Activated Pancreatic Stellate Cells Promote Acinar Duct Metaplasia by Disrupting Mitochondrial Respiration and Releasing Reactive Oxygen Species

Page: [76 - 83] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic Pancreatitis (CP) is a long-term risk factor for pancreatic ductal adenocarcinoma (PDAC), and both diseases share a common etiology. The activation of Pancreatic stellate cells (PaSCs) caused by inflammation of the chronic pancreas plays a pivotal role in the pathology of pancreatic fibrosis and the malignant phenotype of PDAC. However, the central role of activated PaSCs in Acinar-to-Ductal Metaplasia (ADM) remains unknown.

Objective: In the present study, we investigated the link between pancreatic fibrosis and ADM and the possible underlying mechanism.

Methods: A caerulein-treated mouse CP model was established, and Masson trichrome histochemical stain and Transmission Electron Microscope (TEM) were used to observe stromal fibrosis and cell ultrastructure, respectively. The expression of amylase and cytokeratin 19 (CK19), mitochondria respiration, and reactive oxygen species (ROS) were detected in vitro in the co-culture model of primary pancreatic acinar cells and PaSCs.

Results: The activation of PaSCs and pancreatic fibrosis were accompanied by ADM in pancreatic parenchyma in caerulein-treated mice, which was verified by the co-cultivation experiment in vitro. Furthermore, we showed that activated PaSCs promote ADM by disrupting mitochondrial respiration and releasing ROS. The expression of inflammation-and ADM-related genes, including S100A8, S100A9, and CK19, was observed to be up-regulated in pancreatic acinar cells in the presence of activated PaSCs. The expression of S100A9 and CK19 proteins was also up-regulated in acinar cells co-cultured with activated PaSCs.

Conclusion: The manipulation of mitochondrial respiration and ROS release is a promising preventive and/or therapeutic strategy for PDAC, and S100A9 is expected to be a therapeutic target to block the ADM process induced by the activation of PaSCs.

