Analytical Methods for the Quantification of Cisplatin, Carboplatin, and Oxaliplatin in Various Matrices over the Last Two Decades

Page: [455 - 490] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

Background: Platinum derivatives, including cisplatin and its later generations carboplatin, and oxaliplatin remain the most largely used drugs in the therapy of malignant diseases. They exert notable anticancer activity towards numerous types of solid tumors such as gastric, colorectal, bladder, ovary, and several others. The chemotherapeutic activity of these compounds, however, is associated with many unwanted side effects and drug resistance problems, limiting their application and effectiveness. Proper dosage is still an inherent problem, as these drugs are usually prescribed in small doses.

Objective: Several analytical methods have been reported for the accurate quantification of cisplatin, carboplatin, and oxaliplatin and their metabolites either alone or in combination with other chemotherapeutic drugs, in different matrices, such as pharmaceutical formulations, biological fluids, cancer cells, and environmental samples. The main goal of this review is to systematically study the analytical methods already used for the analysis of cisplatin, carboplatin, and oxaliplatin in various matrices during the last two decades.

Results and Conclusion: In the literature, reviews showed that numerous analytical methods, such as electroanalytical, UV-visible spectrophotometry, chromatographic, fluorescence, atomic absorption spectrophotometry, and other spectroscopic methods combined with mass spectrometry were used for the determination of these compounds in various matrices.

Keywords: Chemotherapy, cisplatin, carboplatin, oxaliplatin, analytical methods, biological fluids.

Graphical Abstract

[1]
Global Health Observatory. 2018, Availbale from: https://www.who.int/data/gho (Accessed June 21, 2018)
[2]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[3]
Baudino, T.A. Targeted cancer therapy: The next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[4]
Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer, 2018, 9(10), 1773-1781.
[http://dx.doi.org/10.7150/jca.24577] [PMID: 29805703]
[5]
Abraham, E.J.; Staffurth, J. Hormonal therapy for cancer. Medicine (Baltimore), 2011, 39(12), 723-727.
[http://dx.doi.org/10.1016/j.mpmed.2011.09.006]
[6]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114]
[7]
Bandu, R.; Ahn, H.S.; Lee, J.W.; Kim, Y.W.; Choi, S.H.; Kim, H.J.; Kim, K.P. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) Study for the Identification and Characterization of in vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D) Exchange Study. PLoS One, 2015, 10(8)e0134027
[http://dx.doi.org/10.1371/journal.pone.0134027] [PMID: 26244343]
[8]
Ghezzi, A.; Aceto, M.; Cassino, C.; Gabano, E.; Osella, D. Uptake of antitumor platinum(II)-complexes by cancer cells, assayed by inductively coupled plasma mass spectrometry (ICP-MS). J. Inorg. Biochem., 2004, 98(1), 73-78.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.08.014]
[9]
Materon, E.M.; Wong, A.; Klein, S.I.; Liu, J.; Sotomayor, M.D.P.T. Multi walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim. Acta, 2015, 158, 271-276.
[http://dx.doi.org/10.1016/j.electacta.2015.01.184]
[10]
Artiaga, G.; Iglesias-Jiménez, A.; Moreno-Gordaliza, E.; Mena, M.L.; Gómez-Gómez, M.M. Differences in binding kinetics, bond strength and adduct formation between Pt-based drugs and S- or N-donor groups: A comparative study using mass spectrometry techniques. Eur. J. Pharm. Sci., 2019, 132, 96-105.
[http://dx.doi.org/10.1016/j.ejps.2019.03.002] [PMID: 30844436]
[11]
Takahara, P.M.; Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377(6550), 649-652.
[http://dx.doi.org/10.1038/377649a0] [PMID: 7566180]
[12]
Di Pasqua, A.J.; Goodisman, J.; Dabrowiak, J.C. Understanding how the platinum anticancer drug carboplatin works: From the bottle to the cell. Inorg. Chim. Acta, 2012, 389, 29-35.
[http://dx.doi.org/10.1016/j.ica.2012.01.028]
[13]
World Health Organization Model List of Essential Medicines: 21st List, 2019. Available from: https://www.who.int/medicines/publications/essentialmedicines
[14]
Zhao, D.; Li, J.; Yang, T.; He, Z. “Turn off-on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens. Bioelectron., 2014, 52, 29-35.
[http://dx.doi.org/10.1016/j.bios.2013.08.031] [PMID: 24016536]
[15]
Wu, Y.; Lai, R.Y. Electrochemical detection of platinum (IV) prodrug satraplatin in serum. Anal. Chem., 2015, 87(21), 11092-11097.
[http://dx.doi.org/10.1021/acs.analchem.5b03215] [PMID: 26465061]
[16]
Abu Ammar, A.; Raveendran, R.; Gibson, D.; Nassar, T.; Benita, S. A lipophilic Pt(IV) oxaliplatin derivative enhances antitumor activity. J. Med. Chem., 2016, 59(19), 9035-9046.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00955] [PMID: 27603506]
[17]
Jamieson, E.R.; Lippard, S.J. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev., 1999, 99(9), 2467-2498.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[18]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[19]
Wang, S.; Scharadin, T.M.; Zimmermann, M.; Malfatti, M.A.; Turteltaub, K.W.; de Vere White, R.; Pan, C.X.; Henderson, P.T. Correlation of platinum cytotoxicity to Drug-DNA adduct levels in a breast Cancer cell line panel. Chem. Res. Toxicol., 2018, 31(12), 1293-1304.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00170] [PMID: 30381944]
[20]
Gholivand, M.B.; Ahmadia, E.; Mavaei, M. A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anticancer drug. Sens. Actuators B Chem., 2019, 299126975
[http://dx.doi.org/10.1016/j.snb.2019.126975]
[21]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[22]
Santiago-Lopez, A.J.; Vera, J.L.; Meléndez, E. DNA electrochemical biosensor for metallic drugs at physiological conditions. J. Electroanal. Chem. (Lausanne), 2014, 731, 139-144.
