Bioaccessibility, Antioxidant and Antibacterial Potentials of Phenolic Compounds Ultrasonically Extracted from Acerola Malpighia glabra DC Coproduct

Article ID: e161221196727 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: This study assessed the effects of solvent proportion, time and power intensity of ultrasound processing on the extraction, bioaccessibility, antioxidant and antimicrobial activity of phenolic compounds (PC) from acerola (Malpighia glabra DC) coproduct (ACP).

Methods: The ultrasound process with water as a solvent in a ratio of 1:2, power intensity of 75 W/cm2 during 10 min was selected as the optimal condition to provide higher extraction of the total phenolic compounds (4126 mg gallic acid.100 g-1 with total antioxidant activity of 98.62 μMTrolox. g-1). Power intensity and solid: solvent proportion were the parameters that increased the total PC quantification. The main phenolic compounds from the ACP tentatively identified by UPLC-ESI-QTOF-MS/MS were rutin, luteolin, and quercetin. Ultrasound extraction also improved antimicrobial activity against Listeria monocytogenes and Staphylococcus aureus (40 mg.L -1).

Results: These results indicate that antioxidant and antimicrobial activities in the ACP phenolic extracts are quite potent and implicate the presence of compounds with potent free-radical-scavenging activity.

Conclusion: It is possible to extract phenolic compounds from acerola coproducts using sustainable “green” technology, only using water as a solvent and ultrasound processing.

Keywords: Antimicrobial activity, ultrasound extraction, agroindustrial coproduct, phenolic compounds, antioxidant activity, bioaccessibility.

