Nanoencapsulation of Polyphenols as Drugs and Supplements for Enhancing Therapeutic Profile - A Review

Article ID: e220921196726 Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

Polyphenolic phytoconstituents have been widely in use worldwide for ages and are categorised as secondary metabolites of plants. The application of polyphenols such as quercetin, resveratrol, curcumin as nutritional supplements has been researched widely. The use of polyphenols and specifically quercetin, for improving memory and mental endurance has shown significant effects among rats. Even though similar results have not been resonated among humans, but preclinical results have encouraged researchers to explore other polyphenols to study the effects as supplements among athletes. The phytopharmacological research has elucidated the use of natural polyphenols to prevent and treat various physiological and metabolic disorders owing to their free radical scavenging properties, anti-inflammatory, anti-cancer, and immunomodulatory effects. In- -spite of the tremendous pharmacological profile, one of the most dominant problem regarding the use of polyphenolic compounds is their low bioavailability. Nanonization is considered as one of the most prominent approaches among many. This article aims to review and discuss the molecular mechanisms of recently developed nanocarrier-based drug delivery systems for polyphenols and their application as drugs and supplements. Nanoformulations of natural polyphenols as bioactive agents, such as quercetin, kaempferol, fisetin, rutin, hesperetin, and naringenin epigalloccatechin- 3-gallate, genistein, ellagic acid, gallic acid, chlorogenic acid, ferulic acid, curcuminoids, and stilbenes is expected to have better efficacy. These delivery systems are expected to provide higher penetrability of polyphenols at cellular levels and exhibit a controlled release of the drugs. It is widely accepted that natural polyphenols do demonstrate significant therapeutic effects. However, the hindrances in their absorption, specificity, and bioavailability can be overcome using nanotechnology.

Keywords: Polyphenols, nanocarriers, athletes, bioavailability, supplements, drug delivery, metabolites

Graphical Abstract

[1]
Deep, P.; Singh, A.K.; Ansari, M.T.; Raghav, P. Pharmacological potentials of ficus racemosa-A review. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 29-33.
[2]
Badgujar, V.B.; Ansari, M.T.; Abdullah, M.S.; Badgujar, S.V. Homoharringtonne: A nascent phytochemical for cancer treatment (A review). World J. Pharm. Pharm. Sci., 2015, 5(1), 421-432.
[3]
Sant, S.; Swati, S.; Awadhesh, K.; Sajid, M.; Pattnaik, G.; Tahir, M. Hydrophilic polymers as release modifiers for primaquine phosphate: Effect of polymeric dispersion. ARS Pharmaceutica., 2011, 52(9), 19-25.
[4]
Hasnain, M.S.; Nayak, A.K.; Ansari, M.T.; Pal, D. Pharmaceutical applications of locust gum. In: Natural Polymers for Pharmaceutical Application: Plant Derived Polymers; Nayak, A.K.; Hasnain, M.S.; Pal, D., Eds.; Apple Academic Press, Elsevier Publication, 2019; pp. 139-162.
[http://dx.doi.org/10.1201/9780429328251-6]
[5]
Nayak, A.K.; Ansari, M.T.; Pal, D.; Hasnain, M.S. Hyaluronic acid (hyaluronan): Pharmaceutical Application. In: Natural Polymers for Pharmaceutical Applications: Animal Derived Polymers; Nayak, A.K.; Hasnain, M.S.; Pal, D., Eds.; Apple Academic Press, Elsevier Publications, 2019; pp. 1-32.
[6]
Nayak, A.K.; Ansari, M.T.; Sami, F.; Bera, H.; Hasnain, M.S. Cashew gum in drug delivery applications. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications; Nayak, A.K.; Hasnain, M.S., Eds.; Academic Press, 2019; pp. 263-283.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00011-X]
[7]
Nayak, A.K.; Mazumder, S.; Ara, T.J.; Ansari, M.T.; Hasnain, M.S. Calcium fluoride-based dental nanocomposites. In: Applications of Nanocomposite Materials in Dentistry; Abdullah, M.A.; Inamuddin, A.M., Eds.; Woodhead Publishing, 2019; pp. 27-45.
[http://dx.doi.org/10.1016/B978-0-12-813742-0.00002-X]
[8]
Das, S.; Pattanayak, D.; Nayak, A.K.; Yi, D.K.; Nanda, S.S.; Ansari, M.T. Alginate–montmorillonite composite systems as sustained drug delivery carriers.Alginates in Drug Delivery; Nayak, A.K.H.; Saquib, Md., Eds.; Academic Press, 2020, pp. 187-201.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00008-X]
[9]
Nayak, A.K.; Ansari, M.T.; Sami, F.; Singh, H.K.B.; Hasnain, M.S. Alginates as drug delivery excipients.Alginates in Drug Delivery; Nayak, A.K.H.; Saquib, Md., Eds.; Academic Press, 2020, pp. 19-39.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00002-9]
[10]
Li, A-N.; Li, S.; Zhang, Y-J.; Xu, X-R.; Chen, Y-M.; Li, H-B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[11]
Ahmad, S.A.; Das, S.S.; Khatoon, A.; Ansari, M.T.; Afzal, M.; Hasnain, M.S. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 2020.
[12]
Majeed, S.; Danish, M.; Ismail, M.H.B.; Ansari, M.T.; Ibrahim, M.N.M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line-in vitro study. Sustain. Chem. Pharm., 2019, 14, 100179.
[http://dx.doi.org/10.1016/j.scp.2019.100179]
[13]
Majeed, S.; bin Abdullah, M.S.; Nanda, A.; Ansari, MT. in vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J. Taibah Univ. Sci., 2016, 10(4), 614-620.
[http://dx.doi.org/10.1016/j.jtusci.2016.02.010]
[14]
Majeed, S.; Abdullah, M.S.; Dash, G.K.; Ansari, M.T.; Nanda, A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med., 2016, 14(8), 615-620.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[15]
Shahnaz Majeed, T.A.M.; Dash, G.K.; Abdullah, S.B.; Nanda, A. Fungal mediated synthesis of silver nanoparticles and its role in the enhancing the bactericidal preperty of amoxicillin. Pharm. Lett., 2015, 7(9), 119-123.
[16]
Yang, Y.; Cheng, Y.; Peng, S.; Xu, L.; He, C.; Qi, F.; Zhao, M.; Shuai, C. Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact. Mater., 2020, 6(5), 1230-1241.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.017] [PMID: 33210021]
[17]
Sorrenti, V.; Fortinguerra, S.; Caudullo, G.; Buriani, A. Deciphering the role of polyphenols in sports performance: from nutritional genomics to the gut microbiota toward phytonutritional epigenomics. Nutrients, 2020, 12(5), 1265.
