Recent Advances in Organic Synthesis of 3-Amino- or 4-Aminocoumarins

Page: [451 - 479] Pages: 29

  • * (Excluding Mailing and Handling)

Abstract

Coumarin is a privileged scaffold that contains the unique 2H-chromen-2-one motif, and its derivatives are widely distributed in nature, especially in plants. In recent years, due to their diverse pharmacological activities and remarkable photochemical properties, they have attracted significant attention from scientists, which has also prompted the research on the synthesis approaches and the availability of substrates for these compounds. This article is a brief description of the methods for the synthesis of various coumarin derivatives via two- or multi-component reactions involving 3-amino or 4-aminocoumarin reported during 2015-2021. This review may help expand the development of various analogues with coumarin as the basic unit.

Keywords: 4-aminocoumarin, 3-aminocoumarin, heterocycles, multicomponent, review synthesis, organic synthesis.

Graphical Abstract

[1]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K.D.G.; Lan, J.S.; Li, Z.R.; Kong, L.Y. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[2]
Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem., 2015, 89, 98-105.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.029] [PMID: 25462230]
[3]
Liu, W.; Hua, J.; Zhou, J.; Zhang, H.; Zhu, H.; Cheng, Y.; Gust, R. Synthesis and in vitro antitumor activity of novel scopoletin derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5008-5012.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.014] [PMID: 22765897]
[4]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[5]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[6]
Patel, A.A.; Lad, H.B.; Pandya, K.R.; Patel, C.V.; Brahmbhatt, D.I. Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridin-5-ones by two facile methods and evaluation of their antimicrobial activity. Med. Chem. Res., 2013, 22, 4745-4754.
[http://dx.doi.org/10.1007/s00044-013-0489-4]
[7]
Frolova, L.V.; Malik, I.; Uglinskii, P.Y.; Rogelj, S.; Kornienko, A.; Magedov, I.V. Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett., 2011, 52(49), 6643-6645.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.012] [PMID: 22162894]
[8]
Sharma, R.C.; Parashar, R.K. Synthesis and microbicidal activity of N-(2-substituted) phenyl ureas and their metal complexes. J. Inorg. Biochem., 1988, 32(3), 163-169.
[http://dx.doi.org/10.1016/0162-0134(88)80024-2] [PMID: 3286821]
[9]
Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Synthesis and antifungal activity of coumarins and angular furanocoumarins. Bioorg. Med. Chem., 1999, 7(9), 1933-1940.
[http://dx.doi.org/10.1016/S0968-0896(99)00138-8] [PMID: 10530942]
[10]
Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 2015, 5, 33895-38892.
[http://dx.doi.org/10.1039/C5RA05643H]
[11]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[http://dx.doi.org/10.1021/jm0580149] [PMID: 16190766]
[12]
Monti, M.; Pinotti, M.; Appendino, G.; Dallocchio, F.; Bellini, T.; Antognoni, F.; Poli, F.; Bernardi, F. Characterization of anti-coagulant properties of prenylated coumarin ferulenol. Biochim. Biophys. Acta, 2007, 1770(10), 1437-1440.
[http://dx.doi.org/10.1016/j.bbagen.2007.06.013] [PMID: 17693024]
[13]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[14]
Tyagi, Y.K.; Kumar, A.; Raj, H.G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.; Gupta, R.K. Synthesis of novel amino and acetyl amino-4-methylcoumarins and evaluation of their antioxidant activity. Eur. J. Med. Chem., 2005, 40(4), 413-420.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.002] [PMID: 15804541]
[15]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[16]
Hwu, J.R.; Lin, S.Y.; Tsay, S.C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem., 2011, 54(7), 2114-2126.
[http://dx.doi.org/10.1021/jm101337v] [PMID: 21375337]
[17]
Hwu, J.R.; Singha, R.; Hong, S.C.; Chang, Y.H.; Das, A.R.; Vliegen, I.; De Clercq, E.; Neyts, J. Synthesis of new benzimidazole-coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res., 2008, 77(2), 157-162.
[http://dx.doi.org/10.1016/j.antiviral.2007.09.003] [PMID: 17977606]
[18]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35(15), 2735-2743.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[19]
Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 2003, 23(3), 322-345.
[http://dx.doi.org/10.1002/med.10034] [PMID: 12647313]
[20]
Khan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Ullah, Z.; Choudhary, M.I.; Rahman, A.U.; Perveen, S. Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 2004, 12(8), 1963-1968.
[http://dx.doi.org/10.1016/j.bmc.2004.01.010] [PMID: 15051064]
[21]
Mohan, D.; Sharma, M.; Singh, R.D.; Sharma, V.K. Estimation of molecular parameters in laser grade dyes: Coumarin 450 and Coumarin 460. Dyes Pigments, 2008, 76, 417-421.
[http://dx.doi.org/10.1016/j.dyepig.2006.09.010]
[22]
Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev., 2019, 119(18), 10403-10519.
[http://dx.doi.org/10.1021/acs.chemrev.9b00145] [PMID: 31314507]
[23]
Wu, X.; Wang, Q.; Dickie, D.; Pu, L. Mechanistic Study on a BINOL-Coumarin-Based Probe for Enantioselective Fluorescent Recognition of Amino Acids. J. Org. Chem., 2020, 85(10), 6352-6358.