[http://dx.doi.org/10.1016/j.jelechem.2014.07.022] [PMID: 25705144]
[23]
Ye, L.; Xiang, M.; Lu, Y.; Gao, Y.; Pang, P. Electrochemical determination of cisplatin in serum at graphene oxide/multi-walled carbon nanotubes modified glassy carbon electrode. Int. J. Electrochem. Sci., 2014, 9, 1537-1546.
[24]
Galagedera, S.K.K.; Flechsig, G.U. Detection of the level of DNA cross-linking with cisplatin by electrochemical quartz crystal microbalance. J. Electroanal. Chem. (Lausanne), 2020, 862113992
[http://dx.doi.org/10.1016/j.jelechem.2020.113992]
[25]
Materon, E.M.; Huang, P.J.J.; Wong, A.; Ferreira, A.A.P. Glutathione-s-transferase modified electrodes for detecting anticancer drugs. Biosens. Bioelectron., 2014, 58, 232-236.
[http://dx.doi.org/10.1016/j.bios.2014.02.070] [PMID: 24657642]
[26]
Petrlova, J.; Potesil, D.; Zehnalek, J.; Sures, B.; Adam, V.; Trnkova, L.; Kizek, R. Cisplatin electrochemical biosensor. Electrochim. Acta, 2006, 51(24), 5169-5173.
[http://dx.doi.org/10.1016/j.electacta.2006.03.077]
[27]
El-Wekil, M.M.; Darweesh, M.; Shaykoon, M.S.A.; Ali, R. Enzyme-free and label-free strategy for electrochemical oxaliplatin aptasensing by using rGO/MWCNTs loaded with AuPd nanoparticles as signal probes and electro-catalytic enhancers. Talanta, 2020, 217121084
[http://dx.doi.org/10.1016/j.talanta.2020.121084] [PMID: 32498856]
[28]
Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M. A novel molecularly imprinted polymer decorated by CQDs@HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sens. Actuators B Chem., 2020, 307127614
[http://dx.doi.org/10.1016/j.snb.2019.127614]
[29]
Luu, H.T.L.; Nachtigal, M.W.; Kuss, S. Electrochemical characterization of carboplatin at unmodified platinum electrodes and its application to drug consumption studies in ovarian cancer cells. J. Electroanal. Chem. (Lausanne), 2020, 872114253
[http://dx.doi.org/10.1016/j.jelechem.2020.114253]
[30]
Yalçin, G.; Ariöz, F.; Dölen, E. The spectrophotometric determination of cisplatin in urine using o-phenylenediamine as derivatizing agent. Anal. Lett., 2001, 34(1), 113-123.
[http://dx.doi.org/10.1081/AL-100002709]
[31]
Basotra, M.; Kumar Singh, S.; Gulati, M. Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: application to dissolution studies. Anal. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/936254]
[32]
Moawed, E.A.; Ishaq, I.; Abdul-Rahman, A.; El-Shahat, M.F. Synthesis, characterization of carbon polyurethane powder and its application for separation and spectrophotometric determination of platinum in pharmaceutical and ore samples. Talanta, 2014, 121, 113-121.
[http://dx.doi.org/10.1016/j.talanta.2013.12.050] [PMID: 24607117]
[33]
Raut, I.D.; Doijad, R.C.; Mohite, S.K. Development and validation of a simple spectroscopic method for estimation of cisplatin in bulk and in formulation. E.J. PM R, 2018, 5, 617-622.
[34]
Nanjwade, B.K.; Singh, J.; Parikh, K.A.; Manvi, F.V. Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles. Int. J. Pharm., 2010, 385(1-2), 176-180.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.030] [PMID: 19854254]
[35]
Soori, H.; Rabbani-Chadegani, A.; Davoodi, J. Exploring binding affinity of oxaliplatin and carboplatin, to nucleoprotein structure of chromatin: spectroscopic study and histone proteins as a target. Eur. J. Med. Chem., 2015, 89, 844-850.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.063] [PMID: 25462284]
[36]
Yang, H.; Cui, H.; Wang, L.G.; Yan, L.; Qian, Y.; Zheng, X.E.; Wei, W.; Zhao, J. A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Sens. Actuators B Chem., 2014, 202, 714-720.
[http://dx.doi.org/10.1016/j.snb.2014.05.027]
[37]
Jantarat, T.; Chuaychob, S.; Thammakhet-Buranachai, C.; Thavarungkul, P.; Kanatharana, P.; Srisintorn, W.; Buranachai, C. A label-free DNA-based fluorescent sensor for cisplatin detection. Sens. Actuators B Chem., 2020, 326128764
[http://dx.doi.org/10.1016/j.snb.2020.128764]
[38]
Lad, A.N.; Agrawal, Y.K. Optical nanobiosensor: A new analytical tool for monitoring carboplatin–DNA interaction in vitro. Talanta, 2012, 97, 218-221.
[http://dx.doi.org/10.1016/j.talanta.2012.04.020] [PMID: 22841070]
[39]
Verschraagen, M.; van der Born, K.; Zwiers, T.H.U.; van der Vijgh, W.J.F. Simultaneous determination of intact cisplatin and its metabolite monohydrated cisplatin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 772(2), 273-281.