[http://dx.doi.org/10.3390/nu12051265] [PMID: 32365576]
[18]
Morillas-Ruiz, J.M.; Villegas García, J.A.; López, F.J.; Vidal-Guevara, M.L.; Zafrilla, P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr., 2006, 25(3), 444-453.
[http://dx.doi.org/10.1016/j.clnu.2005.11.007] [PMID: 16426710]
[19]
Somerville, V.; Bringans, C.; Braakhuis, A. Polyphenols and performance: A systematic review and meta-analysis. Sports Med., 2017, 47(8), 1589-1599.
[http://dx.doi.org/10.1007/s40279-017-0675-5] [PMID: 28097488]
[20]
Malaguti, M.; Angeloni, C.; Hrelia, S. Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxid. Med. Cell. Longev., 2013, 2013, 825928.
[http://dx.doi.org/10.1155/2013/825928] [PMID: 23983900]
[21]
de Boer, V.C.; de Goffau, M.C.; Arts, I.C.; Hollman, P.C.; Keijer, J. SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech. Ageing Dev., 2006, 127(7), 618-627.
[http://dx.doi.org/10.1016/j.mad.2006.02.007] [PMID: 16603228]
[22]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[23]
Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules, 2019, 24(19), 3626.
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[24]
Jones, H.S.; Gordon, A.; Magwenzi, S.G.; Naseem, K.; Atkin, S.L.; Courts, F.L. The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Mol. Nutr. Food Res., 2016, 60(4), 787-797.
[http://dx.doi.org/10.1002/mnfr.201500751] [PMID: 26778209]
[25]
Shen, M.Y.; Hsiao, G.; Liu, C.L.; Fong, T.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br. J. Haematol., 2007, 139(3), 475-485.
[http://dx.doi.org/10.1111/j.1365-2141.2007.06788.x] [PMID: 17868048]
[26]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[27]
Mehanny, M.; Hathout, R.M.; Geneidi, A.S.; Mansour, S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J. Control. Release, 2016, 225, 1-30.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.018] [PMID: 26778694]
[28]
Chen, L.; Teng, H.; Cao, H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol., 2019, 127, 182-187.
[http://dx.doi.org/10.1016/j.fct.2019.03.038] [PMID: 30914352]
[29]
Yang, W.; Tian, Z-K.; Yang, H-X.; Feng, Z-J.; Sun, J-M.; Jiang, H.; Cheng, C.; Ming, Q.L.; Liu, C.M. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 2019, 134, 110824.
[http://dx.doi.org/10.1016/j.fct.2019.110824] [PMID: 31539617]
[30]
Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 626-659.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[31]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin. Cancer Biol., 2017, 46, 205-214.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.010] [PMID: 28673607]
[32]
Hu, J.; Sheng, Y.; Shi, J.; Yu, B.; Yu, Z.; Liao, G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab., 2018, 19(9), 723-738.
[http://dx.doi.org/10.2174/1389200219666171207120643] [PMID: 29219050]
[33]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[34]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[35]
Ajazuddin, S.S.; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[36]
Martins, S.; Costa-Lima, S.; Carneiro, T.; Cordeiro-da-Silva, A.; Souto, E.B.; Ferreira, D.C. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int. J. Pharm., 2012, 430(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.032] [PMID: 22465548]
[37]
Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, 59(1), 161-168.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.005] [PMID: 15567314]
[38]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[39]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[40]
Rajpoot, K. Solid lipid nanoparticles: a promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[41]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[42]
Sharma, G; Thakur, K; Raza, K; Singh, B; Katare, OP Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2017, 34(4), 355-386.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017019047]
[43]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[44]
Lee, S.H.; Jun, B-H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[45]
Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[46]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[47]
Yang, Q.; Liao, J.; Deng, X.; Liang, J.; Long, C.; Xie, C.; Chen, X.; Zhang, L.; Sun, J.; Peng, J.; Chu, B.; Guo, G.; Luo, F.; Qian, Z. Anti-tumor activity and safety evaluation of fisetin-loaded methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles. J. Biomed. Nanotechnol., 2014, 10(4), 580-591.
[http://dx.doi.org/10.1166/jbn.2014.1746] [PMID: 24734510]
[48]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Davis, B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(4), R1071-R1077.
[http://dx.doi.org/10.1152/ajpregu.90925.2008] [PMID: 19211721]
[49]
Bigelman, K.A.; Fan, E.H.; Chapman, D.P.; Freese, E.C.; Trilk, J.L.; Cureton, K.J. Effects of six weeks of quercetin supplementation on physical performance in ROTC cadets. Mil. Med., 2010, 175(10), 791-798.
[http://dx.doi.org/10.7205/MILMED-D-09-00088] [PMID: 20968271]
[50]
Vijayakumar, A.; Baskaran, R.; Jang, Y.S.; Oh, S.H.; Yoo, B.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech, 2017, 18(3), 875-883.
[http://dx.doi.org/10.1208/s12249-016-0573-4] [PMID: 27368922]
[51]
Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.024] [PMID: 27756627]
[52]
Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem., 2017, 167, 36-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.023] [PMID: 27898345]
[53]
Sun, D.; Zhang, W.; Mou, Z.; Chen, Y.; Guo, F.; Yang, E.; Wang, W. Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. ACS Appl. Mater. Interfaces, 2017, 9(11), 10047-10060.
[http://dx.doi.org/10.1021/acsami.7b02380] [PMID: 28240544]
[54]
Abdel-Wahhab, M.A.; Aljawish, A.; El-Nekeety, A.A.; Abdel-Aziem, S.H.; Hassan, N.S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A- contaminated diet. Food Chem. Toxicol., 2017, 99, 209-221.
[http://dx.doi.org/10.1016/j.fct.2016.12.002] [PMID: 27923682]
[55]
Antônio, E.; Khalil, N.M.; Mainardes, R.M. Bovine serum albumin nanoparticles containing quercetin: characterization and antioxidant activity. J. Nanosci. Nanotechnol., 2016, 16(2), 1346-1353.
[http://dx.doi.org/10.1166/jnn.2016.11672] [PMID: 27433585]
[56]
Ma, Y.; Guo, Z.; Wang, X. Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: Roles of androgen, IGF-1, and IGF binding protein-3. J. Sport Health Sci., 2017, 6(4), 474-481.