[http://dx.doi.org/10.1021/acs.joc.0c00074] [PMID: 32297514]
[24]
Hamama, W.S.; Ibrahim, M.E.; Metwalli, A.E.; Zoorob, H.H. New synthetic approach to coumarino[4,3-b]pyridine systems and potential cytotoxic evaluation. Med. Chem. Res., 2014, 23, 2615-2621.
[http://dx.doi.org/10.1007/s00044-013-0859-y]
[25]
Ibrahim, M.E.; Hamama, W.S.; Metwalli, A.E.; Zoorob, H.H. Chemoselective synthesis of enamino-coumarin derivatives identified as potent antitumor agents. J. Heterocycl. Chem., 2016, 53, 1318-1323.
[http://dx.doi.org/10.1002/jhet.2367]
[26]
Paul, S.; Pradhan, K.; Ghosh, S.; De, S.K.; Das, A.R. Magnetically retrievable nano crystalline nickel ferrite-catalyzed aerobic, ligand-free C-N, C-O and C-C cross‐ coupling reactions for the synthesis of a diversified library of heterocyclic molecules. Adv. Synth. Catal., 2014, 356, 1301-1316.
[http://dx.doi.org/10.1002/adsc.201300686]
[27]
Paul, S.; Das, A.R. A new application of polymer supported, homogeneous and reusable catalyst PEG-SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives. Catal. Sci. Technol., 2012, 2, 1130-1135.
[http://dx.doi.org/10.1039/c2cy20117h]
[28]
Lai, J.; Kuo, P.; Gau, Y.; Yang, D. Synthesis and characterization of coumarin and dimedone-derived diazabicycles. Tetrahedron Lett., 2007, 48, 7796-7800.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.006]
[29]
Sharma, A.; Gogoi, P. Transition-metal free C(sp2)-C(sp2) bond formation: arylation of 4-aminocoumarins using arynes as an aryl source. Org. Biomol. Chem., 2019, 17(40), 9014-9025.
[http://dx.doi.org/10.1039/C9OB01919G] [PMID: 31577321]
[30]
Jana, A.; Panday, A.K.; Mishra, R.; Parvin, T.; Choudhury, L.H. Synthesis of Thio and Selenoethers of Cyclic β-Hydroxy Carbonyls and Amino Uracils: A Metal-Free Regioselective I2/DMSO Mediated Reaction. ChemistrySelect, 2017, 2, 9420-9424.
[http://dx.doi.org/10.1002/slct.201702066]
[31]
Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Transition-metal-free KI-catalyzed regioselective sulfenylation of 4-anilinocoumarins using Bunte salts. Org. Biomol. Chem., 2018, 16(43), 8015-8019.
[http://dx.doi.org/10.1039/C8OB02268B] [PMID: 30334050]
[32]
Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Metal- and photocatalyst-free visible-lightpromoted regioselective selenylation of coumarin derivatives via oxidation-induced C-H functionalization. Org. Chem. Front., 2018, 20, 2974-2979.
[http://dx.doi.org/10.1039/C8QO00899J]
[33]
Ghosh, P.P.; Das, A.R. Nanocrystalline and reusable ZnO catalyst for the assembly of densely functionalized 4H-chromenes in aqueous medium via one-pot three component reactions: a greener “NOSE” approach. J. Org. Chem., 2013, 78(12), 6170-6181.
[http://dx.doi.org/10.1021/jo400763z] [PMID: 23701231]
[34]
Brites, N.P.; Dilelio, M.C.; Martins, G.M.; Carmo, G.D.; Morel, A.F.; Kaufman, T.S.; Silveira, C.C. Synthesis and antifungal activity of 4- and 6- (1H-Pyrrol-1-yl) coumarins, and their thiocyanato derivatives. ChemistrySelect, 2019, 4, 5398-5406.
[http://dx.doi.org/10.1002/slct.201900842]
[35]
Lv, N.; Sun, M.; Liu, C.; Li, J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(19), 4578-4581.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.044] [PMID: 28888820]
[36]
Thapa, P.; Jun, K.Y.; Kadayat, T.M.; Park, C.; Zheng, Z.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorg. Med. Chem., 2015, 23(19), 6454-6466.
[http://dx.doi.org/10.1016/j.bmc.2015.08.018] [PMID: 26361737]
[37]
Soenen, D.R.; Hwang, I.; Hedrick, M.P.; Boger, D.L. Multidrug resistance reversal activity of key ningalin analogues. Bioorg. Med. Chem. Lett., 2003, 13(10), 1777-1781.
[http://dx.doi.org/10.1016/S0960-894X(03)00294-4] [PMID: 12729663]
[38]
Gabriel, S.; Cécius, M.; Fleury-Frenette, K.; Cossement, D.; Hecq, M.; Ruth, N.; Jérôme, R.; Jérôme, C. Synthesis of adherent hydrophilic polypyrrole coatings onto (semi)conducting surfaces. Chem. Mater., 2007, 19, 2364-2371.
