, R.G. Diffusion and rheology characteristics of barley mixed linkage β-glucan and possible implications for digestion. Carbohydr. Polym., 2011, 86, 1732-1738.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.004]
[20]
Marciani, L.; Gowland, P.A.; Spiller, R.C.; Manoj, P.; Moore, R.J.; Young, P.; Al-Sahab, S.; Bush, D.; Wright, J.; Fillery-Travis, A.J. Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J. Nutr., 2000, 130(1), 122-127.
[http://dx.doi.org/10.1093/jn/130.1.122] [PMID: 10613778]
[21]
Grundy, M.M.L.; Edwards, C.H.; Mackie, A.R.; Gidley, M.J.; Butterworth, P.J.; Ellis, P.R. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr., 2016, 116(5), 816-833.
[http://dx.doi.org/10.1017/S0007114516002610] [PMID: 27385119]
[22]
Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3543-3564.
[http://dx.doi.org/10.1080/10408398.2016.1180501] [PMID: 27229126]
[23]
Vanan, T. Challenges, constraints and opportunities in herbal medicines-a review. Int. J. Herb. Med., 2014, 2, 21-24.
[24]
Tilekar, K.; Khade, P.; Kakade, S.; Kotwal, S. International journal of pharmaceutical, chemical and biological sciences cubosomes-a drug delivery system. Int. J. Pharm. Chem. Biol. Sci., 2014, 4, 812-824.
[25]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012195727
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[26]
Verma, H.; Prasad, S.B. Yashwant; Singh, H. Herbal drug delivery system: A modern era prospective. Int J Curr Pharm Rev Res, 2013, 4, 88-101.
[27]
Lahlou, M. The success of natural products in drug discovery. Pharmacol & amp. Pharm, 2013, 04, 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[28]
Bhattaram, V.A.; Graefe, U.; Kohlert, C.; Veit, M.; Derendorf, H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine, 2002, 9(Suppl. 3), 1-33.
[http://dx.doi.org/10.1078/1433-187X-00210] [PMID: 12222652]
[29]
Flynn, E. Pharmacokinetic parameters. xPharm Compr. Pharmacol. Ref; Elsevier Inc., 2007, pp. 1-3.
[http://dx.doi.org/10.1016/B978-008055232-3.60034-0]
[30]
Heaney, R.P. Factors influencing the measurement of bioavailability, taking calcium as a model. J. Nutr., 2001, 131, 1344-1348.
[http://dx.doi.org/10.1093/jn/131.4.1344S]
[31]
Hoag, S.W.; Hussain, A.S. The impact of formulation on bioavailability: Summary of workshop discussion. J. Nutr., 2001, 131, 1389-1391.
[http://dx.doi.org/10.1093/jn/131.4.1389S]
[32]
Srinivasan, V.S. Bioavailability of nutrients: A practical approach to In vitro demonstration of the availability of nutrients in multivitamin-mineral combination products. J. Nutr., 2001, 131(4)(Suppl.), 1349S-1350S.
[http://dx.doi.org/10.1093/jn/131.4.1349S] [PMID: 11285352]
[33]
Kumari, A.; Kumar, V.; Yadav, S.K. Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends Med. Res., 2012, 7, 34-42.
[http://dx.doi.org/10.3923/tmr.2012.34.42]
[34]
Mallet, L.; Spinewine, A.; Huang, A. The challenge of managing drug interactions in elderly people. Lancet, 2007, 370(9582), 185-191.
[http://dx.doi.org/10.1016/S0140-6736(07)61092-7] [PMID: 17630042]
[35]
Obeid, M.A.; Al Qaraghuli, M.M.; Alsaadi, M.; Alzahrani, A.R.; Niwasabutra, K.; Ferro, V.A. Delivering natural products and biotherapeutics to improve drug efficacy. Ther. Deliv., 2017, 8(11), 947-956.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[36]
Xie, G.; Plumb, R.; Su, M.; Xu, Z.; Zhao, A.; Qiu, M.; Long, X.; Liu, Z.; Jia, W. Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J. Sep. Sci., 2008, 31(6-7), 1015-1026.
[http://dx.doi.org/10.1002/jssc.200700650] [PMID: 18338405]
[37]
Husain, G.M.; Khan, M.A.; Urooj, M.; Kazmi, M.H. Pharmacodynamic evaluation: Herbal medicine. Drug Discov. Eval. Methods Clin. Pharmacol; Springer International Publishing, 2020, pp. 483-497.
