Nio Nanoparticles: A Highly Efficient Catalyst for the One-Pot Three- Component Synthesis of Pyrano [2, 3-D] Pyrimidine Derivatives in Green Reaction Media

Page: [576 - 582] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

NiO nanoparticles are utilized to effectively strengthen annulated pyrano [2,3-d] pyrimidine synthesis through primary Knoevenagel, following Micheal and ultimate heterocyclization reactions of aldehyde, malononitrile, and barbituric acid. The characteristics of NiO nanoparticles are identified using advanced techniques, such as IR, UV, EDX, XRD, SEM, and TEM. The nano-NiO particles are mostly below < 100 nm in size with uniform spherical shapes. The adopted approach is advantages owing to its simple processing, relatively short reaction time, often good to high average yields, convenient workability, and environmental friendliness.

Keywords: NiO nanoparticles, pyrano pyrimidines, barbituric acid, multicomponent reaction, green synthesis, microwave irradiation.

Graphical Abstract

[1]
Ghashang, M.; Kargar, M.; Shafiee, M.R.; Mansoor, S.S.; Fazlinia, A.; Esfandiari, H. Recent Pat. Nanotechnol., 2015, 9(3), 204-211.
[http://dx.doi.org/10.2174/1872210510999151126110657] [PMID: 27009135]
[2]
Ghashang, M.; Mansoor, S.S.; Mohammad Shafiee, M.R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. J. Sulfur Chem., 2016, 37, 377-399.
[http://dx.doi.org/10.1080/17415993.2016.1149856]
[3]
Ghashang, S.S.; Mansoor, S.S.; Aswin, K. Chin. J. Catal., 2014, 35, 127-133.
[http://dx.doi.org/10.1016/S1872-2067(12)60727-X]
[4]
Baziar, A.; Ghashang, M. React. Kinet. Mech. Catal., 2016, 118, 463-479.
[http://dx.doi.org/10.1007/s11144-016-1013-x]
[5]
Asadpour Behzadi, S.; Enayatollah Sheikhhosseini, E.; Ahmadi, S.A.; Ghazanfari, D.; Akhgar, M.R. Heterocycl. Commun., 2020, 26, 60-67.
[http://dx.doi.org/10.1515/hc-2020-0009]
[6]
Bararjanian, M.; Balalaie, S.; Movassagh, B.; Amani, A.M.J. Iran. Chem. Soc., 2009, 6, 436-442.
[http://dx.doi.org/10.1007/BF03245854]
[7]
Ghashang, M. Lett. Org. Chem., 2012, 9, 497-502.
[http://dx.doi.org/10.2174/157017812802139564]
[8]
Shafiee, M.M.R.; Ghashang, M.; Fazlinia, A. Curr. Nanosci., 2013, 9, 197-201.
[http://dx.doi.org/10.2174/1573413711309020006]
[9]
Moosazadeh, E. Lett. Org. Chem., 2019, 16, 818-824.
[http://dx.doi.org/10.2174/1570178616666181203145211]
[10]
Ghashang, M. Curr. Org. Synth., 2012, 5, 727-732.
[http://dx.doi.org/10.2174/157017912803251800]
[11]
Shafiee, M.R.M.; Mansoor, S.S.; Ghashang, M.; Fazlinia, A. C. R. Chim., 2014, 17, 131-134.
[http://dx.doi.org/10.1016/j.crci.2013.06.009]
[12]
Sheikhhosseini, E. J. Saudi Chem. Soc., 2018, 22, 337-342.
[http://dx.doi.org/10.1016/j.jscs.2016.05.005]
[13]