[http://dx.doi.org/10.1021/cm062450h]
[39]
La Regina, G.; Silvestri, R.; Artico, M.; Lavecchia, A.; Novellino, E.; Befani, O.; Turini, P.; Agostinelli, E. New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. J. Med. Chem., 2007, 50(5), 922-931.
[http://dx.doi.org/10.1021/jm060882y] [PMID: 17256833]
[40]
Rochais, C.; Lisowski, V.; Dallemagne, P.; Rault, S. Synthesis and biological evaluation of novel pyrrolopyrrolizinones as anticancer agents. Bioorg. Med. Chem., 2006, 14(24), 8162-8175.
[http://dx.doi.org/10.1016/j.bmc.2006.09.022] [PMID: 17011196]
[41]
Markey, M.D.; Fu, Y.; Kelly, T.R. Synthesis of santiagonamine. Org. Lett., 2007, 9(17), 3255-3257.
[http://dx.doi.org/10.1021/ol0711974] [PMID: 17658834]
[42]
Dawane, B.S.; Konda, S.G.; Bodade, R.G.; Bhosale, R.B. An efficient one-pot synthesis of some new 2,4-diaryl pyrido[3,2- c]coumarins as potent antimicrobial agents. J. Heterocyclic Chem., 2009.
[43]
Miri, R.; Motamedi, R.; Rezaei, M.R.; Firuzi, O.; Javidnia, A.; Shafiee, A. Design, synthesis and evaluation of cytotoxicity of novel chromeno[4,3-b]quinoline derivatives. Arch. Pharm. (Weinheim), 2011, 344(2), 111-118.
[http://dx.doi.org/10.1002/ardp.201000196] [PMID: 21290427]
[44]
Wang, P.; Chau Nguyen, K.; Lindsey, J.S. Synthesis of the ring C pyrrole of native chlorophylls and bacteriochlorophylls. J. Org. Chem., 2019, 84(17), 11286-11293.
[http://dx.doi.org/10.1021/acs.joc.9b01650] [PMID: 31432671]
[45]
Tardy, C.; Facompré, M.; Laine, W.; Baldeyrou, B.; García-Gravalos, D.; Francesch, A.; Mateo, C.; Pastor, A.; Jiménez, J.A.; Manzanares, I.; Cuevas, C.; Bailly, C. Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: triester derivatives incorporating amino acid residues. Bioorg. Med. Chem., 2004, 12(7), 1697-1712.
[http://dx.doi.org/10.1016/j.bmc.2004.01.020] [PMID: 15028262]
[46]
Fan, G.; Li, Z.; Shen, S.; Zeng, Y.; Yang, Y.; Xu, M.; Bruhn, T.; Bruhn, H.; Morschhäuser, J.; Bringmann, G.; Lin, W. Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg. Med. Chem., 2010, 18(15), 5466-5474.
[http://dx.doi.org/10.1016/j.bmc.2010.06.052] [PMID: 20624681]
[47]
Weng, Y.; Zhou, H.; Sun, C.; Xie, Y.; Su, W. Copper-Catalyzed Cyclization for Access to 6H-Chromeno[4,3-b]quinolin-6-ones Employing DMF as the Carbon Source. J. Org. Chem., 2017, 82(17), 9047-9053.
[http://dx.doi.org/10.1021/acs.joc.7b01515] [PMID: 28787167]
[48]
Ling, F.; Xiao, L.; Fang, L.; Lv, Y.; Zhong, W. Copper catalysis for nicotinate synthesis through β-alkenylation/cyclization of saturated ketones with β-enamino esters. Adv. Synth. Catal., 2018, 360, 444-448.
[http://dx.doi.org/10.1002/adsc.201701031]
[49]
Cheng, D.; Deng, Z.; Yan, X.; Wang, M.; Xu, X.; Yan, J. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated tandem oxidative coupling/intramolecular annulation/dehydroaromati-zation for the synthesis of polysubstituted and fused pyridines. Adv. Synth. Catal., 2019, 5025-5029.
[50]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J. Chem., 2018, 42, 17268-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[51]
Yadav, A.; Biswas, S.; Mobin, S.M.; Samanta, S. Efficient Cu(OTf)2-catalyzed and microwave-assisted rapid synthesis of 3,4-fused chromenopyridinones under neat conditions. Tetrahedron Lett., 2017, 58, 3634-3639.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.006]
[52]
Kausar, N.; Masum, A.A.; Islam, M.M.; Das, A.R. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol. Divers., 2017, 21(2), 325-337.
[http://dx.doi.org/10.1007/s11030-017-9728-9] [PMID: 28190223]
[53]
Najafizadeh, F.; Rad-Moghadam, K.; Yaghoubi Kalurazi, S. A derivatization-directed three-component synthesis of fluorescent spiro [dihydropyridine-4,3′-indoline]s. J. Chem. Res., 2020, 44, 527-531.
[http://dx.doi.org/10.1177/1747519820909374]
[54]
Yaghoubi Kalurazi, S.; Rad-Moghadam, K.; Moradi, S. Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro[4H-pyridine-oxindoles]. New J. Chem., 2017, 41, 10291-10298.