[http://dx.doi.org/10.1007/978-3-319-68864-0_52]
[38]
Yuan, R.; Lin, Y. Traditional Chinese medicine: An approach to scientific proof and clinical validation. Pharmacol. Ther., 2000, 86(2), 191-198.
[http://dx.doi.org/10.1016/S0163-7258(00)00039-5] [PMID: 10799714]
[39]
Tiyaboonchai, W.; Tungpradit, W.; Plianbangchang, P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int. J. Pharm., 2007, 337(1-2), 299-306.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.043] [PMID: 17287099]
[40]
Şanlı, O.; Karaca, I.; Işıklan, N. Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres. J. Appl. Polym. Sci., 2009, 111, 2731-2740.
[http://dx.doi.org/10.1002/app.29319]
[41]
Vicentini, F.T.M.C.; Simi, T.R.M.; Del Ciampo, J.O.; Wolga, N.O.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.; Fonseca, M.J. Quercetin in w/o microemulsion: In vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[42]
Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol., 2018, 78, 34-60.
[http://dx.doi.org/10.1016/j.tifs.2018.05.018]
[43]
Medina, O.P.; Zhu, Y.; Kairemo, K. Targeted liposomal drug delivery in cancer. Curr. Pharm. Des., 2004, 10(24), 2981-2989.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[44]
Chanchal, D.; Swarnlata, S. Novel approaches in herbal cosmetics. J. Cosmet. Dermatol., 2008, 7(2), 89-95.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00369.x] [PMID: 18482010]
[45]
Barzaghi, N.; Crema, F.; Gatti, G.; Pifferi, G.; Perucca, E. Pharmacokinetic studies on IdB 1016, a silybin- phosphatidylcholine complex, in healthy human subjects. Eur. J. Drug Metab. Pharmacokinet., 1990, 15(4), 333-338.
[http://dx.doi.org/10.1007/BF03190223] [PMID: 2088770]
[46]
Patel, J.; Patel, R.; Khambholja, K.; Patel, N. An overview of phytosomes as an advanced herbal drug delivery system. Asian J Pharm Sci, 2009, 4, 363-371.
[47]
Yuan, B.Z.; Durkin, M.E.; Popescu, N.C. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genet. Cytogenet., 2003, 140(2), 113-117.
[http://dx.doi.org/10.1016/S0165-4608(02)00674-X] [PMID: 12645648]
[48]
Alexis, F.; Basto, P.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Zhang, L.; Pridgen, E.; Wang, A.Z.; Marein, S.L.; Westerhof, K.; Molnar, L.K.; Farokhzad, O.C. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem, 2008, 3(12), 1839-1843.
[http://dx.doi.org/10.1002/cmdc.200800122] [PMID: 19012296]
[49]
Kesharwani, R.K.; Keservani, R.K.; Sharma, A.K., Eds.; Enhancing the Therapeutic Efficacy of Herbal Formulations; IGI Global, 2021.
[http://dx.doi.org/10.4018/978-1-7998-4453-2]
[50]
Khogta, S.; Patel, J.; Barve, K.; Londhe, V. Herbal nano-formulations for topical delivery. J. Herb. Med., 2020, 20100300
[http://dx.doi.org/10.1016/j.hermed.2019.100300]
[51]
Shende, P.; Narvenker, R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J. Drug Deliv. Sci. Technol., 2021, 61102291
[http://dx.doi.org/10.1016/j.jddst.2020.102291]
[52]
Shi, F.; Zhang, Y.; Yang, G.; Guo, T.; Feng, N. Preparation of a micro/nanotechnology based multi-unit drug delivery system for a Chinese medicine Niuhuang Xingxiao Wan and assessment of its antitumor efficacy. Int. J. Pharm., 2015, 492(1-2), 244-247.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.023] [PMID: 26188318]
[53]
Rani, R.; Kumar, S.; Dilbaghi, N.; Kumar, R. Nanotechnology enabled the enhancement of antitrypanosomal activity of piperine against Trypanosoma evansi. Exp. Parasitol., 2020, 219108018
[http://dx.doi.org/10.1016/j.exppara.2020.108018] [PMID: 33049224]
[54]
Kabary, D.M.; Helmy, M.W.; Abdelfattah, E.A.; Fang, J.Y.; Elkhodairy, K.A.; Elzoghby, A.O. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur. J. Pharm. Biopharm., 2018, 130, 152-164.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.027] [PMID: 29964122]
[55]
Ahluwalia, V.; Elumalai, S.; Kumar, V.; Kumar, S.; Sangwan, R.S. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb. Pathog., 2018, 114, 402-408.
