[3]
Bhadoriya, U.; Jain, D.K. Fused heterocycles as a potent biological agent; Recent advancement. Int. J. Pharm. Sci. Res., 2016, 7(5), 1874.
[4]
Sunisha, K.; Subran, S.K.; Paira, P. Synthesis and pharmacological applications of certain quinoxaline analogues: A review. Curr. Bioact. Compd., 2017, 13, 186-212.
[8]
Sahu, R.; Tiwari, S.; Chandra, J.K.; Patel, P.K. Synthesis and anticonvulsant activity of some novel semicarbazone derivatives containing quinoxaline moiety. Int. J. Pharm. Sci. Res., 2012, 3(11), 4549-4553.
[21]
Noorulla, S.; Sreenivasulu, N. Anti-inflammatory activity of novel substituted quinoxaline heterocycles. Int. J. Pharm. Sci. Res., 2011, 2(9), 2337.
[22]
Husain, A.; Madhesia, D. Recent advances in pharmacological activities of quinoxaline derivatives. J. Pharm. Res., 2011, 4(3), 924-929.
[32]
Angibaud, P.R.; Querolle, O.A.G.; Berthelot, D. JC.; Meyer, C.; Willot, M.P.V.; Meerpoel, L. Quinoxaline and pyridopyrazine derivatives as P13K-beta inhibitors. I.N.P.A.S.S., 201917042802, 2018.
[33]
Wim, V.; Anna, H.S.; Celine, C.F.A.; Mark, J.R.; Domenico, B.D.F. Quinoxaline derivatives useful as FGFR kinase modulators. I.N.P.A.S.S. 201627035242, 2016.
[34]
Wadher, S.J.; Ingle, R.G.; Reddy, M.V.R.; Goswami, K.; Bhoj, P. Novel quinoxaline derivative against filariasis. I.N.P.A.S.S. 201621033464, 2018.
[35]
Mohammed, H.; Ngarita, K.; Jan, B.; Robert, B. Antiviral indolo [2,3- b] quinoxaline. I.N.P.A.S.S. 9508/DELNP/2015, 2015.
[36]
Srinivas, K. Quinoxaline-5-carboxamide derivatives and their antibacterial activity. I.N.P.A.S.S. 2430/CHE/2014, 2016.
[37]
Yonghua, G.; Sun, O.Y.; Zhe, W. Quinoxaline-containing compounds as hepatitis C virus inhibitors. I.N.P.A.S.S.3644/DELNP/2010, 2010.
[38]
Gmbh, A.Z. Quinoxaline derivatives and their use for treating
benign and malignant tumour disorders. I.N.P.A.S.S.
3907/KOLNP/2011, 2012.
[39]
Corp, N.C.R. Chromogenic quinoxaline compounds. U.K. Patent GB1458178, 1976.
[40]
Jacobson, E.J. Oxygenated quinoxalines. WIPO WO1992004350,, 1992.
[41]
Young, V.V.; Bright, D.R. Quinoxaline adducts useful as anthelmintics. U.S. Patent US4348389, 1982.
[42]
Aslanian, R.G.; Biju, J.P.; Boyce, W.C.; Brown, C.W.; Chen, X.; Degrado, S.J.; Dhondi, P.K.; Dong, Li.; Fevrier, S.; Gauuan, J.P.; Huang, X.; Jiang, Q.; Kelley, E.H.; Leyhane, A.J.; Mazzola, J.R.D.; Mccormick, K.D.; Methot, J.L.; Palani, A.; Qin, J.; Rao, A.U.; Siliphaivanh, P.; Vaccaro, H.M.; Wu, J.; Xiao, D.; Yu, Y.; Zhang, H. Quinoxalines and aza-quinoxalines as CRTH2 receptor modulators., Australia Patent AU2011349524, 2016.
[43]
Komatsu, M.; Sato, H.; Taira, S.; Miyake, M.; Magata, K.; Yoshida, H.; Ueyama, A.; Nishi, T. Quinoxaline derivative as antidiabetic agent., WIPO Patent WO1995009159,, 1995.
[44]
Johnston, J.L. Combinations of quinoxaline-di-N-oxides and tetracycline antibiotic. U.K. Patent., GB1201057,, 1970.
