Adenosine Dysfunction in Epilepsy and Associated Comorbidities

Page: [344 - 357] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Epilepsy, a complex neurological syndrome with dominant symptoms and various comorbidities, affects over 70 million people worldwide. Epilepsy-related comorbidities, including cognitive and psychiatric disorders, can impede therapy for epilepsy patients, leading to heavy burdens on patients and society. Adenosine has an anti-epileptic and anticonvulsive function in the brain. Several studies have shown that, through adenosine receptor-dependent and -independent mechanisms, adenosine can influence the development and progression (epileptogenesis) of epilepsy and its associated comorbidities. As the key enzyme for adenosine clearance, adenosine kinase (ADK) can exacerbate epileptic seizures not only by accelerating adenosine clearance, but also by increasing global DNA methylation through the transmethylation pathway. Therefore, adenosine augmentation therapies for epilepsy can have dual functions in the inhibition of epileptic seizures and the prevention of its overall progress. This review has three main purposes. First, we discuss how maladaptive changes in the adenosine pathway affect the development and progress of epilepsy in both receptor-dependent and receptor-independent ways. Second, we highlight the important influence of associated comorbidities on the prognosis of epilepsy and explore the role of adenosine in these comorbidities. Finally, we emphasize the potential of adenosine augmentation therapies in restoring normal adenosine signaling in the epileptic brain. Such treatments could effectively improve the prognosis of patients who are resistant to most antiepileptic drugs (AEDs), and thus bring new challenges and opportunities in the treatment of epilepsy patients.

Keywords: Epilepsy, adenosine, comorbidity, adenosine kinase, epileptogenesis, adenosine augmentation therapy.

Graphical Abstract

[1]
Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46(4): 470-2.
[http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x] [PMID: 15816939]
[2]
Younus I, Reddy DS. A resurging boom in new drugs for epilepsy and brain disorders. Expert Rev Clin Pharmacol 2018; 11(1): 27-45.
[http://dx.doi.org/10.1080/17512433.2018.1386553]
[3]
Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull 2019; 151: 46-54.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.008] [PMID: 30468847]
[4]
Gonçalves FQ, Lopes JP, Silva HB, et al. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis 2019; 132: 104570.
[http://dx.doi.org/10.1016/j.nbd.2019.104570] [PMID: 31394204]
[5]
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8(3): 437-502.
[http://dx.doi.org/10.1007/s11302-012-9309-4] [PMID: 22555564]
[6]
Boison D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 2013; 65(3): 906-43.
[http://dx.doi.org/10.1124/pr.112.006361] [PMID: 23592612]
[7]
Carmo M, Gonçalves FQ, Canas PM, et al. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A2A receptor over-activation in a rat model of Parkinson’s disease. Br J Pharmacol 2019; 176(18): 3666-80.
[http://dx.doi.org/10.1111/bph.14771] [PMID: 31220343]
[8]
Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med 2015; 5(10): a022822.
[http://dx.doi.org/10.1101/cshperspect.a022822] [PMID: 26385090]
[9]
Kanner AM, Mazarati A, Koepp M. Biomarkers of epileptogenesis: psychiatric comorbidities (?). Neurotherapeutics 2014; 11(2): 358-72.
[http://dx.doi.org/10.1007/s13311-014-0271-4] [PMID: 24719199]
[10]
Bertram EH, Cornett J. The ontogeny of seizures in a rat model of limbic epilepsy: evidence for a kindling process in the development of chronic spontaneous seizures. Brain Res 1993; 625(2): 295-300.
[http://dx.doi.org/10.1016/0006-8993(93)91071-Y] [PMID: 8275310]
[11]
Leite JP, Garcia-Cairasco N, Cavalheiro EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res 2002; 50(1-2): 93-103.
[http://dx.doi.org/10.1016/S0920-1211(02)00072-4] [PMID: 12151121]
[12]
Kadam SD, White AM, Staley KJ, Dudek FE. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci 2010; 30(1): 404-15.
[http://dx.doi.org/10.1523/JNEUROSCI.4093-09.2010] [PMID: 20053921]
[13]
Williams PA, White AM, Clark S, et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 2009; 29(7): 2103-12.