[http://dx.doi.org/10.1039/C7NJ01858D]
[55]
Chen, Z.; Gu, J.; Su, W. An efficient protocol for multicomponent synthesis of 1H-chromeno[4,3-b]pyridin-5(4H)-ones derivatives. J. Chem. Res., 2013, 327-330.
[http://dx.doi.org/10.3184/174751913X13667064139394]
[56]
Oshiro, P. B.; Bregadio, B. A.; Silva-Filho, L. C. D. A facile onestep synthesis of chromeno [4,3-b]pyridine derivatives promoted by niobium pentachloride. J. Heterocyclic Chem., 2020, 2795-2800.
[57]
Bhattacharyya, P.; Paul, S.; Das, A.R. Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium. RSC Advances, 2013, 3, 3203.
[http://dx.doi.org/10.1039/c3ra23254a]
[58]
Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: An efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Advances, 2019, 9, 41868-41876.
[http://dx.doi.org/10.1039/C9RA09031B]
[59]
Dahi-Azar, S.; Abdolmohammadi, S.; Mokhtari, J. Water mediated economical synthesis of chromenopyridin-3-yl cyanides using cadmium oxide nanoparticles as a highly efficient catalyst. Can. J. Chem., 2020, 98, 415-420.
[http://dx.doi.org/10.1139/cjc-2019-0290]
[60]
Firoozpoura, L.; Hoda, Y.; Ejtemaeib, R.; Moghimia, S.; Alireza, F. A one-pot, three-component, solvent-free synthesis of novel 6H-chromeno[3′,4′:5,6]pyrido[2,3-d] pyrimidine -triones under microwave irradiation. J. Chem. Res., 2018, 42, 604-607.
[http://dx.doi.org/10.3184/174751918X15414289771620]
[61]
Sayahi, M.H.; Bahadorikhalili, S.; Saghanezhad, S.J.; Miller, M.A.; Mahdavi, M. Sulfonic acid-functionalized poly(4-styrenesulfonic acid) mesoporous graphene oxide hybrid for one-pot preparation of coumarin-based pyrido[2,3-d]pyrimidine-dione derivatives. Res. Chem. Intermed., 2020, 46, 491-507.
[http://dx.doi.org/10.1007/s11164-019-03962-6]
[62]
Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R.A. PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Advances, 2020, 10, 15614-15621.
[http://dx.doi.org/10.1039/D0RA01978J]
[63]
Hua, C.; Zhang, K.; Xin, M.; Ying, T.; Gao, J.; Jia, J.; Li, Y. High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study. RSC Advances, 2016, 6, 49221-49227.
[http://dx.doi.org/10.1039/C6RA05996A]
[64]
Hua, C.; Zheng, H.; Zhang, K.; Xin, M.; Gao, J.; Li, Y. A novel turn off fluorescent sensor for Fe(III) and pH environment based on coumarin derivatives: the fluorescence characteristics and theoretical study. Tetrahedron, 2016, 72, 8365-8372.
[http://dx.doi.org/10.1016/j.tet.2016.08.023]
[65]
Peng, F.; Liu, J.; Li, L.; Chen, Z. Copper-catalyzed tandem reaction of enamino esters withortho -halogenated aromatic carbonyls: one-pot approach to functionalized quinolines. Eur. J. Org. Chem., 2018, 2018, 666-672.
[http://dx.doi.org/10.1002/ejoc.201701472]
[66]
Osipov, D.V.; Artyomenko, A.A.; Osyanin, V.A.; Klimochkin, Y.N. The reaction of 4-aminocoumarin with β-carbonyl-substituted 4H -chromenes: synthesis of 5H-chromeno[4,3-b]pyridin-5-one derivatives. Chem. Heterocycl. Compd., 2019, 55, 261-265.
[http://dx.doi.org/10.1007/s10593-019-02451-3]
[67]
Motamedi, R. SOLVENT-free synthesis of novel 5-oxo-5h-chromeno [4,3-b] pyridine derivatives. Chem. Heterocycl. Compd., 2013, 48, 1839-1843.
[http://dx.doi.org/10.1007/s10593-013-1217-1]
[68]
Kumari, S.; Shakoor, S.M.A.; Markad, D.; Mandal, S.K.; Sakhuja, R. NH4OAc-promoted cascade approach towards aberrant synthesis of chromene-fused quinolinones. Eur. J. Org. Chem., 2019, 2019, 705-714.
[http://dx.doi.org/10.1002/ejoc.201801292]
[69]
Ravi, M.; Chauhan, P.; Kant, R.; Shukla, S.K.; Yadav, P.P. Transition-metal-free C-3 arylation of quinoline-4-ones with arylhydrazines. J. Org. Chem., 2015, 80(10), 5369-5376.
[http://dx.doi.org/10.1021/acs.joc.5b00739] [PMID: 25897680]
[70]
Fei, H.; Yu, J.; Jiang, Y.; Guo, H.; Cheng, J. The ammonium-promoted formylation of indoles by DMSO and H2O. Org. Biomol. Chem., 2013, 11(41), 7092-7095.
[http://dx.doi.org/10.1039/c3ob41510d] [PMID: 24061209]
[71]
Cheng, C.; Chen, W.W.; Xu, B.; Xu, M.H. Access to indole-fused polyheterocycles via Pd-catalyzed base-free intramolecular cross dehydrogenative coupling. J. Org. Chem., 2016, 81(22), 11501-11507.