[http://dx.doi.org/10.1016/j.micpath.2017.11.052] [PMID: 29196171]
[56]
Ebaid, H.; Al-Tamimi, J.; Habila, M.; Hassan, I.; Rady, A.; Alhazza, I.M. Potential therapeutic effect of synthesized AgNP using curcumin extract on CCl4-induced nephrotoxicity in male mice. J. King Saud Univ. Sci., 2021, 33101356
[http://dx.doi.org/10.1016/j.jksus.2021.101356]
[57]
Liping, Z.; Yuling, S.; Hao, H.; Bing, Y.; Hailin, C. Synthesis and Biomedical Applications of Dendrimers. Curr. Org. Chem., 2018, 22, 600-612.
[http://dx.doi.org/10.2174/1385272822666180129142809]
[58]
Tripathy, S.; Das, M.K. Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci., 2013, 3, 142-149.
[http://dx.doi.org/10.7324/JAPS.2013.3924]
[59]
Kulhari, H.; Pooja, D.; Prajapati, S.K.; Chauhan, A.S. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int. J. Pharm., 2011, 405(1-2), 203-209.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.002] [PMID: 21145960]
[60]
Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J. Intern. Med., 2014, 276(6), 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[61]
Chauhan, A.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann. N. Y. Acad. Sci., 2015, 1348(1), 134-140.
[http://dx.doi.org/10.1111/nyas.12816] [PMID: 26173478]
[62]
Wang, L.; Xu, X.; Zhang, Y.; Zhang, Y.; Zhu, Y.; Shi, J.; Sun, Y.; Huang, Q. Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J. Mater. Sci. Mater. Med., 2013, 24(9), 2137-2144.
[http://dx.doi.org/10.1007/s10856-013-4969-3] [PMID: 23779153]
[63]
Ghaffari, M.; Dehghan, G.; Baradaran, B.; Zarebkohan, A.; Mansoori, B.; Soleymani, J.; Ezzati Nazhad Dolatabadi, J.; Hamblin, M.R. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf. B Biointerfaces, 2020, 188110762
[http://dx.doi.org/10.1016/j.colsurfb.2019.110762] [PMID: 31911391]
[64]
Yang, F.; Jin, C.; Jiang, Y.; Li, J.; Di, Y.; Ni, Q.; Fu, D. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat. Rev., 2011, 37(8), 633-642.
[http://dx.doi.org/10.1016/j.ctrv.2011.01.006] [PMID: 21330062]
[65]
Kiaie, S.H.; Mojarad-Jabali, S.; Khaleseh, F.; Allahyari, S.; Taheri, E.; Zakeri-Milani, P.; Valizadeh, H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int. J. Pharm., 2020, 581119269
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[66]
Saifullah, M.; Ahsan, A.; Shishir, M.R.I. Production, stability and application of micro- and nanoemulsion in food production and the food processing industry. Emulsions; Elsevier, 2016, pp. 405-442.
[http://dx.doi.org/10.1016/B978-0-12-804306-6.00012-X]
[67]
Islam Shishir, M.R.; Taip, F.S.; Aziz, N.A.; Talib, R.A.; Hossain Sarker, M.S. Optimization of spray drying parameters for pink guava powder using RSM. Food Sci. Biotechnol., 2016, 25(2), 461-468.
[http://dx.doi.org/10.1007/s10068-016-0064-0] [PMID: 30263292]
[68]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4)E907
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[69]
Wen, A.H.; Choi, M.K.; Kim, D.D. Formulation of liposome for topical delivery of arbutin. Arch. Pharm. Res., 2006, 29(12), 1187-1192.
[http://dx.doi.org/10.1007/BF02969312] [PMID: 17225471]
[70]
Campani, V.; Marchese, D.; Pitaro, M.T.; Pitaro, M.; Grieco, P.; De Rosa, G. Development of a liposome-based formulation for vitamin K1 nebulization on the skin. Int. J. Nanomedicine, 2014, 9, 1823-1832.