[http://dx.doi.org/10.1523/JNEUROSCI.0980-08.2009] [PMID: 19228963]
[14]
Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: Assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 1998; 31(1): 73-84.
[http://dx.doi.org/10.1016/S0920-1211(98)00017-5] [PMID: 9696302]
[15]
Nissinen J, Halonen T, Koivisto E, Pitkänen A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 2000; 38(2-3): 177-205.
[http://dx.doi.org/10.1016/S0920-1211(99)00088-1] [PMID: 10642046]
[16]
Dubé CM, Brewster AL, Richichi C, Zha Q, Baram TZ. Fever, febrile seizures and epilepsy. Trends Neurosci 2007; 30(10): 490-6.
[http://dx.doi.org/10.1016/j.tins.2007.07.006] [PMID: 17897728]
[17]
Frey LC. Epidemiology of posttraumatic epilepsy: A critical review. Epilepsia 2003; 44(s10): 11-7.
[http://dx.doi.org/10.1046/j.1528-1157.44.s10.4.x] [PMID: 14511389]
[18]
Kwan J. Stroke: predicting the risk of poststroke epilepsy-why and how? Nat Rev Neurol 2010; 6(10): 532-3.
[http://dx.doi.org/10.1038/nrneurol.2010.140] [PMID: 20927053]
[19]
Pardo CA, Nabbout R, Galanopoulou AS. Mechanisms of epileptogenesis in pediatric epileptic syndromes: Rasmussen encephalitis, infantile spasms, and febrile infection-related epilepsy syndrome (FIRES). Neurotherapeutics 2014; 11(2): 297-310.
[http://dx.doi.org/10.1007/s13311-014-0265-2] [PMID: 24639375]
[20]
Studer FE, Fedele DE, Marowsky A, et al. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 2006; 142(1): 125-37.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.016] [PMID: 16859834]
[21]
Cui XA, Singh B, Park J, Gupta RS. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus. Biochem Biophys Res Commun 2009; 388(1): 46-50.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.106] [PMID: 19635462]
[22]
Williams-Karnesky RL, Sandau US, Lusardi TA, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 2013; 123(8): 3552-63.
[http://dx.doi.org/10.1172/JCI65636] [PMID: 23863710]
[23]
Gouder N, Scheurer L, Fritschy JM, Boison D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 2004; 24(3): 692-701.
[http://dx.doi.org/10.1523/JNEUROSCI.4781-03.2004] [PMID: 14736855]
[24]
Luan G, Gao Q, Guan Y, et al. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol 2013; 72(11): 1000-8.
[http://dx.doi.org/10.1097/01.jnen.0000435369.39388.5c] [PMID: 24128682]
[25]
Luan G, Gao Q, Zhai F, et al. Adenosine kinase expression in cortical dysplasia with balloon cells: Analysis of developmental lineage of cell types. J Neuropathol Exp Neurol 2015; 74(2): 132-47.
[http://dx.doi.org/10.1097/NEN.0000000000000156] [PMID: 25575137]
[26]
Li T, Ren G, Lusardi T, et al. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 2008; 118(2): 571-82.
[http://dx.doi.org/10.1172/JCI33737] [PMID: 18172552]
[27]
Li T, Quan Lan J, Fredholm BB, Simon RP, Boison D. Adenosine dysfunction in astrogliosis: Cause for seizure generation? Neuron Glia Biol 2007; 3(4): 353-66.
[http://dx.doi.org/10.1017/S1740925X0800015X] [PMID: 18634566]
[28]
Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia 2012; 53(11): 1868-76.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03716.x] [PMID: 23061663]
[29]
Zhu Q, Wang L, Zhang Y, Zhao FH, Luo J, Xiao Z. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci 2012; 46(2): 420-6.
[30]
Kobow K, Jeske I, Hildebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol 2009; 68(4): 356-64.
[http://dx.doi.org/10.1097/NEN.0b013e31819ba737] [PMID: 19287316]
[31]
Kobow K, Kaspi A, Harikrishnan KN, et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 2013; 126(5): 741-56.