Graphical Abstract

[1]
Sabino, L.B.S.; M.L. Gonzaga, C.; L. Oliveira, S.; Duarte, A.S.G.; Silva, L. M. R.; Brito, E. S. de; Figueiredo, R.W.; SILVA, L.M.R.; SOUSA, P.H.M. Polysaccharides from acerola, cashew apple, pineapple, mango and passion fruit co-products: Structure, cytotoxicity and gastroprotectiveeffects. Bioact Carbohydr Diet Fibre, 2020, 24, 100228.
[http://dx.doi.org/10.1016/j.bcdf.2020.100228]
[2]
Duzzioni, A. G. Effect of drying kinetics on main bioactive compounds and antioxidant activity of acerola (Malpighiaemarginata D.C.) residue. Int J Food Sci Techn, 2013, 48(5), 1041-1047.
[3]
Calgaro, M.; Braga, M.B. A cultura da acerola. Área de Informação da Sede-Col Criar Plantar ABC 500P/500R Saber (INFOTECA-E), 2012.
[4]
Cruz, R.G.D.; Beney, L.; Gervais, P.; Lira, S.P.; Vieira, T.M.F.S.; Dupont, S. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem., 2019, 277(277), 698-705.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.099] [PMID: 30502205]
[5]
Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of Acerola (Malpighiaspp.) and its potential as functional food. Trends Food Sci. Technol., 2018, 74, 99-106.
[http://dx.doi.org/10.1016/j.tifs.2018.01.014]
[6]
Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Dagila, M.; De Fillippis, A.; Xiao, H.; Quiles, J.; Xiao, J.; Capanoglu, E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1(2), 109-133.
[http://dx.doi.org/10.1002/fft2.25]
[7]
Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci., 2017, 23, 173-182.
[http://dx.doi.org/10.1016/j.cofs.2017.11.012]
[8]
Safarpoor, M.; Ghaedi, M.; Asfaram, A.; Yousefi-Nejad, M.; Javadian, H.; Zare Khafri, H.; Bagherinasab, M. Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles. Ultrason. Sonochem., 2018, 42, 76-83. http://dx.doi.org/10.1016/j.ultsonch.2017.11.001
[PMID: 29429729]
[9]
Roselló-Soto, E.; Galanakis, C.M.; Brnčić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerser, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, coproducts and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci. Technol., 2015, 42(2), 134-149.
[http://dx.doi.org/10.1016/j.tifs.2015.01.002]
[10]
Chemat, F.N.; Rombaut., A. S.; Fabiano- Tixier, J. T.; Pierson, A. Chapter 1.Green extraction: From concepts to research, education, and economical opportunities; Wiley: United States, 2015.
[11]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[12]
Cravotto, G.; Binello, A. Chapter 1-Low-frequency, high-power ultrasonic-assisted food component extraction.Innovative food processing techniques; K., Knoerzer; P., Juliano; G., Smithers, Eds.; Woodhead Publishing Limited: Cambridge, 2016.
[13]
Rodrigues, S.; Fernandes, F.A.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod., 2015, 69, 400-407.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.059]
[14]
Larrauri, J.A.; Ruperez, Z.P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem., 1997, 45, 1390-1393. http://dx.doi.org/10.1021/jf960282f
[15]
Rufino, R.M.; Alves, R.; de Brito, E.; Pérez-Jiménez, J.; Saura- Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem., 2010, 121, 996-1002.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.037]
[16]
Miller, D.D.; Schricker, B.R.; Rasmussen, R.R.; Van Campen, D. An in vitro method for estimation of iron availability from meals. Am. J. Clin. Nutr., 1981, 34(10), 2248-2256.
[http://dx.doi.org/10.1093/ajcn/34.10.2248] [PMID: 6794346]
[17]
Moura, N.C. Canniatti- Brazaca S. G. Avaliação da disponibilidade de ferro de feijãocomum (Phaseolus vulgaris L.) emcomparação com carne bovina. Food Sci Tech, 2006, 26, 270-276.
[http://dx.doi.org/10.1590/S0101-20612006000200007]
[18]
Briones-Labarca, V.; Venegas-Cubillos, G.; Ortiz-Portilla, S.; Chacana-Ojeda, M.; Maureira, H. Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chem., 2011, 128(2), 520-529.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.074] [PMID: 25212164]
[19]
Brandt, A.L.; Castillo, A.; Harris, K.B.; Keeton, J.T.; Hardin, M.D.; Taylor, T.M. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J. Food Sci., 2010, 75(9), M557-M563.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01843.x] [PMID: 21535610]
[20]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Planejamento e otimização de experimentos, 2nd ed; Ed. UNICAMP: Campinas, 1995.
[21]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como fazerexperimentos: Pesquisa de desenvolvimentonaciência e naindústria.Campinas; Editora da Unicamp: Brazil, 2001.
[22]
Patil, M.D.; Shinde, A.S.; Dev, M.J.; Patel, G.; Bhilare, K.D.; Banerjee, U.C. Combined effect of attrition and ultrasound on the disruption of Pseudomonas putida for the efficient release of arginine deiminase. Biotechnol. Prog., 2018, 34(5), 1185-1194.
[http://dx.doi.org/10.1002/btpr.2664] [PMID: 29885035]
[23]
Ayim, I.; Ma, H.; Alenyorege, E.A.; Ali, Z.; Donkor, P.O. Influence of ultrasound pretreatment on enzymolysis kinetics and thermodynamics of sodium hydroxide extracted proteins from tea residue. J. Food Sci. Technol., 2018, 55(3), 1037-1046.
[http://dx.doi.org/10.1007/s13197-017-3017-6] [PMID: 29487446]
[24]
Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem., 2015, 25, 17-23.
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.012] [PMID: 25219872]
[25]
Silva, P.B.; Duarte, C.R.; Barrozo, M.A. Dehydration of acerola (Malpighiaemarginata DC) coproduct in a new designed rotary dryer: Effect of process variables on main bioactive compounds. Food Bio Produc, 2016, 98, 62-70.
[http://dx.doi.org/10.1016/j.fbp.2015.12.008]
[26]
Ribeiro da Silva, L.M.; Teixeira de Figueiredo, E.A.; Silva Ricardo, N.M.; Pinto Vieira, I.G.; Wilane de Figueiredo, R.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem., 2014, 143, 398-404.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.001] [PMID: 24054258]