[http://dx.doi.org/10.1016/S1570-0232(02)00108-3] [PMID: 12007772]
[40]
Najafi, N.M.; Shahparvizi, S.; Rafati, H.; Ghasemi, E.; Alizadeh, R. Preconcentration and determination of ultra-traces of platinum in human serum using the combined electrodeposition-electrothermal atomic absorption spectroscopy (ED-ETAAS) and chemometric method. J. Pharm. Biomed. Anal., 2010, 53(1), 58-61.
[http://dx.doi.org/10.1016/j.jpba.2010.02.023] [PMID: 20382490]
[41]
Zalba, S.; Navarro-Blasco, I.; Moreno, D.; Garrido, M.J. Application of non-aggressive sample preparation and electrothermal atomic absorption spectrometry to quantify platinum in biological matrices after cisplatin nanoparticle administration. Microchem. J., 2010, 96(2), 415-421.
[http://dx.doi.org/10.1016/j.microc.2010.07.006]
[42]
da Costa, A.C., Jr; Vieira, M.A.; Luna, A.S.; de Campos, R.C. Determination of platinum originated from antitumoral drugs in human urine by atomic absorption spectrometric methods. Talanta, 2010, 82(5), 1647-1653.
[http://dx.doi.org/10.1016/j.talanta.2010.07.029] [PMID: 20875558]
[43]
Vieira, F.P.; Mesquita, T.L.; Lara, P.C.P.; Ramaldes, G.A.; Beinner, M.A.; Silva, J.B.B.; Oliveira, M.C.; Silveira, J.N.E.T.E.T. AAS evaluation of the stability and pH-sensitivity of, pH-sensitive stealth liposomes containing cisplatin in mouse plasma. J. Pharm. Biomed. Anal., 2013, 84, 135-139.
[http://dx.doi.org/10.1016/j.jpba.2013.05.044] [PMID: 23831488]
[44]
Chappuy, M.; Caudron, E.; Bellanger, A.; Pradeau, D. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction. J. Hazard. Mater., 2010, 176(1-3), 207-212.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.014] [PMID: 19962825]
[45]
Meeravali, N.N.; Madhavi, K.; Manjusha, R.; Kumar, S.J. Sequential extraction of platinum, cisplatin and carboplatin from environmental samples and pre-concentration/separation using vesicular coacervative extraction and determination by continuum source ETAAS. Talanta, 2014, 118, 37-44.
[http://dx.doi.org/10.1016/j.talanta.2013.09.045] [PMID: 24274268]
[46]
Mortada, W.I.; Hassanien, M.M.; El-Asmy, A.A. Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry. J. Trace Elem. Med. and Biol., 2013, 27(45), 267-272.
[http://dx.doi.org/10.1016/j.jtemb.2013.04.004]
[47]
Wang, X.; Yin, X.; Cheng, H. Microflow injection chemiluminescence system with spiral microchannel for the determination of cisplatin in human serum. Anal. Chim. Acta, 2010, 678(2), 135-139.
[http://dx.doi.org/10.1016/j.aca.2010.08.003] [PMID: 20888444]
[48]
Riisom, M.; Gammelgaard, B.; Lambert, I.H.; Stürup, S. Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods. J. Pharm. Biomed. Anal., 2018, 158, 144-150.
[http://dx.doi.org/10.1016/j.jpba.2018.05.038] [PMID: 29870891]
[49]
Lemoine, L.; Thijssen, E.; Noben, J.P.; Adriaensens, P.; Carleer, R.; Speeten, K.V. A validated inductively coupled plasma mass spectrometry (ICP-MS) method for the quantification of total platinum content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. J. Pharm. Biomed. Anal., 2018, 152, 39-46.
[http://dx.doi.org/10.1016/j.jpba.2018.01.033] [PMID: 29414017]
[50]
Moraleja, I.; Mena, M.L.; Lázaro, A.; Neumann, B.; Tejedorc, A.; Jakubowski, N.; Gómez-Gómez, M.M.; Esteban-Fernández, D. An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis. Talanta, 2018, 178, 166-171.
[http://dx.doi.org/10.1016/j.talanta.2017.09.031] [PMID: 29136808]
[51]
Goykhman, N.; Dror, I.; Berkowitz, B. Transport of platinum-based pharmaceuticals in water-saturated sand and natural soil: Carboplatin and cisplatin species. Chemosphere, 2019, 219, 390-399.
[http://dx.doi.org/10.1016/j.chemosphere.2018.12.005] [PMID: 30551105]
[52]
Morrison, J.G.; White, P.; McDougall, S.; Firth, J.W.; Woolfrey, S.G.; Graham, M.A.; Greenslade, D. Validation of a highly sensitive ICP-MS method for the determination of platinum in biofluids: Application to clinical pharmacokinetic studies with oxaliplatin. J. Pharm. Biomed. Anal., 2000, 24(1), 1-10.
[http://dx.doi.org/10.1016/S0731-7085(00)00377-0] [PMID: 11108533]
[53]
Chun-Ling, W.; He-Yong, C.; Jin-Hua, L.; Zi-Gang, X.; Xue-Feng, Y. Determination of platinum in human plasma by microchip-based nanoflow injection and inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem., 2013, 41(3), 349-353.
[http://dx.doi.org/10.1016/S1872-2040(13)60635-0]
[54]
Breda, M.; Maffini, M.; Mangia, A.; Mucchino, C.; Musci, M. Development and validation of an inductively coupled plasma mass spectrometry method with optimized microwave-assisted sample digestion for the determination of platinum at ultratrace levels in plasma and ultrafiltrate plasma. J. Pharm. Biomed. Anal., 2008, 48(2), 435-439.