[http://dx.doi.org/10.1007/s00401-013-1168-8] [PMID: 24005891]
[32]
Boison D, Rho JM. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology 2020; 167: 107741.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107741] [PMID: 31419398]
[33]
Sng JC, Taniura H, Yoneda Y. Histone modifications in kainate-induced status epilepticus. Eur J Neurosci 2006; 23(5): 1269-82.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04641.x] [PMID: 16553789]
[34]
Crowe SL, Tsukerman S, Gale K, Jorgensen TJ, Kondratyev AD. Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. J Neurosci 2011; 31(21): 7648-56.
[http://dx.doi.org/10.1523/JNEUROSCI.0092-11.2011] [PMID: 21613478]
[35]
Taniura H, Sng JC, Yoneda Y. Histone modifications in status epilepticus induced by kainate. Histol Histopathol 2006; 21(7): 785-91.
[PMID: 16598677]
[36]
Younus I, Reddy DS. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacol Ther 2017; 177: 108-22.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.002] [PMID: 28279785]
[37]
Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett 2018; 667: 40-6.
[http://dx.doi.org/10.1016/j.neulet.2017.01.012] [PMID: 28111355]
[38]
Citraro R, Leo A, Santoro M, D’agostino G, Constanti A, Russo E. Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Des 2017; 23(37): 5546-62.
[http://dx.doi.org/10.2174/1381612823666171024130001] [PMID: 29076408]
[39]
Ottman R, Lipton RB, Ettinger AB, et al. Comorbidities of epilepsy: results from the Epilepsy Comorbidities and Health (EPIC) survey. Epilepsia 2011; 52(2): 308-15.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02927.x] [PMID: 21269285]
[40]
Comorbidity in adults with epilepsy--United States, 2010. MMWR Morb Mortal Wkly Rep 2013; 62(43): 849-53.
[PMID: 24172878]
[41]
Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol 2016; 15(1): 106-15.
[http://dx.doi.org/10.1016/S1474-4422(15)00225-2] [PMID: 26549780]
[42]
Gaitatzis A, Carroll K, Majeed A, W Sander J. The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 2004; 45(12): 1613-22.
[http://dx.doi.org/10.1111/j.0013-9580.2004.17504.x] [PMID: 15571520]
[43]
Gaitatzis A, Trimble MR, Sander JW. The psychiatric comorbidity of epilepsy. Acta Neurol Scand 2004; 110(4): 207-20.
[http://dx.doi.org/10.1111/j.1600-0404.2004.00324.x] [PMID: 15355484]
[44]
Kanner AM. Depression in epilepsy: A neurobiologic perspective. Epilepsy Curr 2005; 5(1): 21-7.
[http://dx.doi.org/10.1111/j.1535-7597.2005.05106.x] [PMID: 16059450]
[45]
Strine TW, Kobau R, Chapman DP, Thurman DJ, Price P, Balluz LS. Psychological distress, comorbidities, and health behaviors among U.S. adults with seizures: results from the 2002 National Health Interview Survey. Epilepsia 2005; 46(7): 1133-9.
[http://dx.doi.org/10.1111/j.1528-1167.2005.01605.x] [PMID: 16026567]
[46]
Ettinger A, Reed M, Cramer J. Depression and comorbidity in community-based patients with epilepsy or asthma. Neurology 2004; 63(6): 1008-14.
[http://dx.doi.org/10.1212/01.WNL.0000138430.11829.61] [PMID: 15452291]
[47]
Tellez-Zenteno JF, Patten SB, Jetté N, Williams J, Wiebe S. Psychiatric comorbidity in epilepsy: A population-based analysis. Epilepsia 2007; 48(12): 2336-44.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01222.x] [PMID: 17662062]
[48]
Swinkels WA, Kuyk J, van Dyck R, Spinhoven P. Psychiatric comorbidity in epilepsy. Epilepsy & behavior : E&B 2005; 7(1): 37-50.
[http://dx.doi.org/10.1016/j.yebeh.2005.04.012]
[49]
Akanuma N, Hara E, Adachi N, Hara K, Koutroumanidis M. Psychiatric comorbidity in adult patients with idiopathic generalized epilepsy. Epilepsy & behavior : E&B 2008; 13(1): 248-51.
[http://dx.doi.org/10.1016/j.yebeh.2008.01.006]
[50]
Devinsky O. Psychiatric comorbidity in patients with epilepsy: implications for diagnosis and treatment. Epilepsy & behavior : E&B 2003; 4(Suppl 4): S2-S10.
