An Anti-EGFR/anti- HER2 Bispecific Antibody with Enhanced Antitumor Activity Against Acquired Gefitinib-Resistant NSCLC Cells

Page: [1290 - 1297] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Acquired resistance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs) is a recurrent phenomenon during clinical therapy of non-small-cell lung cancer (NSCLC). Studies have shown that HER2 is a key factor contributing to drug resistance in a variety of cancers. Furthermore, we have observed that HER2 is overexpressed in PC-9 NSCLC cells with acquired gefitinib-resistance (PC-9/GR) as compared to that in PC-9 cells.

Objective: We hypothesized that blocking both EGFR and HER2 may serve as a potential strategy for the treatment of NSCLC with acquired gefitinib-resistance.

Methods: To target both EGFR and HER2 simultaneously, we developed a bispecific antibody HECrossMAb, which was derived from a humanized Cetuximab and Trastuzumab. The binding affinity of HECrossMAb for EGFR and HER2 was measured using an enzyme-linked immunosorbent assay. The MTT assay was used to determine the effect of HECrossMAb on the proliferation of PC-9 and PC-9/GR cells in vitro. Finally, the effect of HECrossMAb on PI3K/AKT signaling and associated transcription factors was measured using western blot analysis.

Results: Our results showed that HECrossMAb exerts enhanced cytotoxicity in both PC-9 and PC-9/GR cells by inhibiting the activation of PI3K/AKT signaling and expression of relevant transcription factors such as AEG-1, c-Myc, and c-Fos.

Conclusion: Our results suggest that HECrossMAb may function as a potential therapeutic agent for treating NSCLC overexpressing EGFR and HER2.