[http://dx.doi.org/10.1016/j.jpba.2008.04.013] [PMID: 18508222]
[55]
Guerbet, M.; Goullé, J.P.; Lubrano, J. Evaluation of the risk of contamination of surgical personnel by vaporization of oxaliplatin during the intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC). Eur. J. Surg. Oncol., 2007, 33(5), 623-626.
[http://dx.doi.org/10.1016/j.ejso.2007.02.027] [PMID: 17408909]
[56]
Esteban-Fernández, D.; Verdaguer, J.M.; Ramírez-Camacho, R.; Palacios, M.A.; Gómez-Gómez, M.M. Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J. Anal. Toxicol., 2008, 32(2), 140-146.
[http://dx.doi.org/10.1093/jat/32.2.140] [PMID: 18334097]
[57]
Janssens, T.; Brouwers, E.E.M.; de Vos, J.P.; Schellens, J.H.M.; Beijnen, J.H. Determination of platinum originating from carboplatin in canine sebum and cerumen by inductively coupled plasma mass spectrometry. J. Pharm. Biomed. Anal., 2011, 54(2), 395-400.
[http://dx.doi.org/10.1016/j.jpba.2010.09.014] [PMID: 20933356]
[58]
Downing, K.; Jensen, B.P.; Grant, S.; Strother, M.; George, P. Quantification and clinical application of carboplatin in plasma ultrafiltrate. J. Pharm. Biomed. Anal., 2017, 138, 373-377.
[http://dx.doi.org/10.1016/j.jpba.2017.01.045] [PMID: 28260690]
[59]
Santana-Viera, S.; Padrón, M.E.T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Quantification of cytostatic platinum compounds in wastewater by inductively coupled plasma mass spectrometry after ion exchange extraction. Microchem. J., 2020, 157104862
[60]
Alonso, M.C.; Rigoldi, A.; Ibba, A.; Zicca, L.; Deplano, P.; Mercuri, M.L.; Cocco, P.; Serpe, A. A simple, sensitive analytical method for platinum trace determination in human urine. Microchem. J., 2015, 122, 1-4.
[http://dx.doi.org/10.1016/j.microc.2015.03.016]
[61]
Holtkamp, H.U.; Morrow, S.J.; Kubanik, M.; Hartinger, C.G. Hyphenation of capillary electrophoresis to inductively coupled plasma mass spectrometry with a modified coaxial sheath-flow interface. J. Chromatogr. A, 2018, 1561, 76-82.
[http://dx.doi.org/10.1016/j.chroma.2018.05.036] [PMID: 29798804]
[62]
Nguyen, T.T.; Østergaard, J.; Stürup, S.; Gammelgaard, B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm., 2013, 449(1-2), 95-102.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.055] [PMID: 23583709]
[63]
Küng, A.; Strickmann, D.B.; Galanski, M.; Keppler, B.K. Comparison of the binding behavior of oxaliplatin, cisplatin and analogues to 5¢-GMP in the presence of sulfur-containing molecules by means of capillary electrophoresis and electrospray mass spectrometry. J. Inorg. Biochem., 2001, 86(4), 691-698.
[http://dx.doi.org/10.1016/S0162-0134(01)00225-2] [PMID: 11583787]
[64]
Šebestová, A.; Baron, D.; Pechancová, R.; Pluháček, T.; Petr, J. Determination of oxaliplatin enantiomers at attomolar levels by capillary electrophoresis connected with inductively coupled plasma mass spectrometry. Talanta, 2019, 205120151
[http://dx.doi.org/10.1016/j.talanta.2019.120151] [PMID: 31450399]
[65]
Nussbaumer, S.; Fleury-Souverain, S.; Schappler, J.; Rudaz, S.; Veuthey, J.L.; Bonnabry, P. Quality control of pharmaceutical formulations containing cisplatin, carboplatin, and oxaliplatin by micellar and microemulsion electrokinetic chromatography (MEKC, MEEKC). J. Pharm. Biomed. Anal., 2011, 55(2), 253-258.
[http://dx.doi.org/10.1016/j.jpba.2011.01.029] [PMID: 21330090]
[66]
Lum, T.S.; Ho, C.L.; Tsoi, Y.K.; Siu, C.H.; Yue, P.Y.K.; Wong, W.Y.; Leung, K.S.Y. Elemental bioimaging of platinum in mouse tissues by laser ablation-inductively coupled plasma-mass spectrometry for the study of localization behavior of structurally similar complexes. Int. J. Mass Spectrom., 2016, 404, 40-47.
[http://dx.doi.org/10.1016/j.ijms.2016.05.005]
[67]
Zoriy, M.; Matusch, A.; Spruss, T.; Becker, J.S. Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin. Int. J. Mass Spectrom., 2007, 260(2-3), 102-106.
[http://dx.doi.org/10.1016/j.ijms.2006.09.012]
[68]
Crone, B.; Schlatt, L.; Nadar, R.A.; van Dijk, N.W.M.; Margiotta, N.; Sperling, M.; Leeuwenburgh, S.; Karst, U. Quantitative imaging of platinum-based antitumor complexes in bone tissue samples using LA-ICP-MS. J. Trace Elem. Med. Biol., 2019, 54, 98-102.
[http://dx.doi.org/10.1016/j.jtemb.2019.04.011] [PMID: 31109626]
[69]
Nardella, F.; Beck, M.; Collart-Dutilleul, P.; Becker, G.; Boulanger, C.; Perello, L.; Gairard-Dory, A.; Gourieux, B.; Ubeaud-Séquier, G. A UV-Raman spectrometry method for quality control of anticancer preparations: Results after 18 months of implementation in hospital pharmacy. Int. J. Pharm., 2016, 499(1-2), 343-350.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.002] [PMID: 26772534]
[70]
Arayne, M.S.; Sultana, N.; Zuberi, M.H.; Siddiqui, F.A. Simultaneous determination of metformin, cimetidine, famotidine, and ranitidine in human serum and dosage formulations using HPLC with UV detection. J. Chromatogr. Sci., 2010, 48(9), 721-725.
