Abstract
Background: This study assessed the effects of solvent proportion, time and power intensity
of ultrasound processing on the extraction, bioaccessibility, antioxidant and antimicrobial
activity of phenolic compounds (PC) from acerola (Malpighia glabra DC) coproduct (ACP).
Methods: The ultrasound process with water as a solvent in a ratio of 1:2, power intensity of 75
W/cm2 during 10 min was selected as the optimal condition to provide higher extraction of the total
phenolic compounds (4126 mg gallic acid.100 g-1 with total antioxidant activity of 98.62
μMTrolox. g-1). Power intensity and solid: solvent proportion were the parameters that increased
the total PC quantification. The main phenolic compounds from the ACP tentatively identified by
UPLC-ESI-QTOF-MS/MS were rutin, luteolin, and quercetin. Ultrasound extraction also improved
antimicrobial activity against Listeria monocytogenes and Staphylococcus aureus (40 mg.L -1).
Results: These results indicate that antioxidant and antimicrobial activities in the ACP phenolic extracts
are quite potent and implicate the presence of compounds with potent free-radical-scavenging
activity.
Conclusion: It is possible to extract phenolic compounds from acerola coproducts using sustainable
“green” technology, only using water as a solvent and ultrasound processing.
Keywords:
Antimicrobial activity, ultrasound extraction, agroindustrial coproduct, phenolic compounds, antioxidant activity, bioaccessibility.
Graphical Abstract
[2]
Duzzioni, A. G. Effect of drying kinetics on main bioactive compounds and antioxidant activity of acerola (Malpighiaemarginata D.C.) residue. Int J Food Sci Techn, 2013, 48(5), 1041-1047.
[3]
Calgaro, M.; Braga, M.B. A cultura da acerola. Área de Informação da Sede-Col Criar Plantar ABC 500P/500R Saber (INFOTECA-E), 2012.
[10]
Chemat, F.N.; Rombaut., A. S.; Fabiano- Tixier, J. T.; Pierson, A. Chapter 1.Green extraction: From concepts to research, education, and economical opportunities; Wiley: United States, 2015.
[12]
Cravotto, G.; Binello, A. Chapter 1-Low-frequency, high-power ultrasonic-assisted food component extraction.Innovative food processing techniques; K., Knoerzer; P., Juliano; G., Smithers, Eds.; Woodhead Publishing Limited: Cambridge, 2016.
[14]
Larrauri, J.A.; Ruperez, Z.P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem., 1997, 45, 1390-1393. http://dx.doi.org/10.1021/jf960282f
[20]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Planejamento e otimização de experimentos, 2nd ed; Ed. UNICAMP: Campinas, 1995.
[21]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como fazerexperimentos: Pesquisa de desenvolvimentonaciência e naindústria.Campinas; Editora da Unicamp: Brazil, 2001.
[34]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como fazerexperimentos: Pesquisa de desenvolvimentonaciência e naindústria.Campinas; Editora da Unicamp: Brazil, 2001.
[37]
Marques, T.R.; Caetano, A.A.; Rodrigues, L.M.A.; Simão, A.A.; Machado, G.H.A. CORRÊIA, A. D. Characterization of phenolic compounds, antioxidant and antibacterial potential the extract of acerola bagasse flour. Food SciTech, 2017, 39(2), 143-148.
[40]
Huang, C.; Gao, X.; Sun, T.; Lihui, Y.U.; Guo, Y.; Hong, W.; Liu, M. The antimicrobial activity of luteolin against four bacteria in vitro. Chin. J. Vet. Sci., 2017, 37(8), 1558-1561.
[49]
Racowski, I.; Piotto, J.; Procópio, V.; Freire, V.T. Evaluation of Antimicrobial Activity and Phytochemical Analysis of Thaiti Lemon Peels (Citrus latifolia Tanaka). J Microb Res, 2017, 7(2), 39-44.