Keywords: NSCLC, EGFR, HER2, bispecific antibody, acquired gefitinib-resistance, HECrossMAb.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; Fujita, Y.; Okinaga, S.; Hirano, H.; Yoshimori, K.; Harada, T.; Ogura, T.; Ando, M.; Miyazawa, H.; Tanaka, T.; Saijo, Y.; Hagiwara, K.; Morita, S.; Nukiwa, T. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med., 2010, 362(25), 2380-2388.
[http://dx.doi.org/10.1056/NEJMoa0909530] [PMID: 20573926]
[3]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[4]
Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[5]
Hu, G.; Wei, Y.; Kang, Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin. Cancer Res., 2009, 15(18), 5615-5620.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0049] [PMID: 19723648]
[6]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[7]
García-Echeverría, C. Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways. Purinergic Signal., 2009, 5(1), 117-125.
[http://dx.doi.org/10.1007/s11302-008-9111-5] [PMID: 18523868]
[8]
Yoshida, T.; Okamoto, I.; Okabe, T.; Iwasa, T.; Satoh, T.; Nishio, K.; Fukuoka, M.; Nakagawa, K. Matuzumab and cetuximab activate the epidermal growth factor receptor but fail to trigger downstream signaling by Akt or Erk. Int. J. Cancer, 2008, 122(7), 1530-1538.
[http://dx.doi.org/10.1002/ijc.23253] [PMID: 18033688]
[9]
Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res., 2013, 19(8), 2240-2247.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2246] [PMID: 23470965]
[10]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[http://dx.doi.org/10.1038/nm.3854] [PMID: 25939061]
[11]
Heinmöller, P.; Gross, C.; Beyser, K.; Schmidtgen, C.; Maass, G.; Pedrocchi, M.; Rüschoff, J. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin. Cancer Res., 2003, 9(14), 5238-5243.
[PMID: 14614004]
[12]
Pellegrini, C.; Falleni, M.; Marchetti, A.; Cassani, B.; Miozzo, M.; Buttitta, F.; Roncalli, M.; Coggi, G.; Bosari, S. HER-2/Neu alterations in non-small cell lung cancer: a comprehensive evaluation by real time reverse transcription-PCR, fluorescence in situ hybridization, and immunohistochemistry. Clin. Cancer Res., 2003, 9(10 Pt 1), 3645-3652.
[PMID: 14506153]
[13]
Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511), 543-550.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[14]
Takenaka, M.; Hanagiri, T.; Shinohara, S.; Kuwata, T.; Chikaishi, Y.; Oka, S.; Shigematsu, Y.; Nagata, Y.; Shimokawa, H.; Nakagawa, M.; Uramoto, H.; So, T.; Tanaka, F. The prognostic significance of HER2 overexpression in non-small cell lung cancer. Anticancer Res., 2011, 31(12), 4631-4636.
[PMID: 22199341]
[15]
Hirsch, F.R.; Varella-Garcia, M.; Cappuzzo, F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene, 2009, 28(Suppl. 1), S32-S37.
[http://dx.doi.org/10.1038/onc.2009.199] [PMID: 19680294]
[16]
Onn, A.; Correa, A.M.; Gilcrease, M.; Isobe, T.; Massarelli, E.; Bucana, C.D.; O’Reilly, M.S.; Hong, W.K.; Fidler, I.J.; Putnam, J.B.; Herbst, R.S. Synchronous overexpression of epidermal growth factor receptor and HER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer. Clin. Cancer Res., 2004, 10(1 Pt 1), 136-143.
[http://dx.doi.org/10.1158/1078-0432.CCR-0373-3] [PMID: 14734462]
[17]
Sasaki, H.; Shimizu, S.; Endo, K.; Takada, M.; Kawahara, M.; Tanaka, H.; Matsumura, A.; Iuchi, K.; Haneda, H.; Suzuki, E.; Kobayashi, Y.; Yano, M.; Fujii, Y. EGFR and erbB2 mutation status in Japanese lung cancer patients. Int. J. Cancer, 2006, 118(1), 180-184.
[http://dx.doi.org/10.1002/ijc.21301] [PMID: 16003726]
[18]
Harari, D.; Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 2000, 19(53), 6102-6114.
[http://dx.doi.org/10.1038/sj.onc.1203973] [PMID: 11156523]
[19]
Takezawa, K.; Pirazzoli, V.; Arcila, M.E.; Nebhan, C.A.; Song, X.; de Stanchina, E.; Ohashi, K.; Janjigian, Y.Y.; Spitzler, P.J.; Melnick, M.A.; Riely, G.J.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Politi, K.; Pao, W. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov., 2012, 2(10), 922-933.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0108] [PMID: 22956644]
[20]
Moores, S.L.; Chiu, M.L.; Bushey, B.S.; Chevalier, K.; Luistro, L.; Dorn, K.; Brezski, R.J.; Haytko, P.; Kelly, T.; Wu, S.J.; Martin, P.L.; Neijssen, J.; Parren, P.W.; Schuurman, J.; Attar, R.M.; Laquerre, S.; Lorenzi, M.V.; Anderson, G.M. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res., 2016, 76(13), 3942-3953.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2833] [PMID: 27216193]
[21]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[22]
Brower, V. Phase 1/2 study of blinatumomab in relapsed paediatric ALL. Lancet Oncol., 2016, 17(12), e525.
[http://dx.doi.org/10.1016/S1470-2045(16)30580-0] [PMID: 27839960]
[23]
Byrne, H.; Conroy, P.J.; Whisstock, J.C.; O’Kennedy, R.J. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol., 2013, 31(11), 621-632.
[http://dx.doi.org/10.1016/j.tibtech.2013.08.007] [PMID: 24094861]
[24]
Chan, A.C.; Carter, P.J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol., 2010, 10(5), 301-316.
[http://dx.doi.org/10.1038/nri2761] [PMID: 20414204]
[25]
Kontermann, R.E. Dual targeting strategies with bispecific antibodies. MAbs, 2012, 4(2), 182-197.
[http://dx.doi.org/10.4161/mabs.4.2.19000] [PMID: 22453100]
[26]