[http://dx.doi.org/10.1016/j.yebeh.2003.10.002]
[51]
Hermann B, Jones J, Sheth R, Dow C, Koehn M, Seidenberg M. Children with new-onset epilepsy: neuropsychological status and brain structure. Brain 2006; 129(Pt 10): 2609-19.
[http://dx.doi.org/10.1093/brain/awl196] [PMID: 16928696]
[52]
Oostrom KJ, Smeets-Schouten A, Kruitwagen CL, Peters AC, Jennekens-Schinkel A. Not only a matter of epilepsy: early problems of cognition and behavior in children with “epilepsy only”--a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics 2003; 112(6 Pt 1): 1338-44.
[http://dx.doi.org/10.1542/peds.112.6.1338] [PMID: 14654607]
[53]
Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: A weighty but often unrecognized burden. Epilepsia 2012; 53(8): 1282-93.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03528.x] [PMID: 22691064]
[54]
Osborne JP, Lux AL, Edwards SW, et al. The underlying etiology of infantile spasms (West syndrome): information from the United Kingdom Infantile Spasms Study (UKISS) on contemporary causes and their classification. Epilepsia 2010; 51(10): 2168-74.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02695.x] [PMID: 20726878]
[55]
Jansen FE, Vincken KL, Algra A, et al. Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology 2008; 70(12): 916-23.
[http://dx.doi.org/10.1212/01.wnl.0000280579.04974.c0] [PMID: 18032744]
[56]
Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012; 135(Pt 8): 2329-36.
[http://dx.doi.org/10.1093/brain/aws151] [PMID: 22719002]
[57]
Ligthart L, Boomsma DI. Causes of comorbidity: pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Res Hum Genet 2012; 15(2): 158-65.
[http://dx.doi.org/10.1375/twin.15.2.158] [PMID: 22856357]
[58]
Wei CJ, Singer P, Coelho J, et al. Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning. Learn Mem 2011; 18(7): 459-74.
[http://dx.doi.org/10.1101/lm.2136011] [PMID: 21693634]
[59]
Yee BK, Singer P, Chen JF, Feldon J, Boison D. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 2007; 26(11): 3237-52.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05897.x] [PMID: 18005073]
[60]
Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia--opportunities for pharmacotherapy. Neuropharmacology 2012; 62(3): 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[61]
Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review. Neurosci Biobehav Rev 2010; 34(3): 285-94.
[http://dx.doi.org/10.1016/j.neubiorev.2009.07.010] [PMID: 19651155]
[62]
Chen JF, Moratalla R, Impagnatiello F, et al. The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Proc Natl Acad Sci USA 2001; 98(4): 1970-5.
[http://dx.doi.org/10.1073/pnas.98.4.1970] [PMID: 11172060]
[63]
Kuzmin A, Johansson B, Fredholm BB, Ogren SO. Genetic evidence that cocaine and caffeine stimulate locomotion in mice via different mechanisms. Life Sci 2000; 66(8): PL113-8.
[http://dx.doi.org/10.1016/S0024-3205(99)00647-5] [PMID: 10680584]
[64]
Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008; 57(1): 121-34.
[http://dx.doi.org/10.1016/j.neuron.2007.11.023] [PMID: 18184569]
[65]
de Mendonça A, Ribeiro JA. Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-D-aspartate receptor-dependent. Neurosci Lett 2000; 291(2): 81-4.
[http://dx.doi.org/10.1016/S0304-3940(00)01391-4] [PMID: 10978579]
[66]
Kessey K, Mogul DJ. NMDA-Independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J Neurophysiol 1997; 78(4): 1965-72.
[http://dx.doi.org/10.1152/jn.1997.78.4.1965] [PMID: 9325364]
[67]
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009; (193): 535-87.
[http://dx.doi.org/10.1007/978-3-540-89615-9_17] [PMID: 19639293]
[68]
Simões AP, Machado NJ. Adenosine A(2A). Receptors in the amygdala control synaptic plasticity and contextual fear memory. Neuropsychopharmacology 2016; 41(12): 2862-71.