[http://dx.doi.org/10.1021/acs.joc.6b02160] [PMID: 27766860]
[72]
Cheng, C.; Chen, W.; Xu, B.; Xu, M. Intramolecular cross dehydrogenative coupling of 4-substituted coumarins: Rapid and efficient access to coumestans and indole[3,2-c]coumarins. Org. Chem. Front., 2016, 1111-1115.
[http://dx.doi.org/10.1039/C6QO00270F]
[73]
Gu, C.; Chen, W.; Xu, B.; Xu, M. Synthesis of indolo[2,3-c]coumarins and indolo[2,3-c]quinolinones via microwave-assisted base-free intramolecular cross dehydrogenative coupling. Tetrahedron, 2019, 1605-1611.
[http://dx.doi.org/10.1016/j.tet.2018.11.066]
[74]
Mukherjee, S.; Sarkar, S.; Pramanik, A. A sustainable synthesis of functionalized pyrrole fused coumarins under solvent-free conditions using magnetic nanocatalyst and a new route to polyaromatic indolocoumarins. ChemistrySelect, 2018, 3, 1537-1544.
[http://dx.doi.org/10.1002/slct.201703146]
[75]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Advances, 2016, 6, 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[76]
Chen, Z.W.; Yang, X.F.; Su, W.K. An efficient protocol for multicomponent synthesis of functionalized chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Tetrahedron Lett., 2015, 56, 2476-2479.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.095]
[77]
Rani, N.V.; Kunta, R. Acetic acid promoted an efficient and eco-friendly one-pot synthesis of functionalized novel isoxazolyl amino chromenopyrrole derivatives in aqueous medium. Synth. Commun., 2021, 51, 601-610.
[http://dx.doi.org/10.1080/00397911.2020.1846058]
[78]
Yang, X.F.; Jing, L.; Chen, Z.W. An efficient method for one-pot synthesis of 3-alkoxy-substituted chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Chem. Heterocycl. Compd., 2018, 11, 1065-1069.
[http://dx.doi.org/10.1007/s10593-018-2393-9]
[79]
Yang, X.F.; Zheng, L.; Chen, Z.W.; Zhong, W.K. Catalyst-free three-component approach to efficient synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Synth. Commun., 2018, 48, 929-935.
[http://dx.doi.org/10.1080/00397911.2018.1430237]
[80]
Yahyavi, H.; Heravi, M.M.; Mahdavi, M.; Foroumadi, A. Iodine-catalyzed tandem oxidative coupling reaction: A one-pot strategy for the synthesis of new coumarin-fused pyrroles. Tetrahedron Lett., 2018, 59, 94-98.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.055]
[81]
Chen, Z.W.; Ye, S.J.; Zhang, X.F. Brønsted acid-promoted multicomponent reaction for the construction of pyrrolocoumarin derivatives. Heterocycles, 2018, 96, 501.
[http://dx.doi.org/10.3987/COM-18-13867]
[82]
Peng, S.; Wang, L.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Palladium-catalyzed oxidative annulation via C-H/N-H functionalization: access to substituted pyrroles. Adv. Synth. Catal., 2013, 355, 2550-2557.
[http://dx.doi.org/10.1002/adsc.201300512]
[83]
Yadav, A.; Gudimella, S.K.; Samanta, S. An expedient lewis-acid-catalyzed microwave-assisted domino approach to coumarin-fused pyrroles and related heterocycles under neat conditions. ChemistrySelect, 2019, 4, 12768-12773.
[http://dx.doi.org/10.1002/slct.201903711]
[84]
Padilha, G.; Iglesias, B.A.; Back, D.F.; Kaufman, T.S.; Silveira, C.C. Synthesis of Chromeno[4,3-b]pyrrol-4(1H)-ones, from b-Nitroalkenes and 4-Phenylaminocoumarins, under Solvent-free Conditions. ChemistrySelect, 2017, 1297-1304.
[http://dx.doi.org/10.1002/slct.201700114]
[85]
Paul, S.; Pal, G.; Das, A.R. Three-component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically separable nanocrystalline copper ferrite. RSC Advances, 2013, 3, 8637.
[http://dx.doi.org/10.1039/c3ra40571k]
[86]
Pradhan, K.; Paul, S.; Das, A.R. Synthesis of indeno and acenaphtho cores containing dihydroxy indolone, pyrrole, coumarin and uracil fused heterocyclic motifs under sustainable conditions exploring the catalytic role of the SnO2 quantum dot. RSC Advances, 2015, 5, 12062-12070.
[http://dx.doi.org/10.1039/C4RA12618A]
[87]
Chen, Z.W.; Hou, J.; Dai, Z.R.; Yang, X.F. A regioselective synthesis of pentacyclic compounds containing coumarin, pyrrole, indene without catalysts under microwave irradiation. Chin. Chem. Lett., 2016, 27, 1622-1625.