[http://dx.doi.org/10.1093/chromsci/48.9.721] [PMID: 20875233]
[71]
Bosch, M.E.; Sánchez, A.J.; Rojas, F.S.; Ojeda, C.B. Analytical methodologies for the determination of cisplatin. J. Pharm. Biomed. Anal., 2008, 47(3), 451-459.
[http://dx.doi.org/10.1016/j.jpba.2008.01.047] [PMID: 18343619]
[72]
Hanada, K.; Ninomiya, K.; Ogata, H. Pharmacokinetics and toxicodynamics of cisplatin and its metabolites in rats: Relationship between renal handling and nephrotoxicity of cisplatin. J. Pharm. Pharmacol., 2000, 52(11), 1345-1353.
[http://dx.doi.org/10.1211/0022357001777496] [PMID: 11186242]
[73]
Lanjwani, S.N.; Zhu, R.; Khuhawar, M.Y.; Ding, Z. High performance liquid chromatographic determination of platinum in blood and urine samples of cancer patients after administration of cisplatin drug using solvent extraction and N,N¢-bis(salicylidene)-1,2-propanediamine as complexation reagent. J. Pharm. Biomed. Anal., 2006, 40(4), 833-839.
[http://dx.doi.org/10.1016/j.jpba.2005.07.040] [PMID: 16181764]
[74]
Khuhawar, M.Y.; Arain, G.M. Liquid chromatographic determination of cis-platin as platinum(II) in pharmaceutical preparation, serum and urine samples of cancer patients. Talanta, 2005, 66(1), 34-39.
[http://dx.doi.org/10.1016/j.talanta.2004.09.015] [PMID: 18969958]
[75]
Raghavan, R.; Burchett, M.; Loffredo, D.; Mulligan, J.A. Low-level (PPB) determination of cisplatin in cleaning validation (rinse water) samples. II. A high-performance liquid chromatographic method. Drug Dev. Ind. Pharm., 2000, 26(4), 429-440.
[http://dx.doi.org/10.1081/DDC-100101250] [PMID: 10769785]
[76]
Lopez-Flores, A.; Jurado, R.; Garcia-Lopez, P. A high-performance liquid chromatographic assay for determination of cisplatin in plasma, cancer cell, and tumor samples. J. Pharmacol. Toxicol. Methods, 2005, 52(3), 366-372.
[http://dx.doi.org/10.1016/j.vascn.2005.06.005] [PMID: 16112590]
[77]
Kato, R.; Sato, T.; Kanamori, M.; Miyake, M.; Fujimoto, A.; Ogawa, K.; Kobata, D.; Fujikawa, T.; Wada, Y.; Mitsuishi, R.; Takahashi, K.; Imano, H.; Ijiri, Y.; Mino, Y.; Chikuma, M.; Tanaka, K.; Hayashi, T. A Novel analytical method of cisplatin using the HPLC with a naphthylethyl group bonded with silica gel (πNAP) column. Biol. Pharm. Bull., 2017, 40(3), 290-296.
[http://dx.doi.org/10.1248/bpb.b16-00760] [PMID: 27980242]
[78]
Kaushik, K.H.; Vijay, K.S.; Bedada, S.; Narsimha, Y.R.; Priyadarshini, G.I.; Krishna, R.D. A simple and sensitive validated HPLC method for quantitative determination of cisplatin in human plasma. Clin. Res. Regul. Aff., 2010, 27(1), 1-6.
[http://dx.doi.org/10.3109/10601330903490462]
[79]
Tezcan, S.; Özdemir, F.; Turhal, S.; İzzettin, F.V. High performance liquid chromatographic determination of free cisplatin in different cancer types Der. Pharma Chem., 2013, 5(5), 169-174.
[80]
Ramos, Y.; Hernández, C.; Fernandez, L.A.; Bataller, M.; Veliz, E.; Small, R. Optimization of a HPLC procedure for simultaneous determination of cisplatin and the complex cis,cis,trans-diamminedichlorodihydroxoplatinum(IV) in aqueous solutions. Quim. Nova, 2011, 34(8), 1450-1454.
[http://dx.doi.org/10.1590/S0100-40422011000800026]
[81]
Rahman, A.K.M.S.; Islam, A.U.; Misbahuddin, M.; Parvin, N. Pharmacokinetics of cisplatin and its metabolites following intravenous administration in cancer patients of Bangladesh. K.Y.A.M.C, 2018, 9(3), 110-114.
[http://dx.doi.org/10.3329/kyamcj.v9i3.38781]
[82]
Chao, Y.K.; Liu, K.S.; Wang, Y.C.; Huang, Y.L.; Liu, S.J. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest, 2013, 144(1), 193-199.
[http://dx.doi.org/10.1378/chest.12-2282] [PMID: 23349039]
[83]
Gao, J.; Meng, Q.; Zhao, Y.; Chen, X.; Cai, L. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations. BMC Cancer, 2016, 16, 470.
[http://dx.doi.org/10.1186/s12885-016-2527-3] [PMID: 27411790]
[84]
Yamazaki, H.; Tanaka, K.; Gamura, S.; Hashimoto, T.; Shimizu, M. High-performance liquid chromatographic assay for carboplatin in ultrafiltered plasma combined with hyperbaric oxygenation. Drug Metab. Pharmacokinet., 2006, 21(5), 429-431.