[http://dx.doi.org/10.2147/IJN.S58365] [PMID: 24748792]
[71]
Bonechi, C.; Donati, A.; Tamasi, G.; Leone, G.; Consumi, M.; Rossi, C.; Lamponi, S.; Magnani, A. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys. Chem., 2018, 233, 55-63.
[http://dx.doi.org/10.1016/j.bpc.2017.11.003] [PMID: 29174505]
[72]
Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int., 2015, 74, 97-105.
[http://dx.doi.org/10.1016/j.foodres.2015.04.024] [PMID: 28412008]
[73]
Jøraholmen, M.W.; Škalko-Basnet, N.; Acharya, G.; Basnet, P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur. J. Pharm. Sci., 2015, 79, 112-121.
[http://dx.doi.org/10.1016/j.ejps.2015.09.007] [PMID: 26360840]
[74]
Cui, H.; Zhou, H.; Lin, L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control, 2016, 61, 92-98.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.034]
[75]
Dhule, S.S.; Penfornis, P.; Frazier, T.; Walker, R.; Feldman, J.; Tan, G.; He, J.; Alb, A.; John, V.; Pochampally, R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine, 2012, 8(4), 440-451.
[http://dx.doi.org/10.1016/j.nano.2011.07.011] [PMID: 21839055]
[76]
Li, J.; Shi, M.; Ma, B.; Niu, R.; Zhang, H.; Kun, L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. Mater. Sci. Eng. C, 2017, 77, 803-810.
[http://dx.doi.org/10.1016/j.msec.2017.03.191] [PMID: 28532095]
[77]
Fang, J.Y.; Hwang, T.L.; Huang, Y.L.; Fang, C.L. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int. J. Pharm., 2006, 310(1-2), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.004] [PMID: 16413711]
[78]
El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int. J. Pharm., 2006, 308(1-2), 140-148.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.006] [PMID: 16356669]
[79]
Chou, T.H.; Liang, C.H. The molecular effects of aloe-emodin (AE)/liposome-AE on human nonmelanoma skin cancer cells and skin permeation. Chem. Res. Toxicol., 2009, 22(12), 2017-2028.
[http://dx.doi.org/10.1021/tx900318a] [PMID: 19928967]
[80]
Sravanthi, M.; Pradesh, A. Phytosomes: A novel drug delivery for herbal extracts. Int. J. Pharm. Sci. Res., 2013, 4, 949-959.
[http://dx.doi.org/10.26479/2019.0502.80]
[81]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38107382
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[82]
Murugesan, M.P.; Ratnam, M.V.; Mengitsu, Y.; Kandasamy, K. Evaluation of anti-cancer activity of phytosomes formulated from aloe vera extract; Mater. Today Proc, 2020.
[http://dx.doi.org/10.1016/j.matpr.2020.11.047]
[83]
Molaveisi, M.; Noghabi, M.S.; Parastouei, K.; Taheri, R.A. Fate of nano-phytosomes containing bioactive compounds of Echinacea extract in an acidic food beverage; Food Struct, 2021, p. 27.
[http://dx.doi.org/10.1016/j.foostr.2021.100177]
[84]
Ho, P.J.; Sung, J.J.; Cheon, K.K.; Tae, J.H. Anti-inflammatory effect of Centella asiatica phytosome in a mouse model of phthalic anhydride-induced atopic dermatitis. Phytomedicine, 2018, 43, 110-119.
[http://dx.doi.org/10.1016/j.phymed.2018.04.013] [PMID: 29747743]
[85]
Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: In vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2018, 122, 214-229.
[http://dx.doi.org/10.1016/j.ejps.2018.06.028] [PMID: 29966737]
[86]
Mali, A.D.; Bathe, R.S. An updated review on liposome drug delivery system. Asian J. Pharm. Res., 2015, 5, 151.
[http://dx.doi.org/10.5958/2231-5691.2015.00023.4]
[87]
Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull., 2011, 34(7), 945-953.
[http://dx.doi.org/10.1248/bpb.34.945] [PMID: 21719996]
[88]
Jamaludin, R.; Daud, N.M.; Sulong, R.S.S.; Yaakob, H.; Aziz, A.A.; Khamis, S. Andrographis paniculata-loaded niosome for wound healing application: Characterisation and in vivo analyses. J. Drug Deliv. Sci. Technol., 2021, 63102427
[http://dx.doi.org/10.1016/j.jddst.2021.102427]
[89]
Gunes, A.; Guler, E.; Un, R.N.; Demir, B.; Barlas, F.B.; Yavuz, M. Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures. J. Drug Deliv. Sci. Technol., 2017, 37, 158-165.