[45]
Zhu, Y.L.; Qian, X. Quinoxaline-oxy-phenyl derivatives as kinase inhibitors. European Patent Office EP2806874B1, 2017.
[46]
Tanaka, I.; Hiroshi Arato, H.; Wakabayashi, T. Quinoxaline compounds or a combination thereof with o-dichlorobenzene for use against animal coccidiosis., Europ. Pat. Office, EP0085907A1,, 1986.
[47]
Soo, B.H.; Hyup, J.Y.; Suk, J.L.; Hyun, O.M.; Seok, S.S.; Young, W.B. A novel quinoxaline compound for ultraviolet absorbers., South Korea Pat., KR101684671B1,, 2012.
[48]
Zhongzhu, C.; Zhigang, X. Quinoxaline azetidinones compound preparation and application of quinoxaline azetidinones compound in tumour resistance., Espacenet Pat. Search, CN107353287A,, 2017.
[49]
Dongmei, C.; Menghong, D.; Lingli, H.; Panpan, L.; Zhenli, L.; Yuanhu, P.; Dapeng, P.; Yanfei, T.; Xu, W.; Yulian, W.; Shuyu, X.; Zonghui, Y. Quinoxaline-N1, N4-dioxide derivatives with antimicrobial activity. Espacenet Pat. Search, CN105601575A, 2016.
[50]
Wenhu, B.; Weimin, H.; Cun, P.; Longyong, X. Synthesizing method of quinoxaline-2(1H)-ketoneC-3-aroyl compound. Espacenet Pat. Search, CN109535087A 2019.
[51]
Gerald, B.; Peter, B.; Axel, C.; Henrik, D.; Zoltan, G.; Peter, H.; Balint, H.B.; Zoltan, H.; Gyoergy, K.; Alexander, K.; Jenoe, M.; Sabine, O.; Laszlo, O.; Janos, P.; Istvan, S.; Zsolt, S.; Frigyes, W. Quinoxaline derivatives as effective compounds against infectious disease., Espacenet Pat. Search, WO02094796A2,, 2002.
[52]
Kiran, G.; Laxminarayana, E.; Thirumala Chary, M.; Ravinder, M. A green synthesis of quinoxaline derivatives & their biological actives. Int. J. Appl. Chem., 2017, 13, 421-432.
[54]
Singh, D.P.; Hashim, S.R.; Singhal, R.G. Anti-inflammatory activity of some new thioether derivatives of quinoxaline. Int. J. Drug Dev. Res., 2010, 2, 810-815.
[56]
Ramalingam, P.; Ganapaty, S.; Rao, C.B. In vitro antitubercular
and antimicrobial activities of 1-substituted quinoxaline-2, 3 (1H,
4H)-diones. 2010, 20(1), 406-408.
[57]
Robinson, R.S.; Taylor, R.J. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 06, 1003-1005.
[66]
Sajjadifar, S.; Azizkhania, V.; Pal, K.; Jabbari, H.; Pouralimardan, O.; Divsar, F.; Hamidi, H. Characterization of catalyst: Comparison of brønsted and lewis acidic power in boron sulfonic acid as a heterogeneous catalyst in green synthesis of quinoxaline derivatives. Chem. Methodol., 2019, 3(2), 226-236.
[68]
Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. Rose Bengal Catalyzed Coupling of 1, 2‐dicarbonyls and phenylene 1,2‐diamines: Visible‐Light Mediated Synthesis of Quinoxalines. Chem. Select., 2019, 4(29), 8713-8718.
[72]
Meshram, G.A.; Patil, V.D. Efficient synthesis of benzimidazole and quinoxaline derivatives with ZnO H2O2 under mild conditions. Int. J. Chem. Sci., 2010, 8, 119-131.
[78]
Reddy, V.R.; Tejaswara Rao, A.; Jayashree, A.; Varala, R. Synthesis and biological evaluation of functionalized quinoxaline derivatives. Pharma Chem., 2014, 6, 73-78.
[84]
Pradeep, K.A.; Kotra, V.I.; Priyadarshini, R.L.; Pratap, V.E. Synthesis, characterization and anti-inflammatory activity of novel quinoxaline derived chalcones. Int. J. Pharma Sci., 2015, 7(1), 243-246.