Linke, R.; Klein, A.; Seimetz, D. Catumaxomab: clinical development and future directions. MAbs, 2010, 2(2), 129-136.
[http://dx.doi.org/10.4161/mabs.2.2.11221] [PMID: 20190561]
[27]
Ding, L.; Tian, C.; Feng, S.; Fida, G.; Zhang, C.; Ma, Y.; Ai, G.; Achilefu, S.; Gu, Y. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics, 2015, 5(4), 378-398.
[http://dx.doi.org/10.7150/thno.10084] [PMID: 25699098]
[28]
Ekerljung, L.; Wållberg, H.; Sohrabian, A.; Andersson, K.; Friedman, M.; Frejd, F.Y.; Ståhl, S.; Gedda, L. Generation and evaluation of bispecific affibody molecules for simultaneous targeting of EGFR and HER2. Bioconjug. Chem., 2012, 23(9), 1802-1811.
[http://dx.doi.org/10.1021/bc3000645] [PMID: 22882002]
[29]
Hu, S.; Fu, W.; Xu, W.; Yang, Y.; Cruz, M.; Berezov, S.D.; Jorissen, D.; Takeda, H.; Zhu, W. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res., 2015, 75(1), 159-170.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1670] [PMID: 25371409]
[30]
Wu, S.C.; Chen, Y.J.; Wang, H.C.; Chou, M.Y.; Chang, T.Y.; Yuan, S.S.; Chen, C.Y.; Hou, M.F.; Hsu, J.T.; Wang, Y.M. Bispecific antibody conjugated manganese-based magnetic engineered iron oxide for imaging of HER2/neu- and EGFR-expressing tumors. Theranostics, 2016, 6(1), 118-130.
[http://dx.doi.org/10.7150/thno.13069] [PMID: 26722378]
[31]
Lu, Y.; Zhou, Q.; Han, Q.; Wu, P.; Zhang, L.; Zhu, L.; Weaver, D.T.; Xu, C.; Zhang, B. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl. Microbiol. Biotechnol., 2018, 102(14), 6081-6093.
[http://dx.doi.org/10.1007/s00253-018-9070-x] [PMID: 29766242]
[32]
Schaefer, W.; Regula, J.T.; Bähner, M.; Schanzer, J.; Croasdale, R.; Dürr, H.; Gassner, C.; Georges, G.; Kettenberger, H.; Imhof-Jung, S.; Schwaiger, M.; Stubenrauch, K.G.; Sustmann, C.; Thomas, M.; Scheuer, W.; Klein, C. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 11187-11192.
[http://dx.doi.org/10.1073/pnas.1019002108] [PMID: 21690412]
[33]
Fei, S.J.; Zhang, X.C.; Dong, S.; Cheng, H.; Zhang, Y.F.; Huang, L.; Zhou, H.Y.; Xie, Z.; Chen, Z.H.; Wu, Y.L. Targeting mTOR to overcome epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer cells. PLoS One, 2013, 8(7), e69104.
[http://dx.doi.org/10.1371/journal.pone.0069104] [PMID: 23874880]
[34]
Xu, C.; Wu, P.; Gao, J.; Zhang, L.; Ma, T.; Ma, B.; Yang, S.; Shao, G.; Yu, Y.; Huang, X.; Yang, X.; Zhang, B. Heptadecanoic acid inhibits cell proliferation in PC-9 non-small-cell lung cancer cells with acquired gefitinib resistance. Oncol. Rep., 2019, 41(6), 3499-3507.
[http://dx.doi.org/10.3892/or.2019.7130] [PMID: 31002344]
[35]
Shtivelman, E.; Hensing, T.; Simon, G.R.; Dennis, P.A.; Otterson, G.A.; Bueno, R.; Salgia, R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget, 2014, 5(6), 1392-1433.
[http://dx.doi.org/10.18632/oncotarget.1891] [PMID: 24722523]
[36]
Ross, H.J.; Blumenschein, G.R., Jr; Aisner, J.; Damjanov, N.; Dowlati, A.; Garst, J.; Rigas, J.R.; Smylie, M.; Hassani, H.; Allen, K.E.; Leopold, L.; Zaks, T.Z.; Shepherd, F.A. Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer. Clin. Cancer Res., 2010, 16(6), 1938-1949.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3328] [PMID: 20215545]
[37]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K.K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[38]
Wong, K.K. HKI-272 in non small cell lung cancer. Clin. Cancer Res., 2007, 13(15 Pt 2), s4593-s4596.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0369] [PMID: 17671147]
[39]
Grugan, K.D.; Dorn, K.; Jarantow, S.W.; Bushey, B.S.; Pardinas, J.R.; Laquerre, S.; Moores, S.L.; Chiu, M.L. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs, 2017, 9(1), 114-126.
[http://dx.doi.org/10.1080/19420862.2016.1249079] [PMID: 27786612]
[40]
Li, J.F.; Niu, Y.Y.; Xing, Y.L.; Liu, F. A novel bispecific c-MET/CTLA-4 antibody targetting lung cancer stem cell-like cells with therapeutic potential in human non-small-cell lung cancer. Biosci. Rep., 2019, 39(5), BSR20171278.
[http://dx.doi.org/10.1042/BSR20171278] [PMID: 29187584]
[41]
Yin, W.; Zhu, J.; Gonzalez-Rivas, D.; Okumura, M.; Rocco, G.; Pass, H.; Jiang, G.; Yang, Y. Construction of a novel bispecific antibody to enhance antitumor activity against lung cancer. Adv. Mater., 2018, 30(51), e1805437.
[http://dx.doi.org/10.1002/adma.201805437] [PMID: 30345557]
[42]
Wu, C.; Ying, H.; Grinnell, C.; Bryant, S.; Miller, R.; Clabbers, A.; Bose, S.; McCarthy, D.; Zhu, R.R.; Santora, L.; Davis-Taber, R.; Kunes, Y.; Fung, E.; Schwartz, A.; Sakorafas, P.; Gu, J.; Tarcsa, E.; Murtaza, A.; Ghayur, T. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol., 2007, 25(11), 1290-1297.
[http://dx.doi.org/10.1038/nbt1345] [PMID: 17934452]
[43]
Friedman, M.; Lindström, S.; Ekerljung, L.; Andersson-Svahn, H.; Carlsson, J.; Brismar, H.; Gedda, L.; Frejd, F.Y.; Ståhl, S. Engineering and characterization of a bispecific HER2 x EGFR-binding affibody molecule. Biotechnol. Appl. Biochem., 2009, 54(2), 121-131.
[http://dx.doi.org/10.1042/BA20090096] [PMID: 19492986]
[44]
Xu, C.; Han, Q.; Zhou, Q.; Zhang, L.; Wu, P.; Lu, Y.; Si, Y.; Ma, T.; Ma, B.; Zhang, B. MiR-106b promotes therapeutic antibody expression in CHO cells by targeting deubiquitinase CYLD. Appl. Microbiol. Biotechnol., 2019, 103(17), 7085-7095.
[http://dx.doi.org/10.1007/s00253-019-10000-3] [PMID: 31292678]