[http://dx.doi.org/10.1016/j.cclet.2016.04.009]
[88]
Zhou, T.; Wang, D.; Pan, G.; Qian, J. A facile synthesis of isocoumarino [3′,4′:4,5]pyrrolo[3,2-c]-coumarins from 4-amino coumarins and ninhydrin. Heterocycles, 2017, 94.
[89]
Chen, Z.; Wang, X.; Su, W. A Novel and Facile Synthesis of N-Substituted 8-hydroxybenzo[g]chromeno[4, 3-b]indol-6(13H)-ones by a Nenitzescu Reaction. Lett. Org. Chem., 2014, 188-193.
[http://dx.doi.org/10.2174/15701786113106660079]
[90]
Chen, J.; Ouyang, C.H.; Xiao, T.; Jiang, H.; Li, J.S. Metal-Free Synthesis of Coumarin-fused Pyrimidines from 4-Aminocoumarins via Pseudo Four-component Reaction. ChemistrySelect, 2019, 4, 7327-7330.
[http://dx.doi.org/10.1002/slct.201901803]
[91]
Sayahi, M.H.; Saghanezhad, S.J.; Mahdavi, M. SBA-15-SO3H-assisted preparation of 4-azaphenanthrene-3,10-dione derivatives via a one-pot, four-component reaction; Res Chem Interm, 2018, pp. 739-747.
[92]
Yetra, S.R.; Roy, T.; Bhunia, A.; Porwal, D.; Biju, A.T. Synthesis of functionalized coumarins and quinolinones by NHC-catalyzed annulation of modified enals with heterocyclic C-H acids. J. Org. Chem., 2014, 79(9), 4245-4251.
[http://dx.doi.org/10.1021/jo500693h] [PMID: 24716576]
[93]
Dilelio, M.C.; Brites, N.P.; Vieir, L.A.; Iglesias, B.A.; Kaufman, T.S.; Silveira, C.C. Synthesis and photophysical properties of 1,4-dihydro-2H,5Hchromeno[4,3-d][1,3]oxazin-5-ones, and derivatives containing tethered 1,2,3-triazoles, from 4-aminocoumarins. Synthesis, 2019, 51, 2965-2976.
[http://dx.doi.org/10.1055/s-0037-1612428]
[94]
Peng, F.; Li, L.; Liu, J.; Chen, Z. Copper-catalyzed oxidative cross-coupling/C−C bond cleavage/cyclization of aryl methyl ketones with 4-aminocoumarins: domino synthesis of dicoumarin-fused [1,5]-diazocines. Asian J. Org. Chem., 2018, 7, 1667-1673.
[http://dx.doi.org/10.1002/ajoc.201800306]
[95]
Peng, S.; Liu, S.; Zhang, S.; Cao, S.; Sun, J. Synthesis of polyheteroaromatic compounds via rhodium-catalyzed multiple CH bond activation and oxidative annulation. Org. Lett., 2015, 17(20), 5032-5035.
[http://dx.doi.org/10.1021/acs.orglett.5b02510] [PMID: 26439472]
[96]
Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. Photocatalyst-free regioselective C-H thiocyanation of 4-anilinocoumarins under visible light. ACS Sustain. Chem.& Eng., 2019, 7, 14009-14015.
[http://dx.doi.org/10.1021/acssuschemeng.9b02511]
[97]
Matla, H.; Bhosale, R.S.; Polepalli, S.; Jain, N.; Bhosale, S.V.; Bhosale, S.V. Synthesis and cytotoxicity evaluation of certain coumarin-α-aminophosphonates. Chem. Biol. Interact., 2015, 1, 34-43.
[98]
Gao, W.; Rasheed, S.; Tangadanchu, V.; Sun, Y.; Peng, X.; Cheng, Y.; Zhang, F.; Lin, J.; Zhou, C. Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents. Sci. China Chem., 2017, 60, 769-785.
[http://dx.doi.org/10.1007/s11426-016-9009-6]
[99]
Huang, Q.; Dong, K.; Bai, W.; Yi, D.; Ji, J.X.; Wei, W. TEMPO-Catalyzed Aminophosphinoylation of Ethers via Tandem C(sp3)-H and C(sp3)-O Bond Cleavage. Org. Lett., 2019, 21(9), 3332-3336.
[http://dx.doi.org/10.1021/acs.orglett.9b01081] [PMID: 31008612]
[100]
Verma, S.; Goyal, S.; Jamal, S.; Singh, A.; Grover, A. Hsp90: Friends, clients and natural foes. Biochimie, 2016, 127, 227-240.
[http://dx.doi.org/10.1016/j.biochi.2016.05.018] [PMID: 27295069]
[101]
Forsberg, L.K.; Davis, R.E.; Wimalasena, V.K.; Blagg, B.S.J. Exploiting polarity and chirality to probe the Hsp90 C-terminus. Bioorg. Med. Chem., 2018, 26(12), 3096-3110.
[http://dx.doi.org/10.1016/j.bmc.2018.04.028] [PMID: 29720349]
[102]
Zhao, J.; Zhao, H.; Hall, J.A.; Brown, D.; Brandes, E.; Bazzill, J.; Grogan, P.T.; Subramanian, C.; Vielhauer, G.; Cohen, M.S.; Blagg, B.S. Triazole containing novobiocin and biphenyl amides as Hsp90 C-terminal inhibitors. MedChemComm, 2014, 5(9), 1317-1323.