[http://dx.doi.org/10.1038/npp.2016.98] [PMID: 27312408]
[69]
Leffa DT, Pandolfo P, Gonçalves N, et al. Adenosine A2A receptors in the rat prelimbic medial prefrontal cortex control delay-based cost-benefit decision making. Front Mol Neurosci 2018; 11: 475.
[http://dx.doi.org/10.3389/fnmol.2018.00475] [PMID: 30618621]
[70]
Carmo M, Gonçalves FQ, Canas PM, Oses JP, Fernandes FD, Duarte FV. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A(2A) receptor over-activation in a rat model of Parkinson's disease. 2019; 176(18): 3666-80.
[71]
Shen HY, Singer P, Lytle N, et al. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 2012; 122(7): 2567-77.
[http://dx.doi.org/10.1172/JCI62378] [PMID: 22706302]
[72]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4): 527-52.
[PMID: 11734617]
[73]
Boison D. Adenosinergic signaling in epilepsy. Neuropharmacology 2016; 104: 131-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.046] [PMID: 26341819]
[74]
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005; 63: 191-270.
[http://dx.doi.org/10.1016/S0074-7742(05)63007-3] [PMID: 15797469]
[75]
Martín ED, Fernández M, Perea G, et al. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 2007; 55(1): 36-45.
[http://dx.doi.org/10.1002/glia.20431] [PMID: 17004232]
[76]
Halassa MM, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61(2): 213-9.
[http://dx.doi.org/10.1016/j.neuron.2008.11.024] [PMID: 19186164]
[77]
Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ 2010; 17(7): 1071-82.
[http://dx.doi.org/10.1038/cdd.2009.131] [PMID: 19763139]
[78]
Rebola N, Coelho JE, Costenla AR, et al. Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. Eur J Neurosci 2003; 18(4): 820-8.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02815.x] [PMID: 12925008]
[79]
Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 2006; 200(1): 184-90.
[http://dx.doi.org/10.1016/j.expneurol.2006.02.133] [PMID: 16750195]
[80]
Kochanek PM, Vagni VA, Janesko KL, et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 2006; 26(4): 565-75.
[http://dx.doi.org/10.1038/sj.jcbfm.9600218] [PMID: 16121125]
[81]
Luan G, Wang X, Gao Q, et al. Upregulation of neuronal adenosine A1 receptor in human rasmussen encephalitis. J Neuropathol Exp Neurol 2017; 76(8): 720-31.
[http://dx.doi.org/10.1093/jnen/nlx053] [PMID: 28789481]
[82]
Glass M, Faull RL, Bullock JY, et al. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res 1996; 710(1-2): 56-68.
[http://dx.doi.org/10.1016/0006-8993(95)01313-X] [PMID: 8963679]
[83]
Van Gompel JJ, Bower MR, Worrell GA, et al. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia 2014; 55(2): 233-44.
[http://dx.doi.org/10.1111/epi.12511] [PMID: 24483230]
[84]
Lovatt D, Xu Q, Liu W, et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA 2012; 109(16): 6265-70.
[http://dx.doi.org/10.1073/pnas.1120997109] [PMID: 22421436]
[85]
Kaku T, Jiang MH, Hada J, Morimoto K, Hayashi Y. Sodium nitroprusside-induced seizures and adenosine release in rat hippocampus. Eur J Pharmacol 2001; 413(2-3): 199-205.
[http://dx.doi.org/10.1016/S0014-2999(01)00763-4] [PMID: 11226393]
[86]
Ilie A, Raimondo JV, Akerman CJ. Adenosine release during seizures attenuates GABAA receptor-mediated depolarization. J Neurosci 2012; 32(15): 5321-32.
[http://dx.doi.org/10.1523/JNEUROSCI.5412-11.2012] [PMID: 22496577]
[87]
Dulla CG, Frenguelli BG, Staley KJ, Masino SA. Intracellular acidification causes adenosine release during states of hyperexcitability in the hippocampus. J Neurophysiol 2009; 102(3): 1984-93.
[http://dx.doi.org/10.1152/jn.90695.2008] [PMID: 19625534]
[88]
Winn HR, Welsh JE, Rubio R, Berne RM. Changes in brain adenosine during bicuculline-induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circ Res 1980; 47(4): 568-77.