Valderrama, J.A.; Colonelli, P.; Vásquez, D.; González, M.F.; Rodríguez, J.A.; Theoduloz, C. Bioorg. Med. Chem., 2008, 16(24), 10172-10181.
[http://dx.doi.org/10.1016/j.bmc.2008.10.064] [PMID: 19013074]
[14]
Furuay, S.; Ohtaki, T. Eur. Pat. Appl. EP608565, 1994
[15]
Bagley, M.C.; Hughes, D.D.; Lubinu, M.C.; Merrit, E.A.; Taylor, P.H.; Tomkinson, N.C.O. QSAR Comb. Sci., 2004, 23, 859-867.
[http://dx.doi.org/10.1002/qsar.200420044]
[16]
Nogueras, M.; Cobo, J.; Quijano, M.L.; Melguizo, M.; Shchez, A.; Melgarejob, M. Nucleosides Nucleic Acids, 1994, 13, 447-457.
[17]
Wender, P.A. Nat. Prod. Rep., 2014, 31(4), 433-440.
[http://dx.doi.org/10.1039/C4NP00013G] [PMID: 24589860]
[18]
Seeliger, F.; Berger, S.T.A.; Remennikov, G.Y.; Polborn, K.; Mayr, H. J. Org. Chem., 2007, 72(24), 9170-9180.
[http://dx.doi.org/10.1021/jo071273g] [PMID: 17963402]
[19]
Khurana, J.M.; Vij, K. Synth. Commun., 2013, 43, 2294-2304.
[http://dx.doi.org/10.1080/00397911.2012.700474]
[20]
Azarifar, D.; Nejat-Yami, R.; Sameri, F. Akrami. Z. Lett. Org. Chem., 2012, 9, 435-439.
[http://dx.doi.org/10.2174/157017812801322435]
[21]
Elinson, M.N.; Ilovaisky, A.I.; Merkulova, V.M.; Zaimovskaya, T.A.; Nikishin, G.I. Mendeleev Commun., 2011, 3, 122-124.
[http://dx.doi.org/10.1016/j.mencom.2011.04.002]
[22]
Devi, I.; Kumar, B.S.D.; Bhuyan, P.J.A. Tetrahedron Lett., 2003, 44, 8307-8310.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.063]
[23]
Elinson, M.N.; Ryzhkov, F.V.; Merkulova, V.M.; Ilovaisky, A.I.; Nikishin, G.I. Heterocycl. Commun., 2014, 20, 281-284.
[http://dx.doi.org/10.1515/hc-2014-0114]
[24]
Khazaei, A.; Ranjbaran, A.; Abbasi, F.; Khazaei, M.; Moosavi-Zare, A.R. RSC Advances, 2015, 5, 13643-13647.
[http://dx.doi.org/10.1039/C4RA16664G]
[25]
Erfaninia, N.; Tayebee, R.; Foletto, E.L.; Amini, M.M.; Dusek, M.; Zonoz, F.M. Appl. Organomet. Chem., 2018, 32, e4047.
[http://dx.doi.org/10.1002/aoc.4047]
[26]
Budhiraja, N.; Sharma, A.; Dahiya, S.; Parmar, R.; Vidyadharan, V. Int. Lett. Chem. Phys. Astron., 2013, 14, 80-88.
[27]
Yahyazadehfar, M.; Ahmadi, S.A.; Sheikhhosseini, E.; Ghazanfari, D. J. Mater. Sci. Mater. Electron., 2020, 31, 11618-11623.
[http://dx.doi.org/10.1007/s10854-020-03710-2]
[28]
Maaref, H.; Sheikhhosseini, E.; Foroughi, M.M.; Akhgar, M.R.; Jahani, S. Appl. Organomet. Chem., 2020, 34, e5557.
[http://dx.doi.org/10.1002/aoc.5557]
[29]
Moghaddam Manesh, M.; Ghazanfari, D.; Sheikhhosseini, E.; Akhgar, M.R. Appl. Organomet. Chem., 2020, 34, e5543.
[http://dx.doi.org/10.1002/aoc.5543]
[30]
Yahyazadehfar, M.; Sheikhhosseini, E.; Ahmadi, S.A.; Ghazanfari, D. Appl. Organomet. Chem., 2019, 33, e5100.
[http://dx.doi.org/10.1002/aoc.5100]
[31]
Sheikhhosseini, E.; Ghazanfari, D.; Nezamabadi, V. Iran. J. Catal, 2013, 3, 197-201.