[http://dx.doi.org/10.1016/j.jddst.2016.12.013]
[90]
Aboali, F.A.; Habib, D.A.; Elbedaiwy, H.M.; Farid, R.M. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment. Int. J. Pharm., 2020, 589119835
[http://dx.doi.org/10.1016/j.ijpharm.2020.119835] [PMID: 32890654]
[91]
Meng, S.; Sun, L.; Wang, L.; Lin, Z.; Liu, Z.; Xi, L.; Wang, Z.; Zheng, Y. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces, 2019, 182110352
[http://dx.doi.org/10.1016/j.colsurfb.2019.110352] [PMID: 31306831]
[92]
A, N.; Kovooru, L.; Behera, A.K.; Kumar, K.P.P.; Srivastava, P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid Interface Sci., 2021, 287102318
[http://dx.doi.org/10.1016/j.cis.2020.102318] [PMID: 33242713]
[93]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10, 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[94]
Kawakami, M.Y.M.; Zamora, L.O.; Araújo, R.S.; Fernandes, C.P.; Ricotta, T.Q.N.; de Oliveira, L.G.; Queiroz-Junior, C.M.; Fernandes, A.P.; da Conceição, E.C.; Ferreira, L.A.M.; Barros, A.L.B.; Aguiar, M.G.; Oliveira, A.E.M.F.M. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed. Pharmacother., 2021, 134111109
[http://dx.doi.org/10.1016/j.biopha.2020.111109] [PMID: 33341050]
[95]
Farahani, H.; Barati, A.; Arjomandzadegan, M.; Vatankhah, E. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol., 2020, 162, 762-773.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.175] [PMID: 32590085]
[96]
Wang, Y.; Cen, C.; Chen, J.; Zhou, C.; Fu, L. Nano-emulsification improves physical properties and bioactivities of litsea cubeba essential oil. Lebensm. Wiss. Technol., 2021, 137110361
[http://dx.doi.org/10.1016/j.lwt.2020.110361]
[97]
Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Upadhyay, N.; Singh, A. Deepika; Dubey, N.K. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. Ecotoxicol. Environ. Saf., 2020, 189110000
[http://dx.doi.org/10.1016/j.ecoenv.2019.110000] [PMID: 31787384]
[98]
Lee, E.J.; Hwang, J.S.; Kang, E.S.; Lee, S.B.; Hur, J.; Lee, W.J.; Choi, M.J.; Kim, J.T.; Seo, H.G. Nanoemulsions improve the efficacy of turmeric in palmitate- and high fat diet-induced cellular and animal models. Biomed. Pharmacother., 2019, 110, 181-189.
[http://dx.doi.org/10.1016/j.biopha.2018.11.006] [PMID: 30469082]
[99]
Lim, Y.M.; An, S.J.; Kim, H.K.; Kim, Y.H.; Youn, M.H.; Gwon, H.J. Preparation of hydrogels for atopic dermatitis containing natural herbal extracts by gamma-ray irradiation. Radiat. Phys. Chem., 2009, 78, 441-444.
[http://dx.doi.org/10.1016/j.radphyschem.2009.03.074]
[100]
Tomczyk, M.; Sosnowska, K.; Wiater, A.; Strawa, J.; Pleszczynska, M.; Polak, P. Formulation and evaluation of hydrogel containing dry extract of Tormentillae rhizoma designed for periodontal disease. Planta Med., 2016, 81, S1-S381.
[http://dx.doi.org/10.1055/s-0036-1597018]
[101]
Mo, F.; Ma, J.; Yang, X.; Zhang, P.; Li, Q.; Zhang, J. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. Phytomedicine, 2020, 71153223
[http://dx.doi.org/10.1016/j.phymed.2020.153223] [PMID: 32460204]
[102]
Chang, P-C.; Chao, Y-C.; Hsiao, M-H.; Chou, H-S.; Jheng, Y-H.; Yu, X-H.; Lee, N.; Yang, C.; Liu, D.M. Inhibition of Periodontitis Induction Using a Stimuli-Responsive Hydrogel Carrying Naringin. J. Periodontol., 2017, 88(2), 190-196.