[http://dx.doi.org/10.2133/dmpk.21.429] [PMID: 17072097]
[85]
Agrawal, G.P.; Shenoy, G.; Ghosh, A.; Bhat, K.; Prabhu, L. High performance liquid chromatographic determination of carboplatin in injections. Asian J. Chem., 2011, 23, 5095-5098.
[86]
Villarino, N.; Cox, S.; Yarbrough, J.; Martín-Jiménez, T. Determination of carboplatin in canine plasma by high-performance liquid chromatography. Biomed. Chromatogr., 2016, 24(8), 908-913.
[http://dx.doi.org/10.1002/bmc.1385]
[87]
Risselada, M.; Marcellin‐Little, D.J.; Messenger, K.M.; Griffith, E.; Davidson, G.S.; Papich, M.G. Assessment of in vitro release of carboplatin from six carrier media. Am. J. Vet. Res., 2016, 77, 1381-1386.
[http://dx.doi.org/10.1002/bmc.1385]
[88]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153.
[http://dx.doi.org/10.3109/10717544.2014.948643]
[89]
Okamoto, Y.; Tazumi, K.; Sanada, Y.; Tsugane, M.; Uejima, E. Light-induced deterioration test of carboplatin under clinical settings. Yakugaku Zasshi, 2010, 130(10), 1369-1374.
[http://dx.doi.org/10.1002/bmc.1385]
[90]
Myers, A.L.; Zhang, Y.P.; Kawedia, J.D.; Trinh, V.A.; Tran, H.; Smith, J.A.; Kramer, M.A. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags. J. Oncol. Pharm. Pract., 2016, 22(1), 31-36.
[http://dx.doi.org/10.1177/1078155214546016] [PMID: 25122633]
[91]
Vázquez-Sánchez, R.; Sánchez-Rubio-Ferrández, J.; Córdoba-Díaz, D.; Córdoba-Díaz, M.; Molina-Garcia, T. Stability of carboplatin infusion solutions used in desensitization protocol. J. Oncol. Pharm. Pract., 2019, 25(5), 1076-1081.
[http://dx.doi.org/10.1177/1078155218772885] [PMID: 29742970]
[92]
Esim, O.; Gumustas, M.; Hascicek, C.; Ozkan, S.A. A novel stability-indicating analytical method development for simultaneous determination of carboplatin and decitabine from nanoparticles. J. Sep. Sci., 2020, 43(17), 3491-3498.
[http://dx.doi.org/10.1002/jssc.202000320] [PMID: 32644279]
[93]
Pang, K.; Gong, W.; Wang, X.; Zheng, R.; Zeng, C.; Yao, R.; Mei, X. Determination of oxaliplatin thermo-sensitive liposomes and its two main impurities. Asian J. Pharm.Sci., 2011, 6(1), 36-42.
[94]
Matos, B.N.; De Oliveira, P.M.; Reis, T.A.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Development and validation of a simple and selective analytical HPLC method for the quantification of oxaliplatin. J. Chem., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/812701]
[95]
Abuzar, S.M.; Ahn, J.H.; Park, K.S.; Park, E.J.; Baik, S.H.; Hwang, S.J. Pharmacokinetic profile and anti-adhesive effect of oxaliplatin-plga microparticle-loaded hydrogels in rats for colorectal cancer treatment. Pharmaceutics, 2019, 11(8), 392.
[http://dx.doi.org/10.3390/pharmaceutics11080392] [PMID: 31387217]
[96]
Edla, S.; Sundhar, B.S. RP-HPLC method for the quantification of oxaliplatin in formulations. I.J.S.I.T., 2012, 1(1), 32-41.
[97]
Babu, G.S.; Kumar, K.K.; Kumar, C.M. Estimation of oxaliplatin in pharmaceutical dosage forms by high performance liquid chromatography. Biosci. Biotechnol. Res. Asia, 2006, 3(1), 41-44.
[98]
Mittal, A.; Chitkara, D.; Kumar, N. HPLC method for the determination of carboplatin and paclitaxel with cremophorEL in an amphiphilic polymer matrix. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 855(2), 211-219.
[http://dx.doi.org/10.1016/j.jchromb.2007.05.005] [PMID: 17543592]
[99]
Gupta, A.A.; Kheur, S.; Badhe, R.V.; Godse, A.; Shinkar, A.; Raj, A.T. Optimization of scaffolds for localized drug delivery: An in vitro study. J. Pharm. Negat. Results, 2019, 10(1), 21.
[http://dx.doi.org/10.4103/jpnr.JPNR_22_18]
[100]
Hann, S.; Koellensperger, G.; Stefanka, Zs.; Stingeder, G.; F¨urhacker, M.; Buchberger, W.; Mader, R.M. Application of HPLC-ICP-MS to speciation of cisplatin and its degradation products in water containing different chloride concentrations and in human urine. J. Anal. Spectrom., 2003, 18, 1391-1395.
[http://dx.doi.org/10.1039/B309028K]
[101]
Hann, S.; Stefánka, Z.; Lenz, K.; Stingeder, G. Novel separation method for highly sensitive speciation of cancerostatic platinum compounds by HPLC-ICP-MS. Anal. Bioanal. Chem., 2005, 381(2), 405-412.
[http://dx.doi.org/10.1007/s00216-004-2839-z] [PMID: 15455190]
[102]
Bell, D.N.; Liu, J.J.; Tingle, M.D.; McKeage, M.J. Specific determination of intact cisplatin and monohydrated cisplatin in human plasma and culture medium ultrafiltrates using HPLC on-line with inductively coupled plasma mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 837(1-2), 29-34.
[http://dx.doi.org/10.1016/j.jchromb.2006.03.063] [PMID: 16697278]
[103]
Esteban-Fernández, D.; Gómez-Gómez, M.M.; Cañas, B.; Verdaguer, J.M.; Ramírez, R.; Palacios, M.A. Speciation analysis of platinum antitumoral drugs in impacted tissues. Talanta, 2007, 72(2), 768-773.