[http://dx.doi.org/10.1016/j.jshs.2015.12.003] [PMID: 30356644]
[57]
Kumar, A.; Gupta, G.K.; Khedgikar, V.; Gautam, J.; Kushwaha, P.; Changkija, B.; Nagar, G.K.; Gupta, V.; Verma, A.; Dwivedi, A.K.; Chattopadhyay, N.; Mishra, P.R.; Trivedi, R. In Vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: A study in ovariectomized rat model. Eur. J. Pharm. Biopharm., 2012, 82(3), 508-517.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.001] [PMID: 22926146]
[58]
Chuang, Y-L.; Fang, H-W.; Ajitsaria, A.; Chen, K-H.; Su, C-Y.; Liu, G-S.; Tseng, C.L. Development of kaempferol-loaded gelatin nanoparticles for the treatment of corneal neovascularization in mice. Pharmaceutics, 2019, 11(12), 635.
[http://dx.doi.org/10.3390/pharmaceutics11120635] [PMID: 31795237]
[59]
Li, Z.; Liu, Y.; Huang, X.; Hu, C.; Wang, H.; Yuan, L.; Brash, J.L.; Chen, H. One-step preparation of gold nanovectors using folate modified polyethylenimine and their use in target-specific gene transfection. Colloids Surf. B Biointerfaces, 2019, 177, 306-312.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.011] [PMID: 30771582]
[60]
Govindaraju, S.; Rengaraj, A.; Arivazhagan, R.; Huh, Y-S.; Yun, K. Curcumin-conjugated gold clusters for bioimaging and anticancer applications. Bioconjug. Chem., 2018, 29(2), 363-370.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00683] [PMID: 29323877]
[61]
Govindaraju, S.; Roshini, A.; Lee, M-H.; Yun, K. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int. J. Nanomedicine, 2019, 14, 5147-5157.
[http://dx.doi.org/10.2147/IJN.S209773] [PMID: 31371953]
[62]
Sechi, M.; Syed, D.N.; Pala, N.; Mariani, A.; Marceddu, S.; Brunetti, A.; Mukhtar, H.; Sanna, V. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater. Sci. Eng. C, 2016, 68, 594-602.
[http://dx.doi.org/10.1016/j.msec.2016.06.042] [PMID: 27524059]
[63]
Ghosh, P.; Singha Roy, A.; Chaudhury, S.; Jana, S.K.; Chaudhury, K.; Dasgupta, S. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. Int. J. Biol. Macromol., 2016, 86, 408-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.082] [PMID: 26820351]
[64]
Chen, Y.; Wu, Q.; Song, L.; He, T.; Li, Y.; Li, L.; Su, W.; Liu, L.; Qian, Z.; Gong, C. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl. Mater. Interfaces, 2015, 7(1), 534-542.
[http://dx.doi.org/10.1021/am5066893] [PMID: 25495760]
[65]
Mignet, N.; Seguin, J.; Ramos Romano, M.; Brullé, L.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Chabot, G.G. Development of a liposomal formulation of the natural flavonoid fisetin. Int. J. Pharm., 2012, 423(1), 69-76.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.066] [PMID: 21571054]
[66]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[67]
Zhang, S.; Zhao, H. Preparation and properties of zein-rutin composite nanoparticle/corn starch films. Carbohydr. Polym., 2017, 169, 385-392.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.044] [PMID: 28504159]
[68]
Oliveira, C.A.; Peres, D.D.; Graziola, F.; Chacra, N.A.; Araújo, G.L.; Flórido, A.C.; Mota, J.; Rosado, C.; Velasco, M.V.; Rodrigues, L.M.; Fernandes, A.S.; Baby, A.R. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur. J. Pharm. Sci., 2016, 81, 1-9.
[http://dx.doi.org/10.1016/j.ejps.2015.09.016] [PMID: 26428697]
[69]
Gul, A.; Kunwar, B.; Mazhar, M.; Faizi, S.; Ahmed, D.; Shah, M.R.; Simjee, S.U. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int. Immunopharmacol., 2018, 59, 310-317.
[http://dx.doi.org/10.1016/j.intimp.2018.04.017] [PMID: 29679855]
[70]
Ramaswamy, S.; Dwarampudi, L.P.; Kadiyala, M.; Kuppuswamy, G.; Veera Venkata Satyanarayana Reddy, K.; Kumar, C.K.A.; Paranjothy, M. Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles. Int. J. Biol. Macromol., 2017, 104(Pt B), 1807-1812.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.112] [PMID: 28668610]
[71]
Wang, Y.; Liu, S.; Dong, W.; Qu, X.; Huang, C.; Yan, T.; Du, J. Combination of hesperetin and platinum enhances anticancer effect on lung adenocarcinoma. Biomed. Pharmacother., 2019, 113, 108779.
[http://dx.doi.org/10.1016/j.biopha.2019.108779] [PMID: 30889488]
[72]
Gokuladhas, K.; Jayakumar, S.; Rajan, B.; Elamaran, R.; Pramila, C.S.; Gopikrishnan, M.; Tamilarasi, S.; Devaki, T. Exploring the potential role of chemopreventive agent, hesperetin conjugated pegylated gold nanoparticles in diethylnitrosamine-induced hepatocellular carcinoma in male wistar albino rats. Indian J. Clin. Biochem., 2016, 31(2), 171-184.
[http://dx.doi.org/10.1007/s12291-015-0520-2] [PMID: 27069325]
[73]
Paramita, P.; Sethu, S.N.; Subhapradha, N.; Ragavan, V.; Ilangovan, R.; Balakrishnan, A.; Srinivasan, N.; Murugesan, R.; Moorthi, A. Neuro-protective effects of nano-formulated hesperetin in a traumatic brain injury model of Danio rerio. Drug Chem. Toxicol., 2020, 1-8.
[http://dx.doi.org/10.1080/01480545.2020.1722690] [PMID: 32050810]
[74]
Fuior, E.V.; Deleanu, M.; Constantinescu, C.A.; Rebleanu, D.; Voicu, G.; Simionescu, M.; Calin, M. Functional role of VCAM-1 targeted flavonoid-loaded lipid nanoemulsions in reducing endothelium inflammation. Pharmaceutics, 2019, 11(8), 391.
[http://dx.doi.org/10.3390/pharmaceutics11080391] [PMID: 31382634]
[75]
Maity, S.; Mukhopadhyay, P.; Kundu, P.P.; Chakraborti, A.S. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-An in vitro and In Vivo approach. Carbohydr. Polym., 2017, 170, 124-132.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066] [PMID: 28521977]
[76]
Wang, Y.; Wang, S.; Firempong, C.K.; Zhang, H.; Wang, M.; Zhang, Y.; Zhu, Y.; Yu, J.; Xu, X. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech, 2017, 18(3), 586-594.