[http://dx.doi.org/10.1039/C4MD00102H] [PMID: 25328661]
[103]
Zhao, H.; Moroni, E.; Yan, B.; Colombo, G.; Blagg, B.S.J. 3D-QSAR assisted design, synthesis and evaluation of novobiocin analogues. ACS Med. Chem. Lett., 2012, 4(1), 57-62.
[http://dx.doi.org/10.1021/ml300275g] [PMID: 23606927]
[104]
Mbaba, M.; Mabhula, A.N.; Boel, N.; Edkins, A.L.; Isaacs, M.; Hoppe, H.C.; Khanye, S.D. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity. J. Inorg. Biochem., 2017, 172, 88-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.04.014] [PMID: 28441548]
[105]
Simon, B.; Huang, X.; Ju, H.; Sun, G.; Yang, M. Synthesis and characterization of photoaffinity labelling reagents towards the Hsp90 C-terminal domain. Org. Biomol. Chem., 2017, 15(7), 1597-1605.
[http://dx.doi.org/10.1039/C6OB02097F] [PMID: 27942688]
[106]
Zhao, H.; Kusuma, B.R.; Blagg, B.S.J. Synthesis and evaluation of noviose replacements on novobiocin that manifest anti-proliferative activity. ACS Med. Chem. Lett., 2010, 1(7), 311-315.
[http://dx.doi.org/10.1021/ml100070r] [PMID: 21904660]
[107]
Favre, C.; Friscourt, F. Fluorogenic sydnone-modified coumarins switched-on by copper-free click chemistry. Org. Lett., 2018, 20(14), 4213-4217.
[http://dx.doi.org/10.1021/acs.orglett.8b01587] [PMID: 29995429]
[108]
Kumar, A.; Mondal, S.; Kayshap, K.S.; Hira, S.K.; Manna, P.P.; Dehaen, W.; Dey, S. Water switched aggregation/disaggregation strategies of a coumarin-naphthalene conjugated sensor and its selectivity towards Cu2+ and Ag+ ions along with cell imaging studies on human osteosarcoma cells (U-2 OS). New J. Chem., 2018, 42, 10983-10988.
[http://dx.doi.org/10.1039/C8NJ01631C]
[109]
Saha, M.; Das, A.R. Access of Diverse 2-Pyrrolidinone, 3,4,5-Substituted Furanone and 2-Oxo-dihydropyrroles Applying Graphene Oxide Nanosheet: Unraveling of Solvent Selectivity. ChemistrySelect, 2017, 2, 10249-10260.
[http://dx.doi.org/10.1002/slct.201701989]
[110]
Mahato, K.; Arora, N.; Ray Bagdi, P.; Gattu, R.; Ghosh, S.S.; Khan, A.T. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: Access to lead molecules for biomedical applications. Chem. Commun. (Camb.), 2018, 54(12), 1513-1516.
[http://dx.doi.org/10.1039/C7CC08502H] [PMID: 29364291]
[111]
Gurumurthy, C.; Fatima, N.; Reddy, G.N.; Kumar, C.G.; Sabitha, G.; Ramakrishna, K.V.S. A diastereoselective synthesis of tetrahydro- and dihydro-pyrido[2,3-c]coumarin derivatives via a one-pot three-component Povarov reaction catalyzed by bismuth(III) chloride. Bioorg. Med. Chem. Lett., 2016, 26(20), 5119-5125.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.017] [PMID: 27624077]
[112]
Muthukrishnan, I.; Vinoth, P.; Vivekanand, T.; Nagarajan, S.; Maheswari, C.U.; Menéndez, J.C.; Sridharan, V. Synthesis of 5,6-Dihydrodibenzo[b,h][1,6]naphthyridines via Copper Bromide Catalyzed Intramolecular [4 + 2] Hetero-Diels-Alder Reactions. J. Org. Chem., 2016, 81(3), 1116-1124.
[http://dx.doi.org/10.1021/acs.joc.5b02669] [PMID: 26694659]
[113]
Kiselev, E.; Dexheimer, T.S.; Pommier, Y.; Cushman, M. Design, synthesis, and evaluation of dibenzo[c,h][1,6]naphthyridines as topoisomerase I inhibitors and potential anticancer agents. J. Med. Chem., 2010, 53(24), 8716-8726.
[http://dx.doi.org/10.1021/jm101048k] [PMID: 21090809]
[114]
Thompson, A.M.; Connolly, C.J.C.; Hamby, J.M.; Boushelle, S.; Hartl, B.G.; Amar, A.M.; Kraker, A.J.; Driscoll, D.L.; Steinkampf, R.W.; Patmore, S.J.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Klohs, W.; Leopold, W.R.; Showalter, H.D.; Denny, W.A. 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase. J. Med. Chem., 2000, 43(22), 4200-4211.
[http://dx.doi.org/10.1021/jm000161d] [PMID: 11063616]
[115]
Muthukrishnan, I.; Vachan, B.S.; Karuppasamy, M.; Eniyaval, A.; Uma Maheswari, C.; Nagarajan, S.; Menéndez, J.C.; Sridharan, V. Heterogeneous Amberlyst-15-catalyzed synthesis of complex hybrid heterocycles containing [1,6]-naphthyridine under metal-free green conditions. Org. Biomol. Chem., 2019, 17(28), 6872-6879.