[27]
Shen, Y.; Zhu, D.; Xi, P.; Cai, T.; Cao, X.; Liu, H.; Li, J. Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. Lebensm. Wiss. Technol., 2021, 142, 111030.
[http://dx.doi.org/10.1016/j.lwt.2021.111030]
[28]
Rezende, Y.R.R.S.; Nogueira, J.P.; Narain, N. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighiaemarginata DC) residue. LWT-Food Sci Tech, 2017, 85, 158-169.
[http://dx.doi.org/10.1016/j.lwt.2017.07.020]
[29]
Galanakis, C.M. Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol., 2012, 26, 68-87.
[http://dx.doi.org/10.1016/j.tifs.2012.03.003]
[30]
Bachtler, S.; Bart, H-J. Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food Biop Proc, 2021, 125, 1-13.
[http://dx.doi.org/10.1016/j.fbp.2020.10.009]
[31]
Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem., 2011, 18(5), 1249-1257.
[http://dx.doi.org/10.1016/j.ultsonch.2011.01.005] [PMID: 21317015]
[32]
Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem., 2013, 20(5), 1182-1187.
[http://dx.doi.org/10.1016/j.ultsonch.2013.02.010] [PMID: 23522904]
[33]
Bhat, R.; Goh, K.M. Sonication treatment convalesce the overall quality of hand-pressed strawberry juice. Food Chem., 2017, 215, 470-476.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.160] [PMID: 27542500]
[34]
Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como fazerexperimentos: Pesquisa de desenvolvimentonaciência e naindústria.Campinas; Editora da Unicamp: Brazil, 2001.
[35]
Riciputi, Y.; Diaz-de-Cerio, E.; Akyol, H.; Capanoglu, E.; Cerretani, L.; Caboni, M.F.; Verardo, V. Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem., 2018, 269, 258-263.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.154] [PMID: 30100433]
[36]
Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta, 2012, 732, 100-104.
[http://dx.doi.org/10.1016/j.aca.2011.11.032] [PMID: 22688040]
[37]
Marques, T.R.; Caetano, A.A.; Rodrigues, L.M.A.; Simão, A.A.; Machado, G.H.A. CORRÊIA, A. D. Characterization of phenolic compounds, antioxidant and antibacterial potential the extract of acerola bagasse flour. Food SciTech, 2017, 39(2), 143-148.
[38]
Al-Majmaie, S.; Nahar, L.; Sharples, G.P.; Wadi, K.; Sarker, S.D. Isolation and antimicrobial activity of rutin and its derivatives from Rutachalepensis (Rutaceae) growing in Iraq. Rec. Nat. Prod., 2019, 13(1), 64-70.
[http://dx.doi.org/10.25135/rnp.74.18.03.250]
[39]
Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem., 2019, 284, 108-117.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.108] [PMID: 30744834]
[40]
Huang, C.; Gao, X.; Sun, T.; Lihui, Y.U.; Guo, Y.; Hong, W.; Liu, M. The antimicrobial activity of luteolin against four bacteria in vitro. Chin. J. Vet. Sci., 2017, 37(8), 1558-1561.
[41]
Zhang, D.; Gao, X.; Song, X.; Zhou, W.; Hong, W.; Tian, C.; Liu, Y.; Liu, M. Luteolin Showed a Resistance Elimination Effect on Gentamicin by Decreasing MATE mRNA Expression in Trueperella pyogenes. Microb. Drug Resist., 2019, 25(4), 619-626.
[http://dx.doi.org/10.1089/mdr.2018.0097] [PMID: 30431396]
[42]
Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.D.; Vitali, L.; Micke, G.A.; de Gois, J.S.; de Almeida, T.S.; Borges, D.L.; Miller, P.R.; Costa, A.C.; Fett, R. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chem., 2017, 228(228), 447-454.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.038] [PMID: 28317748]
[43]
Lima, A.C.S.; da Rocha Viana, J.D.; de Sousa Sabino, L.B.; da Silva, L.M.R.; da Silva, N.K.V.; de Sousa, P.H.M. Processing of three different cooking methods of cassava: Effects on in vitro bioaccessibility of phenolic compounds and antioxidant activity. LWT-FoodSci Tech, 2017, 76, 253-258.
[http://dx.doi.org/10.1016/j.lwt.2016.07.023]
[44]
Silva, C.P.; Sampaio, G.R.; Freitas, R.A.M.S.; Torres, E.A.F.S. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem., 2018, 267(267), 405-409.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.078] [PMID: 29934184]
[45]
Neto, J.J.L.; de Almeida, T.S.; de Medeiros, J.L.; Vieira, L.R.; Moreira, T.B.; Maia, A.I.V.; Ribeiro, P.R.V.; de Brito, E.S.; Farias, D.F.; Carvalho, A.F.U. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds. Biom Pharm, 2017, 88, 999-1007.
[http://dx.doi.org/10.1016/j.biopha.2017.01.109] [PMID: 28178632]
[46]
Lafarga, T.; Rodríguez-Roque, M.J.; Bobo, G.; Villaró, S.; Aguiló-Aguayo, I. Effect of ultrasound processing on the bioaccessibility of phenolic compounds and antioxidant capacity of selected vegetables. Food Sci. Biotechnol., 2019, 28(6), 1713-1721.
[http://dx.doi.org/10.1007/s10068-019-00618-4] [PMID: 31807344]
[47]
Pezeshkpour, V.; Khosravani, S.A.; Ghaedi, M.; Dashtian, K.; Zare, F.; Sharifi, A.; Jannesar, R.; Zoladl, M. Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrason. Sonochem., 2018, 40(Pt A), 1031-1038.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.001] [PMID: 28946400]
[48]
Paniwnyk, L.; Alarcon-Rojo, A.; Rodriguez-Figueroa, J.C.; Toma, M. The Use of Ultrasound as an Enhancement Aid to Food Extraction. In: Ingredients Extraction by Physicochemical Methods in Food.Handbook of Food Bioengineering; , 2017.
[http://dx.doi.org/10.1016/B978-0-12-811521-3.00010-7]
[49]
Racowski, I.; Piotto, J.; Procópio, V.; Freire, V.T. Evaluation of Antimicrobial Activity and Phytochemical Analysis of Thaiti Lemon Peels (Citrus latifolia Tanaka). J Microb Res, 2017, 7(2), 39-44.
[50]
Vodnar, D.C.; Călinoiu, L.F.; Dulf, F.V.; Ştefănescu, B.E.; Crişan, G.; Socaciu, C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem., 2017, 231, 131-140.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.131] [PMID: 28449989]