[http://dx.doi.org/10.1161/01.RES.47.4.568] [PMID: 6773698]
[89]
Knoflach F, Benke D, Wang Y, et al. Pharmacological modulation of the diazepam-insensitive recombinant gamma-aminobutyric acidA receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol Pharmacol 1996; 50(5): 1253-61.
[PMID: 8913357]
[90]
Hargus NJ, Jennings C, Perez-Reyes E, Bertram EH, Patel MK. Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. Epilepsia 2012; 53(1): 168-76.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03337.x] [PMID: 22126400]
[91]
Girardi E, Auzmendi J, Charó N, Gori MB, Castro M. 3-mercaptopropionic acid-induced seizures decrease NR2B expression in Purkinje cells: Cyclopentyladenosine effect. Cell Mol Neurobiol 2010; 30(7): 985-90.
[http://dx.doi.org/10.1007/s10571-010-9546-4] [PMID: 20625810]
[92]
Girardi ES, Canitrot J, Antonelli M, González NN, Coirini H. Differential expression of cerebellar metabotropic glutamate receptors mGLUR2/3 and mGLUR4a after the administration of a convulsant drug and the adenosine analogue cyclopentyladenosine. Neurochem Res 2007; 32(7): 1120-8.
[http://dx.doi.org/10.1007/s11064-006-9275-8] [PMID: 17401670]
[93]
Muzzi M, Coppi E, Pugliese AM, Chiarugi A. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor. Exp Neurol 2013; 250: 189-93.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.010] [PMID: 24056265]
[94]
Tosh DK, Paoletta S, Deflorian F, et al. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55(18): 8075-90.
[http://dx.doi.org/10.1021/jm300965a] [PMID: 22921089]
[95]
Borowicz KK, Łuszczki J, Czuczwar SJ. 2-Chloroadenosine, a preferential agonist of adenosine A1 receptors, enhances the anticonvulsant activity of carbamazepine and clonazepam in mice. Eur Neuropsychopharmacol 2002; 12(2): 173-9.
[http://dx.doi.org/10.1016/s0924-977x(02)00009-3] [PMID: 11872335]
[96]
Masino SA, Kawamura M Jr, Ruskin DN. Adenosine receptors and epilepsy: Current evidence and future potential. Int Rev Neurobiol 2014; 119: 233-55.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00011-8] [PMID: 25175969]
[97]
D’Alimonte I, D’Auro M, Citraro R, et al. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 2009; 30(6): 1023-35.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06897.x] [PMID: 19723291]
[98]
Etherington LA, Frenguelli BG. Endogenous adenosine modulates epileptiform activity in rat hippocampus in a receptor subtype-dependent manner. Eur J Neurosci 2004; 19(9): 2539-50.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03355.x] [PMID: 15128407]
[99]
Li X, Kang H, Liu X, Liu Z, Shu K, Chen X. Effect of adenosine A2A receptor antagonist ZM241385 on amygdala-kindled seizures and progression of amygdala kindling. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban 2012; 32(2): 257-64.
[http://dx.doi.org/10.1007/s11596-012-0046-2]
[100]
Mareš P. Anticonvulsant action of 2-chloroadenosine against pentetrazol-induced seizures in immature rats is due to activation of A1 adenosine receptors. Journal of neural transmission (Vienna, Austria : 1996) 2010; 117(11): 1269-77.
[101]
Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis 2012; 31(3): 555-67.
[http://dx.doi.org/10.3233/JAD-2012-120469] [PMID: 22647260]
[102]
Popoli P, Frank C, Tebano MT, et al. Modulation of glutamate release and excitotoxicity by adenosine A2A receptors. Neurology 2003; 61(11)(Suppl. 6): S69-71.
[http://dx.doi.org/10.1212/01.WNL.0000095216.89483.A2] [PMID: 14663014]
[103]
Silva CG, Porciúncula LO, Canas PM, Oliveira CR, Cunha RA. Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 2007; 27(2): 182-9.
[http://dx.doi.org/10.1016/j.nbd.2007.04.018] [PMID: 17596953]
[104]
Shinohara M, Saitoh M, Nishizawa D, et al. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology 2013; 80(17): 1571-6.