[http://dx.doi.org/10.1208/s12249-016-0537-8] [PMID: 27151135]
[77]
Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci., 2020, 27(1), 500-517.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.008] [PMID: 31889876]
[78]
Yang, F.; Hu, S.; Sheng, X.; Liu, Y. Naringenin loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in hepatic fibrosis. Biomed. Microdevices, 2020, 22(4), 68.
[http://dx.doi.org/10.1007/s10544-020-00524-1] [PMID: 32955605]
[79]
Chang, C-Y.; Wang, M-C.; Miyagawa, T.; Chen, Z-Y.; Lin, F-H.; Chen, K-H.; Liu, G.S.; Tseng, C.L. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int. J. Nanomedicine, 2016, 12, 279-294.
[http://dx.doi.org/10.2147/IJN.S114754] [PMID: 28115846]
[80]
Liu, H.; Yu, L.; Dong, X.; Sun, Y. Synergistic effects of negatively charged hydrophobic nanoparticles and (-)-epigallocatechin-3- gallate on inhibiting amyloid β-protein aggregation. J. Colloid Interface Sci., 2017, 491, 305-312.
[http://dx.doi.org/10.1016/j.jcis.2016.12.038] [PMID: 28049055]
[81]
Liang, R.; Chen, L.; Yokoyama, W.; Williams, P.A.; Zhong, F. Niosomes consisting of tween-60 and cholesterol improve the chemical stability and antioxidant activity of (-)-epigallocatechin gallate under intestinal tract conditions. J. Agric. Food Chem., 2016, 64(48), 9180-9188.
[http://dx.doi.org/10.1021/acs.jafc.6b04147] [PMID: 27933988]
[82]
Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther., 2016, 10, 3519-3528.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[83]
Radhakrishnan, R.; Kulhari, H.; Pooja, D.; Gudem, S.; Bhargava, S.; Shukla, R.; Sistla, R. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem. Phys. Lipids, 2016, 198, 51-60.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.05.006] [PMID: 27234272]
[84]
Cai, L.; Yu, R.; Hao, X.; Ding, X. Folate Receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res. Lett., 2017, 12(1), 509.
[http://dx.doi.org/10.1186/s11671-017-2253-z] [PMID: 28853026]
[85]
Kim, J.T.; Barua, S.; Kim, H.; Hong, S-C.; Yoo, S-Y.; Jeon, H.; Cho, Y.; Gil, S.; Oh, K.; Lee, J. Absorption study of genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes. Biomol. Ther. (Seoul), 2017, 25(4), 452-459.
[http://dx.doi.org/10.4062/biomolther.2017.095] [PMID: 28605834]
[86]
Stolarczyk, E.U.; Stolarczyk, K.; Łaszcz, M.; Kubiszewski, M.; Maruszak, W.; Olejarz, W.; Bryk, D. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur. J. Pharm. Sci., 2017, 96, 176-185.
[http://dx.doi.org/10.1016/j.ejps.2016.09.019] [PMID: 27644892]
[87]
Guo, Y.; Luo, J.; Tan, S.; Otieno, B.O.; Zhang, Z. The applications of vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci., 2013, 49(2), 175-186.
[http://dx.doi.org/10.1016/j.ejps.2013.02.006] [PMID: 23485439]
[88]
Wu, B.; Liang, Y.; Tan, Y.; Xie, C.; Shen, J.; Zhang, M.; Liu, X.; Yang, L.; Zhang, F.; Liu, L.; Cai, S.; Huai, D.; Zheng, D.; Zhang, R.; Zhang, C.; Chen, K.; Tang, X.; Sui, X. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Mater. Sci. Eng. C, 2016, 59, 792-800.
[http://dx.doi.org/10.1016/j.msec.2015.10.087] [PMID: 26652434]
[89]
Zhang, H.; Liu, G.; Zeng, X.; Wu, Y.; Yang, C.; Mei, L.; Wang, Z.; Huang, L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomedicine, 2015, 10, 2461-2473.
[PMID: 25848264]
[90]
Dev, A; Sardoiwala, MN; Kushwaha, AC; Karmakar, S; Choudhury, SR Genistein nanoformulation promotes selective apoptosis in oral squamous cell carcinoma through repression of 3PK-EZH2 signalling pathway. Phytomed. Intern. J. Phytother.Phytopharmacol., 2021, 80, 153386.
[91]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
[92]
Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S-O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate hdac-akt activities controlling proliferation and activate p53-ros crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[93]
Sun, D.; Li, N.; Zhang, W.; Zhao, Z.; Mou, Z.; Huang, D.; Liu, J.; Wang, W. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B Biointerfaces, 2016, 148, 116-129.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.052] [PMID: 27591943]
[94]
Sabzichi, M.; Hamishehkar, H.; Ramezani, F.; Sharifi, S.; Tabasinezhad, M.; Pirouzpanah, M.; Ghanbari, P.; Samadi, N. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac. J. Cancer Prev., 2014, 15(13), 5311-5316.
[http://dx.doi.org/10.7314/APJCP.2014.15.13.5311] [PMID: 25040994]
[95]
Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.M.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and In Vivo anticancer activity. Cancer Prev. Res. (Phila.), 2014, 7(1), 65-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0230] [PMID: 24403290]
[96]
Luo, L.B.; Li, J.B.; Chen, J. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int. J. Nanomedicine, 2012, 3951.
[http://dx.doi.org/10.2147/IJN.S33670]
[97]
Tzeng, C-W.; Yen, F-L.; Wu, T-H.; Ko, H-H.; Lee, C-W.; Tzeng, W-S.; Lin, C.C. Enhancement of dissolution and antioxidant activity of kaempferol using a nanoparticle engineering process. J. Agric. Food Chem., 2011, 59(9), 5073-5080.
[http://dx.doi.org/10.1021/jf200354y] [PMID: 21417334]
[98]
Kadari, A.; Gudem, S.; Kulhari, H.; Bhandi, M.M.; Borkar, R.M.; Kolapalli, V.R.M.; Sistla, R. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv., 2017, 24(1), 224-232.
[http://dx.doi.org/10.1080/10717544.2016.1245366] [PMID: 28156161]
[99]
Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int. J. Pharm., 2012, 427(2), 452-459.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.025] [PMID: 22387278]
[100]
Bhattacherjee, A.; Chakraborti, A.S. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Application for targeted drug delivery in experimental diabetes (Part 2). Int. J. Pharm., 2017, 528(1-2), 8-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.058] [PMID: 28559218]
[101]
Menezes, P.D.; Frank, L.A.; Lima, B.D.; de Carvalho, Y.M.; Serafini, M.R.; Quintans-Júnior, L.J.; Pohlmann, A.R.; Guterres, S.S.; Araújo, A.A. Hesperetin-loaded lipid-core nanocapsules in polyamide: A new textile formulation for topical drug delivery. Int. J. Nanomedicine, 2017, 12, 2069-2079.