[http://dx.doi.org/10.1902/jop.2016.160189] [PMID: 27739344]
[103]
Zeeb, B.; McClements, D.J. Nanoparticle-Based Delivery Systems for Nutraceuticals: Trojan Horse Hydrogel Beads. Nanotechnol. Agric. Food Sci; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2017, pp. 135-152.
[http://dx.doi.org/10.1002/9783527697724.ch8]
[104]
Chen, X.; An, Y.; Zhao, D.; He, Z.; Zhang, Y.; Cheng, J.; Shi, L. Core-shell-corona au-micelle composites with a tunable smart hybrid shell. Langmuir, 2008, 24(15), 8198-8204.
[http://dx.doi.org/10.1021/la800244g] [PMID: 18576675]
[105]
Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech, 2014, 15(4), 862-871.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[106]
Valerii, M.C.; Benaglia, M.; Caggiano, C.; Papi, A.; Strillacci, A.; Lazzarini, G.; Campieri, M.; Gionchetti, P.; Rizzello, F.; Spisni, E. Drug delivery by polymeric micelles: An in vitro and in vivo study to deliver lipophilic substances to colonocytes and selectively target inflamed colon. Nanomedicine, 2013, 9(5), 675-685.
[http://dx.doi.org/10.1016/j.nano.2012.11.007] [PMID: 23219878]
[107]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[108]
Sarathchandran, C. Rectal drug delivery: A promising route for enhancing drug absorption, 2021.
[109]
Lorscheider, M.; Gaudin, A.; Nakhlé, J.; Veiman, K.L.; Richard, J.; Chassaing, C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther. Deliv., 2021, 12(1), 55-76.
[http://dx.doi.org/10.4155/tde-2020-0079] [PMID: 33307811]
[110]
Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci., 2014, 15(4), 5852-5873.
[http://dx.doi.org/10.3390/ijms15045852] [PMID: 24717409]
[111]
Van Norman, G.A. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl. Sci., 2019, 4(7), 845-854.
[http://dx.doi.org/10.1016/j.jacbts.2019.10.008] [PMID: 31998852]
[112]
Karthik, S.; Suriyaprabha, R.; Vinoth, M.; Srither, S.R.; Manivasakan, P.; Rajendran, V. Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from: Acalypha indica for biomedical applications. RSC Advances, 2017, 7, 41763-41770.
[http://dx.doi.org/10.1039/C7RA05697D]
[113]
Lai, J.C.Y.; Lai, H.Y.; Nalamolu, K.R.; Ng, S.F. Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J. Ethnopharmacol., 2016, 189, 277-289.
[http://dx.doi.org/10.1016/j.jep.2016.05.032] [PMID: 27208868]
[114]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[115]
Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Bioavailability of herbal products: Approach toward improved pharmacokinetics: approach toward improved pharmacokinetics. Evidence-Based Valid. Herb. Med; Elsevier Inc., 2015, pp. 218-245.
[http://dx.doi.org/10.1016/B978-0-12-800874-4.00010-6]
[116]
Mukherjee, P.; Murugan, V.; Maiti, K.; Mukherjee, K.; Saha, B.P. Value added herbal drug delivery systems - Perspectives and developments. Indian J Pharm Educ Res, 2009, 43, 329-337.
[117]
Yadav, A.; Ghune, M.; Kumar Jain, D. Nano-medicine based drug delivery system. J. Adv. Pharm. Educ. Res., 2011, 1, 201-213.
[118]
Ma, Y.H.; Yang, J.; Li, B.; Jiang, Y.W.; Lu, X.; Chen, Z. Biodegradable and injectable polymer-liposome hydrogel: A promising cell carrier. Polym. Chem., 2016, 7, 2037-2044.
[http://dx.doi.org/10.1039/C5PY01773D]
[119]
Lai, W.F.; Susha, A.S.; Rogach, A.L. Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates. ACS Appl. Mater. Interfaces, 2016, 8(1), 871-880.
[http://dx.doi.org/10.1021/acsami.5b10274] [PMID: 26720613]
[120]
Bhattacharya, S. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int. J. Heal Res., 2009, 2, 225-232.
[http://dx.doi.org/10.4314/ijhr.v2i3.47905]
[121]
Priprem, A.; Watanatorn, J.; Sutthiparinyanont, S.; Phachonpai, W.; Muchimapura, S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine, 2008, 4(1), 70-78.