[http://dx.doi.org/10.1212/WNL.0b013e31828f18d8] [PMID: 23535492]
[105]
Saura J, Angulo E, Ejarque A, et al. Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 2005; 95(4): 919-29.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03395.x] [PMID: 16092928]
[106]
He X, Chen F, Zhang Y, et al. Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. Brain Pathol 2020; 30(2): 246-60.
[http://dx.doi.org/10.1111/bpa.12770] [PMID: 31353670]
[107]
Kredich NM, Martin DV Jr. Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 1977; 12(4): 931-8.
[http://dx.doi.org/10.1016/0092-8674(77)90157-X] [PMID: 597863]
[108]
Cantoni GL, Mudd SH, Andreoli V. Affective disorders and S-adenosylmethionine: A new hypothesis. Trends Neurosci 1989; 12(9): 319-24.
[http://dx.doi.org/10.1016/0166-2236(89)90038-6] [PMID: 2480671]
[109]
Chavez M. SAMe: S-Adenosylmethionine. Am J Health Syst Pharm 2000; 57(2): 119-23.
[http://dx.doi.org/10.1016/s0924-977x(02)00009-3] [PMID: 11872335]
[110]
Lu SC. S-Adenosylmethionine. Int J Biochem Cell Biol 2000; 32(4): 391-5.
[http://dx.doi.org/10.1016/S1357-2725(99)00139-9] [PMID: 10762064]
[111]
Boison D. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 2009; 85(2-3): 131-41.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.03.019] [PMID: 19428218]
[112]
Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 2011; 52(3): 589-601.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02947.x] [PMID: 21275977]
[113]
Pak MA, Haas HL, Decking UK, Schrader J. Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 1994; 33(9): 1049-53.
[http://dx.doi.org/10.1016/0028-3908(94)90142-2] [PMID: 7838317]
[114]
Kowaluk EA, Bhagwat SS, Jarvis MF. Adenosine kinase inhibitors. Curr Pharm Des 1998; 4(5): 403-16.
[PMID: 10197052]
[115]
Wiesner JB, Ugarkar BG, Castellino AJ, et al. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 1999; 289(3): 1669-77.
[PMID: 10336567]
[116]
Boison D, Scheurer L, Zumsteg V, et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci USA 2002; 99(10): 6985-90.
[http://dx.doi.org/10.1073/pnas.092642899] [PMID: 11997462]
[117]
Boison D, Scheurer L, Tseng JL, Aebischer P, Mohler H. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 1999; 160(1): 164-74.
[http://dx.doi.org/10.1006/exnr.1999.7209] [PMID: 10630201]
[118]
Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci USA 2001; 98(13): 7611-6.
[http://dx.doi.org/10.1073/pnas.131102898] [PMID: 11404469]
[119]
Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008; 29(26): 3609-16.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.010] [PMID: 18514814]
[120]
Kokaia M, Aebischer P, Elmér E, et al. Seizure suppression in kindling epilepsy by intracerebral implants of GABA- but not by noradrenaline-releasing polymer matrices. Exp Brain Res 1994; 100(3): 385-94.
[http://dx.doi.org/10.1007/BF02738399] [PMID: 7813677]
[121]
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2007; 5(2): 115-25.
[http://dx.doi.org/10.2174/157015907780866938] [PMID: 18615179]
[122]
Yang M. Silk-based biomaterials. Microsc Res Tech 2017; 80(3): 321-30.
[http://dx.doi.org/10.1002/jemt.22846] [PMID: 28181329]
[123]
Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005; 26(17): 3385-93.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.020] [PMID: 15621227]
[124]
Stafstrom CE. Adenosine prevents kindled seizures--an effect as smooth as silk. Epilepsy Curr 2010; 10(2): 51-2.
[http://dx.doi.org/10.1111/j.1535-7511.2009.01353.x] [PMID: 20231925]
[125]
Fedele DE, Koch P, Scheurer L, et al. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 2004; 370(2-3): 160-5.
[http://dx.doi.org/10.1016/j.neulet.2004.08.031] [PMID: 15488315]
[126]
Li T, Steinbeck JA, Lusardi T, et al. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 2007; 130(Pt 5): 1276-88.