[http://dx.doi.org/10.2147/IJN.S124564] [PMID: 28352176]
[102]
Joshi, H.; Hegde, A.R.; Shetty, P.K.; Gollavilli, H.; Managuli, R.S.; Kalthur, G.; Mutalik, S. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and In Vivo evaluations. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 69-81.
[http://dx.doi.org/10.1111/phpp.12335] [PMID: 28767160]
[103]
Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Hao, Y.; Qiu, Y.; Zhao, W.; Wu, C. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther., 2016, 10, 911-925.
[PMID: 27041995]
[104]
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901.
[http://dx.doi.org/10.3390/molecules21070901] [PMID: 27409600]
[105]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[106]
Esfanjani, A.F.; Jafari, S.M. Nanoencapsulation of phenolic Compounds and antioxidants. Nanoencapsulation of food bioactive ingredients; Elsevier, 2017, pp. 63-101.
[http://dx.doi.org/10.1016/B978-0-12-809740-3.00002-7]
[107]
Mady, F.M.; Shaker, M.A. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomedicine, 2017, 12, 7405-7417.
[http://dx.doi.org/10.2147/IJN.S147740] [PMID: 29066891]
[108]
Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf. B Biointerfaces, 2013, 110, 313-320.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.039] [PMID: 23732810]
[109]
Neamatallah, T.; El-Shitany, N.; Abbas, A.; Eid, B.G.; Harakeh, S.; Ali, S.; Mousa, S. Nano ellagic acid counteracts cisplatin-induced upregulation in oat1 and oat3: a possible nephroprotection mechanism. Molecules, 2020, 25(13), 3031.
[http://dx.doi.org/10.3390/molecules25133031] [PMID: 32630784]
[110]
Mady, F.M.; Ibrahim, S.R. Cyclodextrin-based nanosponge for improvement of solubility and oral bioavailability of Ellagic acid. Pak. J. Pharm. Sci., 2018, 31(5(Supplementary)), 2069-2076.
[PMID: 30393214]
[111]
Shah, S.T.A.; A Yehya, W.; Saad, O.; Simarani, K.; Chowdhury, Z.; A Alhadi, A.; Al-Ani, L.A. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials (Basel), 2017, 7(10), 306.
[http://dx.doi.org/10.3390/nano7100306] [PMID: 28981476]
[112]
Chen, Y-J.; Lee, Y-C.; Huang, C-H.; Chang, L-S. Gallic acid- capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol. Appl. Pharmacol., 2016, 310, 98-107.
[http://dx.doi.org/10.1016/j.taap.2016.09.007] [PMID: 27634460]
[113]
Mahboob, T.; Nawaz, M.; de Lourdes Pereira, M.; Tian-Chye, T.; Samudi, C.; Sekaran, S.D.; Wiart, C.; Nissapatorn, V. PLGA nanoparticles loaded with Gallic acid- a constituent of Leea indica against Acanthamoeba triangularis. Sci. Rep., 2020, 10(1), 8954.
[http://dx.doi.org/10.1038/s41598-020-65728-0] [PMID: 32488154]
[114]
Dehghani, M.A.; Shakiba Maram, N.; Moghimipour, E.; Khorsandi, L.; Atefi Khah, M.; Mahdavinia, M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165911.
[http://dx.doi.org/10.1016/j.bbadis.2020.165911] [PMID: 32768679]
[115]
Feng, Y.; Sun, C.; Yuan, Y.; Zhu, Y.; Wan, J.; Firempong, C.K.; Omari-Siaw, E.; Xu, Y.; Pu, Z.; Yu, J.; Xu, X. Enhanced oral bioavailability and In Vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int. J. Pharm., 2016, 501(1-2), 342-349.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.081] [PMID: 26861689]
[116]
Bullo, S.; Buskaran, K.; Baby, R.; Dorniani, D.; Fakurazi, S.; Hussein, M.Z. Dual drugs anticancer nanoformulation using graphene oxide-peg as nanocarrier for protocatechuic acid and chlorogenic acid. Pharm. Res., 2019, 36(6), 91.
[http://dx.doi.org/10.1007/s11095-019-2621-8] [PMID: 31020429]
[117]
Kavi Rajan, R.; Hussein, M.Z.; Fakurazi, S.; Yusoff, K.; Masarudin, M.J. Increased ROS scavenging and antioxidant efficiency of chlorogenic acid compound delivered via a chitosan nanoparticulate system for efficient in vitro visualization and accumulation in human renal adenocarcinoma cells. Int. J. Mol. Sci., 2019, 20(19), 4667.
[http://dx.doi.org/10.3390/ijms20194667] [PMID: 31547100]
[118]
Chmielowski, R.A.; Abdelhamid, D.S.; Faig, J.J.; Petersen, L.K.; Gardner, C.R.; Uhrich, K.E.; Joseph, L.B.; Moghe, P.V. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater., 2017, 57, 85-94.
[http://dx.doi.org/10.1016/j.actbio.2017.05.029] [PMID: 28522412]
[119]
Zhang, Y.; Li, Z.; Zhang, K.; Yang, G.; Wang, Z.; Zhao, J.; Hu, R.; Feng, N. Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles. Int. J. Pharm., 2016, 511(1), 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.131] [PMID: 27374194]
[120]
Lima, IAd.; Khalil, NM.; Tominaga, TT.; Lechanteur, A.; Sarmento, B.; Mainardes, RM. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(sup2), 993-1002.
[121]
Heep, G.; Almeida, A.; Marcano, R.; Vieira, D.; Mainardes, R.M.; Khalil, N.M.; Sarmento, B. Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. Int. J. Biol. Macromol., 2019, 138, 244-251.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.030] [PMID: 31279877]
[122]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[123]
Cui, D.; Yan, C.; Miao, J.; Zhang, X.; Chen, J.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater. Sci. Eng. C, 2018, 90, 104-112.
[http://dx.doi.org/10.1016/j.msec.2018.04.048] [PMID: 29853073]
[124]
Gopalakrishnan, L.; Ramana, L.N.; Sethuraman, S.; Krishnan, U.M. Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agent. Carbohydr. Polym., 2014, 111, 215-221.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.093] [PMID: 25037345]
[125]
de Cristo Soares Alves, A.; Mainardes, R.M.; Khalil, N.M. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater. Sci. Eng. C, 2016, 60, 126-134.