[http://dx.doi.org/10.1016/j.talanta.2006.12.012] [PMID: 19071684]
[104]
Koellensperger, G.; Hann, S. Ultra-fast HPLC-ICP-MS analysis of oxaliplatin in patient urine. Anal. Bioanal. Chem., 2010, 397(1), 401-406.
[http://dx.doi.org/10.1007/s00216-010-3504-3] [PMID: 20165835]
[105]
Guo, P.; Li, S.; Gallo, J.M. Determination of carboplatin in plasma and tumor by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 783(1), 43-52.
[http://dx.doi.org/10.1016/S1570-0232(02)00489-0] [PMID: 12450523]
[106]
Jiang, H.; Zhang, Y.; Ida, M.; LaFayette, A.; Fast, D.M. Determination of carboplatin in human plasma using HybridSPE-precipitation along with liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(22), 2162-2170.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.057] [PMID: 21708489]
[107]
Antonissen, G.; Devreese, M.; De Baere, S.; Hellebuyck, T.; Van de Maele, I.; Rouffaer, L.; Stemkens, H.J.; De Backer, P.; Martel, A.; Croubels, S. Comparative pharmacokinetics and allometric scaling of carboplatin in different avian species. PLoS One, 2015, 10(7)e0134177
[http://dx.doi.org/10.1371/journal.pone.0134177] [PMID: 26222777]
[108]
Gao, S.; Tao, Z.; Zhou, J.; Wang, Z.; Yun, Y.; Li, M.; Zhang, F.; Chen, W.; Miao, Y. One-step solid extraction for simultaneous determination of eleven commonly used anticancer drugs and one active metabolite in human plasma by HPLC-MS/MS. J. Anal. Methods Chem., 2018, 20187967694
[http://dx.doi.org/10.1155/2018/7967694] [PMID: 30046507]
[109]
Alimohammadi, M.; Asadi-Ghalhari, M.; Ghafuri, Y. Development of an analytical method for determination of carboplatin and oxaliplatin in resource water, prediction and environmental risk assessment. J. Environ. Treat. Tech., 2020, 8(3), 1168-1175.
[110]
Cui, M.; Mester, Z. Electrospray ionization mass spectrometry coupled to liquid chromatography for detection of cisplatin and its hydrated complexes. Rapid Commun. Mass Spectrom., 2003, 17(14), 1517-1527.
[http://dx.doi.org/10.1002/rcm.1030] [PMID: 12845575]
[111]
Xia, H.; Zhang, W.; Li, Y.; Yu, C. High performance liquid chromatography: Tandem mass spectrometric determination of cisplatin levels in different visceral pleura layers of rats. Oncol. Lett., 2015, 9(5), 2388-2392.
[http://dx.doi.org/10.3892/ol.2015.2989] [PMID: 26137076]
[112]
Le Pla, R.C.; Ritchie, K.J.; Henderson, C.J.; Wolf, C.R.; Harrington, C.F.; Farmer, P.B. Development of a liquid chromatography-electrospray ionization tandem mass spectrometry method for detecting oxaliplatin-DNA intrastrand cross-links in biological samples. Chem. Res. Toxicol., 2007, 20(8), 1177-1182.
[http://dx.doi.org/10.1021/tx700088j] [PMID: 17636892]
[113]
Ito, H.; Yamaguchi, H.; Fujikawa, A.; Tanaka, N.; Furugen, A.; Miyamori, K.; Takahashi, N.; Ogura, J.; Kobayashi, M.; Yamada, T.; Mano, N.; Iseki, K. A full validated hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the quantification of oxaliplatin in human plasma ultrafiltrates. J. Pharm. Biomed. Anal., 2012, 71, 99-103.
[http://dx.doi.org/10.1016/j.jpba.2012.08.010] [PMID: 22954448]
[114]
Gallinella, B.; Bucciarelli, L.; Zanitti, L.; Ferretti, R.; Cirilli, R. Direct separation of the enantiomers of oxaliplatin on a cellulose-based chiral stationary phase in hydrophilic interaction liquid chromatography mode. J. Chromatogr. A, 2014, 1339, 210-213.
[http://dx.doi.org/10.1016/j.chroma.2014.02.071] [PMID: 24679409]
[115]
Ren, G.; Qin, Z.; Fan, A.; Wang, Y.; Tan, Y.; Lu, Y.; Li, N.; Chen, X.; Zhao, D. A novel and fully validated hydrophilic interaction liquid chromatography with tandem mass spectrometry method for the determination of intact carboplatin in human plasma. Sep. Sci. plus., 2018, 1(4), 270-279.
[http://dx.doi.org/10.1002/sscp.201800011]
[116]
Qin, Z.; Ren, G.; Liu, Q.; Lu, X.; Zhang, Q.; Fan, A.; Lu, Y.; Li, N.; Chen, X.; Zhao, D. Hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the determination of intact oxaliplatin in cells: validated and applied in colon cancer HCT-116 cell line. J. Pharm. Biomed. Anal., 2018, 155, 7-14.
[http://dx.doi.org/10.1016/j.jpba.2018.03.045] [PMID: 29602056]
[117]
Esteban-Fernández, D.; Moreno-Gordaliza, E.; Cañas, B.; Palacios, M.A.; Gómez-Gómez, M.M. Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics, 2010, 2(1), 19-38.