[http://dx.doi.org/10.1016/j.nano.2007.12.001] [PMID: 18249157]
[122]
El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm., 2006, 319(1-2), 121-129.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.023] [PMID: 16837151]
[123]
Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, 59(1), 161-168.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.005] [PMID: 15567314]
[124]
Mei, Z.; Chen, H.; Weng, T.; Yang, Y.; Yang, X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur. J. Pharm. Biopharm., 2003, 56(2), 189-196.
[http://dx.doi.org/10.1016/S0939-6411(03)00067-5] [PMID: 12957632]
[125]
Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol., 2008, 46(5), 1771-1777.
[http://dx.doi.org/10.1016/j.fct.2008.01.021] [PMID: 18308443]
[126]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacol. Res., 2005, 51(4), 345-351.
[http://dx.doi.org/10.1016/j.phrs.2004.10.007] [PMID: 15683748]
[127]
Ramazani, A.; Keramati, M.; Malvandi, H.; Danafar, H.; Kheiri Manjili, H. Preparation and in vivo evaluation of anti-plasmodial properties of artemisinin-loaded PCL-PEG-PCL nanoparticles. Pharm. Dev. Technol., 2018, 23(9), 911-920.
[http://dx.doi.org/10.1080/10837450.2017.1372781] [PMID: 28851256]
[128]
Sahibzada, M.U.K.; Sadiq, A.; Faidah, H.S.; Khurram, M.; Amin, M.U.; Haseeb, A.; Kakar, M. Berberine nanoparticles with enhanced In vitro bioavailability: Characterization and antimicrobial activity. Drug Des. Devel. Ther., 2018, 12, 303-312.
[http://dx.doi.org/10.2147/DDDT.S156123] [PMID: 29491706]
[129]
Jun, H.; Shiwen, Z. Formulation and preparation of glycyrrhizic acid solid lipid nanoparticles. Disi Junyi Daxue Xuebao, 2008, 30, 1043-1045.
[130]
Mukerjee, A.; Vishwanatha, J.K. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res., 2009, 29(10), 3867-3875.
[PMID: 19846921]
[131]
Yanyu, X.; Yunmei, S.; Zhipeng, C.; Qineng, P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm., 2006, 307(1), 77-82.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.001] [PMID: 16300915]
[132]
Naik, S.R.; Panda, V.S. Hepatoprotective effect of Ginkgoselect Phytosome in rifampicin induced liver injury in rats: Evidence of antioxidant activity. Fitoterapia, 2008, 79(6), 439-445.
[http://dx.doi.org/10.1016/j.fitote.2008.02.013] [PMID: 18534776]
[133]
Bhattacharya, S. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals. Pharm. Times, 2009, 41, 9-12.
[134]
Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J. Pharm. Pharmacol., 2006, 58(9), 1227-1233.
[http://dx.doi.org/10.1211/jpp.58.9.0009] [PMID: 16945181]
[135]
Gao, K.; Sun, J.; Liu, K.; Liu, X.; He, Z. Preparation and characterization of a submicron lipid emulsion of docetaxel: Submicron lipid emulsion of docetaxel. Drug Dev. Ind. Pharm., 2008, 34(11), 1227-1237.
[http://dx.doi.org/10.1080/03639040802005057] [PMID: 18720137]
[136]
Yang, B.P.; Ouyang, W.Q.; Wu, X.J.; Hu, Y. Preparation, quality and safety evaluation of berberine nanoemulsion for oral application. J. Shanghai Jiaotong Univ. (Agricultural Science), 2007, 1, 012.
[137]
Fabiana, T.M.C.V.; Thaís, R.M.S.; José, O.D.C.; Nilce, O.W.; Dimitrius, L.P.; Mamie, M.I.; Vitória, L.B.B.; Maria, J.V.F. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[138]
Xiao, L.; Zhang, Y.H.; Xu, J.C.; Jin, X.H. Preparation of floating rutin-alginate-chitosan microcapsule. Chin. Tradit. Herbal Drugs, 2008, 39, 209-212.
[139]
You, J.; Cui, F.D.; Han, X.; Wang, Y.S.; Yang, L.; Yu, Y.W.; Li, Q.P. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil. Colloids Surf. B Biointerfaces, 2006, 48(1), 35-41.
[http://dx.doi.org/10.1016/j.colsurfb.2005.12.011] [PMID: 16480856]
[140]
Machida, Y.; Onishi, H.; Kurita, A.; Hata, H.; Morikawa, A.; Machida, Y. Pharmacokinetics of prolonged-release CPT-11-loaded microspheres in rats. J. Control. Release, 2000, 66(2-3), 159-175.