Keywords: Pancreatic stellate cells, acinar-to-duct metaplasia, mitochondrial respiration, reactive oxygen species, S100A9, ROS, CP.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol., 2018, 24(43), 4846-4861.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[3]
Mayerle, J.; Kalthoff, H.; Reszka, R.; Kamlage, B.; Peter, E.; Schniewind, B.; González Maldonado, S.; Pilarsky, C.; Heidecke, C.D.; Schatz, P.; Distler, M.; Scheiber, J.A.; Mahajan, U.M.; Weiss, F.U.; Grützmann, R.; Lerch, M.M. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut, 2018, 67(1), 128-137.
[http://dx.doi.org/10.1136/gutjnl-2016-312432] [PMID: 28108468]
[4]
Raimondi, S.; Lowenfels, A.B.; Morselli-Labate, A.M.; Maisonneuve, P.; Pezzilli, R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract. Res. Clin. Gastroenterol., 2010, 24(3), 349-358.
[http://dx.doi.org/10.1016/j.bpg.2010.02.007] [PMID: 20510834]
[5]
Ferdek, P.E.; Jakubowska, M.A. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch., 2017, 469(9), 1039-1050.
[http://dx.doi.org/10.1007/s00424-017-1968-0] [PMID: 28382480]
[6]
Ji, B.; Tsou, L.; Wang, H.; Gaiser, S.; Chang, D.Z.; Daniluk, J.; Bi, Y.; Grote, T.; Longnecker, D.S.; Logsdon, C.D. Ras activity levels control the development of pancreatic diseases. Gastroenterology,, 2009, 137(3), 1072-1082. 1082.e1-1082.e6.
[http://dx.doi.org/10.1053/j.gastro.2009.05.052] [PMID: 19501586]
[7]
Kopp, J.L.; von Figura, G.; Mayes, E.; Liu, F.F.; Dubois, C.L.; Morris, J.P., IV; Pan, F.C.; Akiyama, H.; Wright, C.V.E.; Jensen, K.; Hebrok, M.; Sander, M. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 22(6), 737-750.
[http://dx.doi.org/10.1016/j.ccr.2012.10.025] [PMID: 23201164]
[8]
Chen, H.; Chan, D.C. mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. cell metab., 2017, 26(1), 39-48.
[http://dx.doi.org/10.1016/j.cmet.2017.05.016 ] [PMID: 28648983]
[9]
Annesley, S.J.; Fisher, P.R. Mitochondria in health and disease. cells 2019, 8(7), 680.
[http://dx.doi.org/10.3390/cells8070680] [PMID: 31284394]
[10]
Dan Dunn, J.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 2015, 6, 472-485.
[http://dx.doi.org/10.1016/j.redox.2015.09.005] [PMID: 26432659]
[11]
Yang, Y.; Karakhanova, S.; Hartwig, W.; D’Haese, J.G.; Philippov, P.P.; Werner, J.; Bazhin, A.V. Mitochondria and mitochondrial ros in cancer: novel targets for anticancer therapy. J. Cell. Physiol., 2016, 231(12), 2570-2581.
[http://dx.doi.org/10.1002/jcp.25349] [PMID: 26895995]
[12]
Xia, D.; Halder, B.; Godoy, C.; Chakraborty, A.; Singla, B.; Thomas, E.; Shuja, J.B.; Kashif, H.; Miller, L.; Csanyi, G.; Sabbatini, M.E. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic. Biol. Med., 2020, 147, 139-149.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.034] [PMID: 31837426]
[13]
Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8788-8793.
[http://dx.doi.org/10.1073/pnas.1003428107] [PMID: 20421486]
[14]
Tao, X.; Chen, Q.; Li, N.; Xiang, H.; Pan, Y.; Qu, Y.; Shang, D.; Go, V.L.W.; Xue, J.; Sun, Y.; Zhang, Z.; Guo, J.; Xiao, G.G. Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomed. Pharmacother., 2020, 125109999
[http://dx.doi.org/10.1016/j.biopha.2020.109999] [PMID: 32070876]
[15]
Abd-Ellah, H.F.; Abou-Zeid, N.R. Role of alpha-lipoic acid in ameliorating Cyclosporine A-induced pancreatic injury in albino rats: A structural, ultrastructural, and morphometric study. Ultrastruct. Pathol., 2017, 41(2), 196-208.
[http://dx.doi.org/10.1080/01913123.2017.1286422] [PMID: 28272982]
[16]
Gout, J.; Pommier, R.M.; Vincent, D.F.; Kaniewski, B.; Martel, S.; Valcourt, U.; Bartholin, L. Isolation and culture of mouse primary pancreatic acinar cells. J. Vis. Exp., 2013, 78(78), 50514.
[http://dx.doi.org/10.3791/50514] [PMID: 23979477]
[17]
Zhao, X.; Jin, Y.; Li, L.; Xu, L.; Tang, Z.; Qi, Y.; Yin, L.; Peng, J. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol. Res., 2019, 146104276