[http://dx.doi.org/10.1039/C9OB01256G] [PMID: 31268090]
[116]
Bela, M.; Das, D.K.; Khan, A.T. Synthesis of pyrido[2,3-c]coumarin derivatives by an intramolecular povarov reaction. Synthesis, 2015, 47, 1109-1116.
[http://dx.doi.org/10.1055/s-0034-1380131]
[117]
Chen, Z.W.; Hua, L.; Peng, F. Efficient synthesis of functionalized pyrido[2,3-c]coumarin deriv- atives by a one-pot three-component reaction. Synlett, 2016, 27, 1888-1892.
[http://dx.doi.org/10.1055/s-0035-1561610]
[118]
Belal, M.; Khan, A.T. PTSA. H2O-catalyzed reaction of 3-aminocoumarins and phenylacetaldehydes: A route to access various pyrido(2,3-c)coumarin derivatives. ChemistrySelect, 2017, 2, 10501-10504.
[http://dx.doi.org/10.1002/slct.201702300]
[119]
Kausar, N.; Das, A.R. CuI-Zn(OAc) 2 catalyzed C(sp2)-H activation for the synthesis of pyridocoumarins through an uncommon Cu I-Cu III switching mechanism: A fast, solvent-free, combo-catalytic, ball milling approach. Tetrahedron Lett., 2017, 58, 2602-2607.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.074]
[120]
Khan, A.T.; Das, D.K.; Islam, K.; Das, P. A simple and expedient synthesis of functionalized pyrido[2,3-c] coumarin derivatives using molecular iodine catalyzed three-component reaction. Tetrahedron Lett., 2012, 53, 6418-6422.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.051]
[121]
Khan, M.M. Saigal; Khan, S.; Shareef, S.; Hussain, S. A Facile and Green Approach for One-Pot Synthesis of Functionalized Chromeno[3,4-b]quinolines and Spiro Chromeno[3,4-b]quinolines by Using Molecular Iodine as a Catalyst. ChemistrySelect, 2018, 3, 2261-2266.
[http://dx.doi.org/10.1002/slct.201702810]
[122]
Islama, K.; Dasa, D.K.; Akrama, E.; Khan, A.T. Exploration of C5 -C6-Unsubstituted 1,4-Dihydropyridines for the Construction of exo-Hexahydro-1H-chromeno[3,4-h][1,6]naph- thyridine-3-carboxylates Using a Stereoselective Povarov Reaction. Synthesis, 2015, 47, 2745-2755.
[http://dx.doi.org/10.1055/s-0034-1380431]
[123]
Yang, X.F.; Chen, Z.W.; Zhong, W.H. Synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones through the domino cyclization of 3-aminocoumarins with arylglyoxal monohydrates. Eur. J. Org. Chem., 2017, 2258-2265.
[http://dx.doi.org/10.1002/ejoc.201700054]
[124]
Mishra, R.; Panday, A.K.; Choudhury, L.H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-Binucleophiles: Binucleophile-Directed Synthesis of Fused Five- and Six-Membered N-Heterocycles. Eur. J. Org. Chem., 2017, 2017, 2789-2800.
[http://dx.doi.org/10.1002/ejoc.201700115]
[125]
Belal, M.; Khan, A.T. Iodine-Catalyzed Synthesis of Pyrrolo(2,3-c)coumarin Derivatives Using 3-Aminocoumarins, Arylglyoxals and 4-Hydroxycoumarin through One-Pot Three-Component Reaction. ChemistrySelect, 2018, 3, 2431-2434.
[http://dx.doi.org/10.1002/slct.201702629]
[126]
Watanabe, T.; Mutoh, Y.; Saito, S. Ruthenium-catalyzed cycloisomerization of 2-alkynylanilides: Synthesis of 3-substituted indoles by 1,2-carbon migration. J. Am. Chem. Soc., 2017, 139(23), 7749-7752.
[http://dx.doi.org/10.1021/jacs.7b04564] [PMID: 28539042]
[127]
Manjappa, K.B.; Peng, Y.; Liou, T.; Yang, D. Pseudo three-component approach to coumarin-annulated azepines: Synthesis of coumarin[3,4-b]azepines. RSC Advances, 2017, 7, 45269-45273.
[http://dx.doi.org/10.1039/C7RA09289J]
[128]
Paul, S.B.; Majumdar, K.C.; Anwar, S.; Choudhury, S. Copper(I) iodide supported synthesis of coumarin- and quinolone-annulated 2-aminothiazoles. Synlett, 2015, 26, 1039-1044.
[http://dx.doi.org/10.1055/s-0034-1380272]
[129]
Anwar, S.; Paul, S.B.; Majumdar, K.C.; Choudhury, S. Green, One-Pot, Multicomponent synthesis of fused-ring 2-aminothiazoles. Synth. Commun., 2014, 44, 3304-3313.
[http://dx.doi.org/10.1080/00397911.2014.904880]