[http://dx.doi.org/10.1016/j.msec.2015.11.014] [PMID: 26706515]
[126]
Rattanata, N.; Daduang, S.; Wongwattanakul, M.; Leelayuwat, C.; Limpaiboon, T.; Lekphrom, R.; Sandee, A.; Boonsiri, P.; Chio-Srichan, S.; Daduang, J. Gold nanoparticles enhance the anticancer activity of gallic acid against cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev., 2015, 16(16), 7143-7147.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7143] [PMID: 26514503]
[127]
Choi, K-H.; Nam, K.C.; Lee, S-Y.; Cho, G.; Jung, J-S.; Kim, H-J.; Park, B.J. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized zno nanoparticles. Nanomaterials (Basel), 2017, 7(6), 148.
[http://dx.doi.org/10.3390/nano7060148] [PMID: 28621707]
[128]
Wu, W.; Lee, S-Y.; Wu, X.; Tyler, J.Y.; Wang, H.; Ouyang, Z.; Park, K.; Xu, X.M.; Cheng, J.X. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials, 2014, 35(7), 2355-2364.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.074] [PMID: 24332460]
[129]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[130]
Yang, X.; Li, Z.; Wu, Q.; Chen, S.; Yi, C.; Gong, C. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv., 2017, 24(1), 1526-1536.
[http://dx.doi.org/10.1080/10717544.2017.1384863] [PMID: 28994313]
[131]
Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1471-1482.
[http://dx.doi.org/10.1080/21691401.2017.1373659] [PMID: 28884598]
[132]
Meena, R.; Kumar, S.; Kumar, R.; Gaharwar, U.S.; Rajamani, P. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed. Pharmacother., 2017, 94, 944-954.
[http://dx.doi.org/10.1016/j.biopha.2017.07.151] [PMID: 28810532]
[133]
Niazvand, F.; Khorsandi, L.; Abbaspour, M.; Orazizadeh, M.; Varaa, N.; Maghzi, M.; Ahmadi, K. Curcumin-loaded poly lactic- co-glycolic acid nanoparticles effects on mono-iodoacetate -induced osteoarthritis in rats. Vet. Res. Forum, 2017, 8(2), 155-161.
[PMID: 28785392]
[134]
Hashemian, M.; Anissian, D.; Ghasemi-Kasman, M.; Akbari, A.; Khalili-Fomeshi, M.; Ghasemi, S.; Ahmadi, F.; Moghadamnia, A.A.; Ebrahimpour, A. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 462-471.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.025] [PMID: 28778407]
[135]
Kong, Z-L.; Kuo, H-P.; Johnson, A.; Wu, L-C.; Chang, K.L.B. Curcumin-loaded mesoporous silica nanoparticles markedly enhanced cytotoxicity in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2019, 20(12), 2918.
[http://dx.doi.org/10.3390/ijms20122918] [PMID: 31207976]
[136]
Fan, S.; Zheng, Y.; Liu, X.; Fang, W.; Chen, X.; Liao, W.; Jing, X.; Lei, M.; Tao, E.; Ma, Q.; Zhang, X.; Guo, R.; Liu, J. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv., 2018, 25(1), 1091-1102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[137]
Esmaili, Z.; Bayrami, S.; Dorkoosh, F.A.; Akbari Javar, H.; Seyedjafari, E.; Zargarian, S.S.; Haddadi-Asl, V. Development and characterization of electrosprayed nanoparticles for encapsulation of Curcumin. J. Biomed. Mater. Res. A, 2018, 106(1), 285-292.
[http://dx.doi.org/10.1002/jbm.a.36233] [PMID: 28891231]
[138]
Boarescu, P-M.; Chirilă, I.; Bulboacă, A.E.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bolboacă, S.D. Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid. Med. Cell. Longev., 2019, 2019, 7847142.
[http://dx.doi.org/10.1155/2019/7847142] [PMID: 31205590]
[139]
Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem., 2018, 239, 1210-1218.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.075] [PMID: 28873542]
[140]
Li, C.; Zhang, Y.; Su, T.; Feng, L.; Long, Y.; Chen, Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int. J. Nanomedicine, 2012, 7, 5995-6002.
[http://dx.doi.org/10.2147/IJN.S38043] [PMID: 23233804]
[141]
Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125(1), 1-8.
[http://dx.doi.org/10.1002/ijc.24336] [PMID: 19326431]
[142]
Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 2016, 3128951.
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[143]
Pannu, N.; Bhatnagar, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251.
[http://dx.doi.org/10.1016/j.biopha.2018.11.075] [PMID: 30551481]
[144]
Vervandier-Fasseur, D.; Latruffe, N. The potential use of resveratrol for cancer prevention. Molecules, 2019, 24(24), 4506.
[http://dx.doi.org/10.3390/molecules24244506] [PMID: 31835371]
[145]
Amirazodi, F.; Mehrabi, A.; Amirazodi, M.; Parsania, S.; Rajizadeh, M.A.; Esmaeilpour, K. The combination effects of resveratrol and swimming hiit exercise on novel object recognition and open-field tasks in aged rats. Exp. Aging Res., 2020, 46(4), 336-358.
[http://dx.doi.org/10.1080/0361073X.2020.1754015] [PMID: 32324489]
[146]
Geng, T.; Zhao, X.; Ma, M.; Zhu, G.; Yin, L. Resveratrol-loaded albumin nanoparticles with prolonged blood circulation and improved biocompatibility for highly effective targeted pancreatic tumor therapy. Nanoscale Res. Lett., 2017, 12(1), 437.
[http://dx.doi.org/10.1186/s11671-017-2206-6] [PMID: 28673056]
[147]
de Oliveira, M.T.P.; de Sá Coutinho, D.; Tenório de Souza, É.; Stanisçuaski Guterres, S.; Pohlmann, A.R.; Silva, P.M.R.; Martins, M.A.; Bernardi, A. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. Int. J. Nanomedicine, 2019, 14, 5215-5228.
[http://dx.doi.org/10.2147/IJN.S200666] [PMID: 31371957]
[148]
Zhang, L.; Zhu, K.; Zeng, H.; Zhang, J.; Pu, Y.; Wang, Z.; Zhang, T.; Wang, B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int. J. Nanomedicine, 2019, 14, 6061-6071.
[http://dx.doi.org/10.2147/IJN.S211130] [PMID: 31534336]
[149]
Nassir, A.M.; Shahzad, N.; Ibrahim, I.A.A.; Ahmad, I.; Md, S.; Ain, M.R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J., 2018, 26(6), 876-885.
[http://dx.doi.org/10.1016/j.jsps.2018.03.009] [PMID: 30202231]
[150]
Wan, S.; Zhang, L.; Quan, Y.; Wei, K. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R. Soc. Open Sci., 2018, 5(11), 181457.