[http://dx.doi.org/10.1016/j.phrs.2019.104276] [PMID: 31112750]
[18]
Gerasimenko, O.V.; Gerasimenko, J.V. Mitochondrial function and malfunction in the pathophysiology of pancreatitis. Pflugers Arch., 2012, 464(1), 89-99.
[http://dx.doi.org/10.1007/s00424-012-1117-8] [PMID: 22653502]
[19]
Hezel, A.F.; Kimmelman, A.C.; Stanger, B.Z.; Bardeesy, N.; Depinho, R.A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev., 2006, 20(10), 1218-1249.
[http://dx.doi.org/10.1101/gad.1415606] [PMID: 16702400]
[20]
Ying, H.; Dey, P.; Yao, W.; Kimmelman, A.C.; Draetta, G.F.; Maitra, A.; DePinho, R.A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev., 2016, 30(4), 355-385.
[http://dx.doi.org/10.1101/gad.275776.115] [PMID: 26883357]
[21]
Apte, M.; Pirola, R.; Wilson, J. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells. Antioxid. Redox Signal., 2011, 15(10), 2711-2722.
[http://dx.doi.org/10.1089/ars.2011.4079] [PMID: 21728885]
[22]
Tjomsland, V.; Aasrum, M.; Christoffersen, T.; Gladhaug, I.P. Functional heterogeneity in tumor-derived human pancreatic stellate cells: Differential expression of HGF and implications for mitogenic signaling and migration in pancreatic cancer cells. Oncotarget, 2017, 8(42), 71672-71684.
[http://dx.doi.org/10.18632/oncotarget.17800] [PMID: 29069737]
[23]
Strobel, O.; Dor, Y.; Stirman, A.; Trainor, A.; Fernández-del Castillo, C.; Warshaw, A.L.; Thayer, S.P. Beta cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4419-4424.
[http://dx.doi.org/10.1073/pnas.0605248104] [PMID: 17360539]
[24]
Vyas, S.; Zaganjor, E.; Haigis, M.C. mitochondria and cancer. cell, 2016, 166(3), 555-566.
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[25]
Burke, P.J. mitochondria, bioenergetics and apoptosis in cancer. trends cancer 2017, 3(12), 857-870.
[http://dx.doi.org/10.1016/j.trecan.2017.10.006] [PMID: 29198441]
[26]
Gao, G.; Wang, Z.; Lu, L.; Duan, C.; Wang, X.; Yang, H. Morphological analysis of mitochondria for evaluating the toxicity of α-synuclein in transgenic mice and isolated preparations by atomic force microscopy. Biomed. Pharmacother., 2017, 96, 1380-1388.
[http://dx.doi.org/10.1016/j.biopha.2017.11.057] [PMID: 29169728]
[27]
Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc., 2012, 7(6), 1235-1246.
[http://dx.doi.org/10.1038/nprot.2012.058] [PMID: 22653162]
[28]
Liu, P.S.; Ho, P.C. Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion, 2018, 41, 45-50.
[http://dx.doi.org/10.1016/j.mito.2017.11.002] [PMID: 29146487]
[29]
Yang, F.; Liao, J.; Pei, R.; Yu, W.; Han, Q.; Li, Y.; Guo, J.; Hu, L.; Pan, J.; Tang, Z. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes. Chemosphere, 2018, 204, 36-43.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.192] [PMID: 29649662]
[30]
Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5), 913-922.
[http://dx.doi.org/10.1007/s10495-007-0756-2] [PMID: 17453160]
[31]
Leung, P.S.; Chan, Y.C. Role of oxidative stress in pancreatic inflammation. Antioxid. Redox Signal., 2009, 11(1), 135-165.
[http://dx.doi.org/10.1089/ars.2008.2109] [PMID: 18837654]
[32]
Farrow, B.; Evers, B.M. Inflammation and the development of pancreatic cancer. Surg. Oncol., 2002, 10(4), 153-169.
[http://dx.doi.org/10.1016/S0960-7404(02)00015-4] [PMID: 12020670]
[33]
Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med., 2013, 13(1), 24-57.
[http://dx.doi.org/10.2174/156652413804486214] [PMID: 22834835]
[34]
Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in inflammation. Front. Immunol., 2018, 9, 1298.
[http://dx.doi.org/10.3389/fimmu.2018.01298] [PMID: 29942307]
[35]
Chiu, C.W.; Chen, H.M.; Wu, T.T.; Shih, Y.C.; Huang, K.K.; Tsai, Y.F.; Hsu, Y.L.; Chen, S.F. Differential proteomics of monosodium urate crystals-induced inflammatory response in dissected murine air pouch membranes by iTRAQ technology. Proteomics, 2015, 15(19), 3338-3348.
[http://dx.doi.org/10.1002/pmic.201400626] [PMID: 26205848]