[http://dx.doi.org/10.1039/B911438F] [PMID: 21072372]
[118]
el-Khateeb, M.; Appleton, T.G.; Gahan, L.R.; Charles, B.G.; Berners-Price, S.J.; Bolton, A.M. Reactions of cisplatin hydrolytes with methionine, cysteine, and plasma ultrafiltrate studied by a combination of HPLC and NMR techniques. J. Inorg. Biochem., 1999, 77(1-2), 13-21.
[http://dx.doi.org/10.1016/S0162-0134(99)00146-4] [PMID: 10626348]
[119]
Falta, T.; Koellensperger, G.; Standler, A.; Buchberger, W.; Maderc, R.M.; Hann, S. Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP-SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP-MS detection. J. Anal. At. Spectrom., 2009, 24, 1336-1342.
[http://dx.doi.org/10.1039/b907011g]
[120]
Vidmar, J.; Martinčič, A.; Milačič, R.; Ščančar, J. Speciation of cisplatin in environmental water samples by hydrophilic interaction liquid chromatography coupled to inductively coupled plasma mass spectrometry. Talanta, 2015, 138, 1-7.
[http://dx.doi.org/10.1016/j.talanta.2015.02.008] [PMID: 25863363]
[121]
Hann, S.; Zenker, A.; Galanski, M.; Bereuter, T.L.; Stingeder, G.; Keppler, B.K. HPIC-UV-ICP-SFMS study of the interaction of cisplatin with guanosine monophosphate. Fresenius J. Anal. Chem., 2001, 370(5), 581-586.
[http://dx.doi.org/10.1007/s002160100740] [PMID: 11496990]
[122]
Martinčič, A.; Cemazar, M.; Sersa, G.; Kovač, V.; Milačič, R.; Ščančar, J. A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta, 2013, 116, 141-148.
[http://dx.doi.org/10.1016/j.talanta.2013.05.016] [PMID: 24148385]
[123]
Xie, R.; Johnson, W.; Rodriguez, L.; Gounder, M.; Hall, G.S.; Buckley, B. A study of the interactions between carboplatin and blood plasma proteins using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem., 2007, 387(8), 2815-2822.
[http://dx.doi.org/10.1007/s00216-007-1147-9] [PMID: 17340090]
[124]
Xie, F.; Colin, P.; Van Bocxlaer, J. Zwitterionic hydrophilic interaction liquid chromatography-tandem mass spectrometry with HybridSPE-precipitation for the determination of intact cisplatin in human plasma. Talanta, 2017, 174, 171-178.
[http://dx.doi.org/10.1016/j.talanta.2017.06.002] [PMID: 28738565]
[125]
Aoki, M.; Konya, Y.; Takagaki, T.; Umemura, K.; Sogame, Y.; Katsumata, T.; Komuro, S. Metabolomic investigation of cholestasis in a rat model using ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2011, 25(13), 1847-1852.
[http://dx.doi.org/10.1002/rcm.5072] [PMID: 21638360]
[126]
Zhao, Y.Y.; Cheng, X.L.; Vaziri, N.D.; Liu, S.; Lin, R.C. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin. Biochem., 2014, 47(15), 16-26.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.07.019] [PMID: 25087975]
[127]
Zhao, Y.Y.; Wu, S.P.; Liu, S.; Zhang, Y.; Lin, R.C. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact., 2014, 220, 181-192.
[http://dx.doi.org/10.1016/j.cbi.2014.06.029] [PMID: 25014415]
[128]
Xu, Y.; Zhao, Y.; Guo, X.; Li, Y.; Zhang, Y. Plasma metabolic profiling analysis of neurotoxicity induced by oxaliplatin using metabonomics and multivariate data analysis. Toxicol. Res. (Camb.), 2018, 7(3), 529-537.
[http://dx.doi.org/10.1039/C7TX00345E] [PMID: 30090603]
[129]
Qin, Z.; Ren, G.; Yuan, J.; Chen, H.; Lu, Y.; Li, N.; Zhang, Y.; Chen, X.; Zhao, D. Systemic evaluation on the pharmacokinetics of platinum-based anticancer drugs from animal to cell level: based on total platinum and intact drugs. Front. Pharmacol., 2020, 10, 1485.
[http://dx.doi.org/10.3389/fphar.2019.01485] [PMID: 31969818]
[130]
Zachariadis, G.A.; Misopoulou, O.E. Determination of cisplatin and carboplatin anticancer drugs by non-suppressed ion chromatography with an inductively coupled plasma atomic emission detector. Anal. Lett., 2018, 51(7), 1060-1070.
[http://dx.doi.org/10.1080/00032719.2017.1366498]
[131]
Rietz, B.; Krarup-Hansen, A.; Rørth, M. Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin. Anal. Chim. Acta, 2001, 426(1), 119-126.
[http://dx.doi.org/10.1016/S0003-2670(00)01186-7]
[132]
Minakata, K.; Nozawa, H.; Okamoto, N.; Suzuki, O. Determination of platinum derived from cisplatin in human tissues using electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 832(2), 286-291.
[http://dx.doi.org/10.1016/j.jchromb.2006.01.016] [PMID: 16483858]
[133]
Franzen, U.; Nguyen, T.T.T.N.; Vermehren, C.; Gammelgaard, B.; Østergaard, J. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: Encapsulation and leakage. J. Pharm. Biomed. Anal., 2011, 55(1), 16-22.
[http://dx.doi.org/10.1016/j.jpba.2010.12.037] [PMID: 21282028]
[134]
Lemma, T.; Pawliszyn, J. Human serum albumin interaction with oxaliplatin studied by capillary isoelectric focusing with the whole column imaging detection and spectroscopic method. J. Pharm. Biomed. Anal., 2009, 50(4), 570-575.
[http://dx.doi.org/10.1016/j.jpba.2008.10.028] [PMID: 19070448]