[http://dx.doi.org/10.1098/rsos.181457] [PMID: 30564426]
[151]
Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: Preparation, characterization, physicochemical stability, and formation mechanism. Int. J. Biol. Macromol., 2020, 158, 461-470.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.128] [PMID: 32348858]
[152]
Simonetti, G.; Palocci, C.; Valletta, A.; Kolesova, O.; Chronopoulou, L.; Donati, L.; Di Nitto, A.; Brasili, E.; Tomai, P.; Gentili, A.; Pasqua, G. Anti-Candida biofilm activity of pterostilbene or crude extract from non-fermented grape pomace entrapped in biopolymeric nanoparticles. Molecules, 2019, 24(11), 2070.
[http://dx.doi.org/10.3390/molecules24112070] [PMID: 31151290]
[153]
Romio, M.; Morgese, G.; Trachsel, L.; Babity, S.; Paradisi, C.; Brambilla, D.; Benetti, E.M. Poly(2-oxazoline)-pterostilbene block copolymer nanoparticles for dual-anticancer drug delivery. Biomacromolecules, 2018, 19(1), 103-111.
[http://dx.doi.org/10.1021/acs.biomac.7b01279] [PMID: 29216713]
[154]
Dhanapal, J.; Ravindrran, M.B.; Baskar, S.K. Toxic effects of aflatoxin B1 on embryonic development of zebrafish (Danio rerio): potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles. Anticancer. Agents Med. Chem., 2015, 15(2), 248-257.
[http://dx.doi.org/10.2174/1871520614666141016165057] [PMID: 25322988]
[155]
A. A. Aljabali, A.; Bakshi H, A.; Hakkim F, L.; Haggag, YA.; Al- Batanyeh K, M.; Al Zoubi M, S. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and hif-1α. Cancers (Basel), 2020, 12(1), 113.
[http://dx.doi.org/10.3390/cancers12010113]
[156]
Tang, C.; Wang, C.; Zhang, Y.; Xue, L.; Li, Y.; Ju, C.; Zhang, C. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett., 2019, 19(7), 4470-4477.
[http://dx.doi.org/10.1021/acs.nanolett.9b01282] [PMID: 31244234]
[157]
Yadav, A.; Sunkaria, A.; Singhal, N.; Sandhir, R. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem. Int., 2018, 112, 239-254.
[http://dx.doi.org/10.1016/j.neuint.2017.08.001] [PMID: 28782592]
[158]
Peñalva, R.; Morales, J.; González-Navarro, C.J.; Larrañeta, E.; Quincoces, G.; Peñuelas, I.; Irache, J.M. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int. J. Mol. Sci., 2018, 19(9), 2816.
[http://dx.doi.org/10.3390/ijms19092816] [PMID: 30231546]
[159]
Xiong, W.; Ren, C.; Li, J.; Li, B. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Food Funct., 2018, 9(7), 3788-3797.
[http://dx.doi.org/10.1039/C8FO00300A] [PMID: 29922792]
[160]
Liu, K-F.; Liu, Y-X.; Dai, L.; Li, C-X.; Wang, L.; Liu, J.; Lei, J.D. A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody-4arm-polyethylene glycol-pterostilbene conjugates for co-delivery of anticancer drugs. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(4), 656-665.
[http://dx.doi.org/10.1039/C7TB02485A] [PMID: 32254494]
[161]
Zhang, Y.; Shang, Z.; Gao, C.; Du, M.; Xu, S.; Song, H.; Liu, T. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech, 2014, 15(4), 1000-1008.
[http://dx.doi.org/10.1208/s12249-014-0129-4] [PMID: 24831090]
[162]
Dhanapal, J; Balaraman Ravindrran, M. Chitosan/poly (lactic acid)-coated piceatannol nanoparticles exert an in vitro apoptosis activity on liver, lung and breast cancer cell lines. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(sup1), 274-282.
[163]
Tambuwala, M.M.; Khan, M.N.; Thompson, P.; McCarron, P.A. Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis. Drug Deliv. Transl. Res., 2019, 9(1), 14-24.
[http://dx.doi.org/10.1007/s13346-018-00597-9] [PMID: 30430451]
[164]
Rasouli, H.; Farzaei, M.H.; Mansouri, K.; Mohammadzadeh, S.; Khodarahmi, R. Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? a literature review. Molecules, 2016, 21(9), 1104.
[http://dx.doi.org/10.3390/molecules21091104] [PMID: 27563858]
[165]
Carletto, B.; Berton, J.; Ferreira, T.N.; Dalmolin, L.F.; Paludo, K.S.; Mainardes, R.M.; Farago, P.V.; Favero, G.M. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf. B Biointerfaces, 2016, 144, 65-72.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.001] [PMID: 27070053]
[166]
Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of quercetin-loaded nanoparticles on mcf-7 human breast cancer cells. Medicina (Kaunas), 2019, 55(4), 114.
[http://dx.doi.org/10.3390/medicina55040114] [PMID: 31013662]
[167]
Srinivas Raghavan, B.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem., 2015, 50(11), 1966-1976.
[http://dx.doi.org/10.1016/j.procbio.2015.08.003]
[168]
Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int. J. Biol. Macromol., 2019, 125, 700-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.003] [PMID: 30521927]
[169]
Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials (Basel), 2020, 10(4), 718.
[http://dx.doi.org/10.3390/nano10040718] [PMID: 32290154]
[170]
Chavva, S.R.; Deshmukh, S.K.; Kanchanapally, R.; Tyagi, N.; Coym, J.W.; Singh, A.P.; Singh, S. Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: potential synergistic interactions. Nanomaterials (Basel), 2019, 9(3), 396.
[http://dx.doi.org/10.3390/nano9030396] [PMID: 30857226]
[171]
Hassani, A.; Azarian, M.M.S.; Ibrahim, W.N.; Hussain, S.A. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci. Rep., 2020, 10(1), 17808.
[http://dx.doi.org/10.1038/s41598-020-71175-8] [PMID: 33082415]
[172]
Chang, C.; Zhang, L.; Miao, Y.; Fang, B.; Yang, Z. Anticancer and apoptotic-inducing effects of rutin-chitosan nanoconjugates in triple negative breast cancer cells. J. Cluster Sci., 2020, 1-10.
[173]
Goorbandi, R.G.; Mohammadi, M.R.; Malekzadeh, K. Synthesizing efficacious genistein in conjugation with superparamagnetic Fe 3 O 4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomater. Res., 2020, 24(1), 1-13.