[http://dx.doi.org/10.1093/brain/awm057] [PMID: 17472985]
[127]
Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: A novel perspective for seizure control. Exp Neurol 2007; 208(1): 26-37.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.016] [PMID: 17716659]
[128]
Li T, Ren G, Kaplan DL, Boison D. Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 2009; 84(2-3): 238-41.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.01.002] [PMID: 19217263]
[129]
Boison D. Inhibitory RNA in epilepsy: research tools and therapeutic perspectives. Epilepsia 2010; 51(9): 1659-68.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02672.x] [PMID: 20633035]
[130]
Lee Y, Messing A, Su M, Brenner M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 2008; 56(5): 481-93.
[http://dx.doi.org/10.1002/glia.20622] [PMID: 18240313]
[131]
Ferré S. Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl) 1997; 133(2): 107-20.
[http://dx.doi.org/10.1007/s002130050380] [PMID: 9342776]
[132]
Castro K, Baronio D, Perry IS, Riesgo RDS, Gottfried C. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr Neurosci 2017; 20(6): 343-50.
[http://dx.doi.org/10.1080/1028415X.2015.1133029] [PMID: 26856821]
[133]
Włodarczyk A, Cubała WJ. Mechanisms of action of the ketogenic diet in depression. Neurosci Biobehav Rev 2019; 107: 422-3.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.038] [PMID: 31568812]
[134]
Kraeuter AK, van den Buuse M, Sarnyai Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res 2019; 206: 244-50.
[http://dx.doi.org/10.1016/j.schres.2018.11.011] [PMID: 30466960]
[135]
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393(10172): 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[136]
Schachter SC, Wheless JW. The evolving place of vagus nerve stimulation therapy. Neurology 2002; 59(6)(Suppl. 4): S1-2.
[http://dx.doi.org/10.1212/WNL.59.6_suppl_4.S1] [PMID: 12270961]
[137]
Wheless JW, Maggio V. Vagus nerve stimulation therapy in patients younger than 18 years. Neurology 2002; 59(6)(Suppl. 4): S21-5.
[http://dx.doi.org/10.1212/WNL.59.6_suppl_4.S21] [PMID: 12270964]
[138]
Benbadis S, Helmers S, Hirsch L, Sirven J, Vale FL, Wheless J. Yes, neurostimulation has a role in the management of epilepsy. Neurology 2014; 83(9): 845-7.
[http://dx.doi.org/10.1212/WNL.0000000000000739] [PMID: 25156348]
[139]
Ryvlin P, So EL, Gordon CM, et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia 2018; 59(3): 562-72.
[http://dx.doi.org/10.1111/epi.14002] [PMID: 29336017]
[140]
(a) Zhang Y, Wang X, Tang C, Guan Y, Chen F, Gao Q, et al. Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy. Journal of Neurosurgery 2021; 1-10.
(b) Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51(5): 899-908.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02536.x] [PMID: 20331461]
[141]
Salanova V, Witt T, Worth R, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015; 84(10): 1017-25.
[http://dx.doi.org/10.1212/WNL.0000000000001334] [PMID: 25663221]
[142]
Geller EB, Skarpaas TL, Gross RE, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017; 58(6): 994-1004.
[http://dx.doi.org/10.1111/epi.13740] [PMID: 28398014]
[143]
Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011; 77(13): 1295-304.
[http://dx.doi.org/10.1212/WNL.0b013e3182302056] [PMID: 21917777]
[144]
Miranda MF, Hamani C, de Almeida AC, et al. Role of adenosine in the antiepileptic effects of deep brain stimulation. Front Cell Neurosci 2014; 8: 312.
[http://dx.doi.org/10.3389/fncel.2014.00312] [PMID: 25324724]
[145]
Freeman JM. Seizures, EEG events, and the ketogenic diet. Epilepsia 2009; 50(2): 329-30.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01757.x] [PMID: 19215282]
[146]
Kossoff EH, Rho JM. Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics 2009; 6(2): 406-14.
[http://dx.doi.org/10.1016/j.nurt.2009.01.005] [PMID: 19332337]
[147]
Masino SA, Geiger JD. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 2008; 31(6): 273-8.
[http://dx.doi.org/10.1016/j.tins.2008.02.009] [PMID: 18471903]
[148]
Masino SA, Geiger JD. The ketogenic diet and epilepsy: is adenosine the missing link? Epilepsia 2009; 50(2): 332-3.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01771.x] [PMID: 19215286]