[http://dx.doi.org/10.1016/S0168-3659(99)00267-9] [PMID: 10742577]
[141]
Chao, P.; Deshmukh, M.; Kutscher, H.L.; Gao, D.; Rajan, S.S.; Hu, P.; Laskin, D.L.; Stein, S.; Sinko, P.J. Pulmonary targeting microparticulate camptothecin delivery system: Anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs, 2010, 21(1), 65-76.
[http://dx.doi.org/10.1097/CAD.0b013e328332a322] [PMID: 19966540]
[142]
Gavini, E.; Alamanni, M.C.; Cossu, M.; Giunchedi, P. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices. J. Microencapsul., 2005, 22(5), 487-499.
[http://dx.doi.org/10.1080/02652040500099919] [PMID: 16361192]
[143]
Song, Y.M.; Ping, Q.N.; Wu, Z.H. Preparation of silybin nanoemulsion and its pharmacokinetics in rabbits. Zhongguo Yaoke Daxue Xuebao, 2005, 36, 427-431.
[144]
Kumar, N.B.; Pow-Sang, J.; Egan, K.M.; Spiess, P.E.; Dickinson, S.; Salup, R.; Helal, M.; McLarty, J.; Williams, C.R.; Schreiber, F.; Parnes, H.L.; Sebti, S.; Kazi, A.; Kang, L.; Quinn, G.; Smith, T.; Yue, B.; Diaz, K.; Chornokur, G.; Crocker, T.; Schell, M.J. Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention. Cancer Prev. Res. (Phila.), 2015, 8(10), 879-887.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0324] [PMID: 25873370]
[145]
Sami, A.K.M.; Amin, K.H.; Kurmanji, M.T. The novel use of nanotechnology structured water magnalife to control blood glucose level in Type 2 diabetic patients. Diabetes, 2018, 67, 1155-P.
[http://dx.doi.org/10.2337/db18-1155-P]
[146]
Vermeer, I.T.M.; Moonen, E.J.C.; Dallinga, J.W.; Kleinjans, J.C.S.; Van Maanen, J.M.S. Effect of ascorbic acid and green tea on endogenous formation of N-nitrosodimethylamine and N-nitrosopiperidine in humans. Mutat. Res. - Fundam. Mol. Mech. Mutagen; Elsevier, 1999, Vol. 428, pp. 353-361.
[http://dx.doi.org/10.1016/S1383-5742(99)00061-7]
[147]
Luo, H.; Tang, L.; Tang, M.; Billam, M.; Huang, T.; Yu, J.; Wei, Z.; Liang, Y.; Wang, K.; Zhang, Z.Q.; Zhang, L.; Wang, J.S. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: Modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis, 2006, 27(2), 262-268.
[http://dx.doi.org/10.1093/carcin/bgi147] [PMID: 15930028]
[148]
Hakim, I.A.; Chow, H.H.S.; Harris, R.B. Green tea consumption is associated with decreased DNA damage among GSTM1-positive smokers regardless of their hOGG1 genotype. J. Nutr., 2008, 138, 1567S-1571S.
[http://dx.doi.org/10.1093/jn/138.8.1567S]
[149]
Xue, K.S.; Tang, L.; Cai, Q.; Shen, Y.; Su, J.; Wang, J.S. Mitigation of fumonisin biomarkers by green tea polyphenols in a high-risk population of hepatocellular carcinoma. Sci. Rep., 2015, 5, 17545.
[http://dx.doi.org/10.1038/srep17545] [PMID: 26626148]
[150]
Hakim, I.A.; Garland, L.; Harris, R.; Cordova, C.A.; Mikhael, D.M.; Chow, H.H.S. Modulation of oxidative damage by green and black tea: role of smoking and gender in a randomized trial. J. Nutr. Food Sci., 2017, 07, 5.
[http://dx.doi.org/10.4172/2155-9600.1000633]
[151]
Shin, C.M.; Lee, D.H.; Seo, A.Y.; Lee, H.J.; Kim, S.B.; Son, W.C.; Kim, Y.K.; Lee, S.J.; Park, S.H.; Kim, N.; Park, Y.S.; Yoon, H. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin. Nutr., 2018, 37(2), 452-458.
[http://dx.doi.org/10.1016/j.clnu.2017.01.014] [PMID: 28209333]