[174]
Ávila-Gálvez, M.Á.; García-Villalba, R.; Martínez-Díaz, F.; Ocaña-Castillo, B.; Monedero-Saiz, T.; Torrecillas-Sánchez, A.; Abellán, B.; González-Sarrías, A.; Espín, J.C. Metabolic profiling of dietary polyphenols and methylxanthines in normal and malignant mammary tissues from breast cancer patients. Mol. Nutr. Food Res., 2019, 63(9), e1801239.
[http://dx.doi.org/10.1002/mnfr.201801239] [PMID: 30690879]
[175]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[176]
Bayet-Robert, M.; Kwiatkowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther., 2010, 9(1), 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[177]
Kanai, M.; Yoshimura, K.; Asada, M.; Imaizumi, A.; Suzuki, C.; Matsumoto, S.; Nishimura, T.; Mori, Y.; Masui, T.; Kawaguchi, Y.; Yanagihara, K.; Yazumi, S.; Chiba, T.; Guha, S.; Aggarwal, B.B. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol., 2011, 68(1), 157-164.
[http://dx.doi.org/10.1007/s00280-010-1470-2] [PMID: 20859741]
[178]
Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[179]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), E552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[180]
Singh, C.K.; Siddiqui, I.A.; El-Abd, S.; Mukhtar, H.; Ahmad, N. Combination chemoprevention with grape antioxidants. Mol. Nutr. Food Res., 2016, 60(6), 1406-1415.
[http://dx.doi.org/10.1002/mnfr.201500945] [PMID: 26829056]
[181]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[182]
Du, Q.; Hu, B.; An, H-M.; Shen, K-P.; Xu, L.; Deng, S.; Wei, M.M. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol. Rep., 2013, 29(5), 1851-1858.
[http://dx.doi.org/10.3892/or.2013.2310] [PMID: 23446753]
[183]
Masuelli, L.; Di Stefano, E.; Fantini, M.; Mattera, R.; Benvenuto, M.; Marzocchella, L.; Sacchetti, P.; Focaccetti, C.; Bernardini, R.; Tresoldi, I.; Izzi, V.; Mattei, M.; Frajese, G.V.; Lista, F.; Modesti, A.; Bei, R. Resveratrol potentiates the in vitro and In Vivo anti-tumoral effects of curcumin in head and neck carcinomas. Oncotarget, 2014, 5(21), 10745-10762.
[http://dx.doi.org/10.18632/oncotarget.2534] [PMID: 25296980]
[184]
Sanna, V.; Pala, N.; Dessì, G.; Manconi, P.; Mariani, A.; Dedola, S.; Rassu, M.; Crosio, C.; Iaccarino, C.; Sechi, M. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int. J. Nanomedicine, 2014, 9, 4935-4951.
[PMID: 25364251]
[185]
Xiang, J; Li, Y; Zhang, Y; Wang, G; Xu, H; Zhou, Z Polyphenol- cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. Journal of controlled release : official journal of the Controlled Release Society, 2020.
[186]
Dwivedi, G.R.; Sanchita, P.; Singh, D.P.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Nano Particles: Emerging warheads against bacterial superbugs. Curr. Top. Med. Chem., 2016, 16(18), 1963-1975.
[http://dx.doi.org/10.2174/1568026616666160215154556] [PMID: 26876525]
[187]
Villa, C.H.; Anselmo, A.C.; Mitragotri, S.; Muzykantov, V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 88-103.
[http://dx.doi.org/10.1016/j.addr.2016.02.007] [PMID: 26941164]
[188]
Saralkar, P.; Dash, A.K. Alginate nanoparticles containing curcumin and resveratrol: preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech, 2017, 18(7), 2814-2823.
[http://dx.doi.org/10.1208/s12249-017-0772-7] [PMID: 28397161]
[189]
Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly(Ethylene Glycol)-Polylactide micelles for cancer therapy. Front. Pharmacol., 2018, 9, 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[190]
Singh, A.; Ahmad, I.; Ahmad, S.; Iqbal, Z.; Ahmad, F.J. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev. Ind. Pharm., 2016, 42(9), 1524-1536.
[http://dx.doi.org/10.3109/03639045.2016.1151032] [PMID: 26902951]
[191]
Van De Wier, B.; Koek, G.H.; Bast, A.; Haenen, G.R.M.M. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit. Rev. Food Sci. Nutr., 2017, 57(4), 834-855.
[http://dx.doi.org/10.1080/10408398.2014.952399] [PMID: 25897647]
[192]
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of In Vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[193]
Brown, V.A.; Patel, K.R.; Viskaduraki, M.; Crowell, J.A.; Perloff, M.; Booth, T.D.; Vasilinin, G.; Sen, A.; Schinas, A.M.; Piccirilli, G.; Brown, K.; Steward, W.P.; Gescher, A.J.; Brenner, D.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res., 2010, 70(22), 9003-9011.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2364] [PMID: 20935227]
[194]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[195]
Saha, S.; Mishra, A. A facile preparation of rutin nanoparticles and its effects on controlled growth and morphology of calcium oxalate crystals. J. Cryst. Growth, 2020, 540, 125635.
[http://dx.doi.org/10.1016/j.jcrysgro.2020.125635]
[196]
Ali, S.H.; Sulaiman, G.M.; Al-Halbosiy, M.M.F.; Jabir, M.S.; Hameed, A.H. Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 378-394.
[http://dx.doi.org/10.1080/21691401.2018.1559175] [PMID: 30691314]
[197]
Fan, H.; Zhang, P.; Zhou, L.; Mo, F.; Jin, Z.; Ma, J.; Lin, R.; Liu, Y.; Zhang, J. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharm. Dev. Technol., 2020, 25(5), 547-555.
[http://dx.doi.org/10.1080/10837450.2020.1715427] [PMID: 31928119]
[198]
Ruan, J.; Yang, Y.; Yang, F.; Wan, K.; Fan, D.; Wang, D. Novel oral administrated ellagic acid nanoparticles for enhancing oral bioavailability and anti-inflammatory efficacy. J. Drug Deliv. Sci. Technol., 2018, 46, 215-222.
[http://dx.doi.org/10.1016/j.jddst.2018.05.021]
[199]
Zhao, Y.; Li, D.; Zhu, Z.; Sun, Y. Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke. Rejuvenation Res., 2020, 23(4), 284-292.
[http://dx.doi.org/10.1089/rej.2019.2230] [PMID: 31680647]
[200]
Panwar, R.; Sharma, A.K.; Kaloti, M.; Dutt, D.; Pruthi, V. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Appl. Nanosci., 2016, 6(6), 803-813.
[http://dx.doi.org/10.1007/s13204-015-0502-y]
[201]
Lopresti, A.L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr., 2018, 9(1), 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]