Phytochemical Profiling, Anti-inflammatory, Antioxidant and Antimicrobial Effects of Seven Indian Morinda Species

Article ID: e251121196689 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: The fruits, leaves and roots of Morinda species are used in the treatment of inflammations, cancers, diabetes, psychiatric disorders, bacterial and viral infections. However, no study has been conducted on chemical profiling, anti-inflammatory, antioxidant and antimicrobial potentials of leaves of seven Indian Morinda species.

Aim: The study aimed to investigate the anti-inflammatory, antioxidant and antimicrobial effects of methanol extract of seven Indian Morinda species.

Materials and Methods: The total contents of iridoids, flavonoids, anthraquinone glycosides, triterpenoids, lignans and coumarins from methanol extract of each species were determined by using different established protocols. The anti-inflammatory activity of methanol extracts of each species was evaluated using carrageenan and CFA-induced arthritis in male Wistar albino rats. In vivo, antioxidant activity was determined by estimating the levels of superoxide dismutase, catalase, glutathione and malondialdehyde in liver and kidney homogenates of male Wistar rats. The antimicrobial activity of methanol extracts of all seven species was determined by using the microdilution method against selected microbes.

Results: Different values of total contents of iridoids, flavonoids, anthraquinone glycosides, triterpenoids, lignans, and coumarins were achieved from methanol extract of leaf of M. umbellata, M. jasminoides, M. reticulata, M. parvifolia and M. persicaefolia. The potent anti-inflammatory effect was demonstrated (carrageenan-induced paw oedema model) by methanol extract of leaves of M. umbellata at 50 mg/kg dose. Similarly, M. umbellata methanol extract showed maximum antiarthritic effect against CFA-induced arthritis on the 17th day (p.o.). Maximum SOD levels in liver and kidney homogenates were increased by the methanol extract of M. persicaefolia. The catalase concentration was enhanced by the methanol extract of M. jasminoides. GSH level was raised by the methanol extract of leaves of M. umbellata, but M. royoc reduced the levels of MDA in treated animals. The methanol extract of M. parvifolia leaves displayed maximum antibacterial activity against K. pneumoniae. M. persicaefolia methanol extract showed the strongest antifungal activity against P. chrysogenum.

Conclusion: The methanol extract of leaves of M. jasminoides, M. reticulata, M. parvifolia, M. umbellata and M. persicaefoli showed promising anti-inflammatory, antioxidant and antimicrobial effects on the studied experimental models.

Keywords: Anti-inflammatory activity, morinda species, antioxidant activity, antimicrobial activity, phytochemical profiling.

Graphical Abstract

[1]
Morton, J.F. The ocean-going noni, or Indian Mulberry (Morinda citrifolia, Rubiaceae) and some of its “colorful” relatives. Econ. Bot., 1992, 46, 241-256.
[http://dx.doi.org/10.1007/BF02866623]
[2]
Mabberley, D.J. The Plant-Book, 2nd ed; Cambridge University Press: Cambridge, 1997.
[3]
Hooker, J.D. Flora of British India; L, Reeve, Ed.; London, 1875, pp. 1880-1881.
[http://dx.doi.org/10.5962/bhl.title.54393]
[4]
Wallich, N. A numerical list of dried specimens of plants in the museum of the honl east india company; L, Reeve, Ed.; 1828-1849.
[5]
Pandey, H.C.; Singh, V.K.; Singh, A.K. Prospects of cultivation and utilization of medicinal plants in itanagar; silver jubilee celebration jnu, ayurvedic medicinal plants garden and herberium, pune, CCRAS: New Delhi, 1986.
[6]
Kurz, W.S. Forest Flora of British Burma; Bishen Singh Mahendra Pal Singh: Dehradun, 1974.
[7]
Nair, L.G.; Seeni, S. Rapid clonal multiplication of Morinda umbellata Linn. (Rubiaceae), a medicinal Liana, through cultures of nodes and shoot tips from mature plant. Phytomorphol., 2002, 52, 77-81.
[8]
Abraham, Z.; Bhakuni, D.S.; Garg, H.S.; Goel, A.K.; Mehrotra, B.N.; Patnaik, G.K. Screening of Indian plants for biological activity: Part XII. Indian J. Exp. Biol., 1986, 24(1), 48-68.
[PMID: 3733164]
[9]
Razafimandimbison, S.G.; Bremer, B. Nomenclatural changes and taxonomic notes in the tribe Morindeae (Rubiaceae). Adansonia Sér., 2011, 36, 283-309.
[http://dx.doi.org/10.5252/a2011n2a13]
[10]
Duke, J.A.; Bogenschutz-Godwin, M.J.; Ottesen, A.R. Duke’s Handbook of Medicinal Plants of Latin America; CRC Press: Boca Raton, 2009.
[11]
Chanfrau, R.; Vega Montalvo, R.; Penichet Guerra, M. Characterization of Morinda royoc L. Extracts for its use as raw material to prepare food supplements. Alimentaria, 1999, 302, 47-52.
[12]
Johansson, J.T. The genus Morinda (Morindeae, Rubioideae, Rubiaceae) in New Caledonia: Taxonomy and phytogeny. Opera Bot., 1994, 122, 1-67.
[http://dx.doi.org/10.1111/j.1756-1051.1994.tb00630.x]
[13]
Kang, J.; Zhang, P.; Gao, Z.; Zhang, J.; Yan, Z.; Wang, H.; Chen, R. Naphthohydroquinones, naphthoquinones, anthraquinones, and a naphthohydroquinone dimer isolated from the aerial parts of Morinda parvifolia and their cytotoxic effects through up-regulation of p53. Phytochemistry, 2016, 130, 144-151.
[http://dx.doi.org/10.1016/j.phytochem.2016.04.001] [PMID: 27298278]
[14]
Nair, R.R.; Gangaprasad, A. GC-MS analysis of root methanolic extract of Gynochthodes ridsdalei Razafim. & B. bremer, an endemic, endangered species of southern Western Ghats of India. Plant Sci. Today, 2018, 5, 64-67.
[http://dx.doi.org/10.14719/pst.2018.5.2.384]
[15]
Nair, R.R.; Kavitha, M.; Thilaga, S.; Doss, G. Conservation and in vitro multiplication of highly endangered Indian traditional medicinal plant (Morinda reticulata Gamble) through nodal explants. Plant Knowledge J., 2012, 1, 46-51.
[16]
Xavier, T.F.; Kannan, M.; Lija, L.; Auxillia, A.; Rose, A.K.; Kumar, S.S. Ethnobotanical study of Kani tribes in Thoduhills of Kerala, South India. J. Ethnopharmacol., 2014, 152(1), 78-90.
[http://dx.doi.org/10.1016/j.jep.2013.12.016] [PMID: 24393788]
[17]
Heinig, R.L. List of Plants of the Chittagong Collectorate and Hill Tracts; The Bengal Government Branch Press: Darjeeling, 1925.
[18]
Ruksilp, T.; Sichaem, J.; Khumkratok, S. Anthraquinones and an iridoid glycoside from the roots of Morinda pandurifolia. Biochem. Syst. Ecol., 2011, 39, 888-892.
[http://dx.doi.org/10.1016/j.bse.2011.07.003]
[19]
Loonjang, K.; Duangjinda, D.; Phongpaichit, S.; Sawangjaroen, N.; Rattanaburi, S.; Mahabusarakam, W. A new anthraquinone from Morinda elliptica Ridl. Nat. Prod. Res., 2015, 29(19), 1833-1838.
[http://dx.doi.org/10.1080/14786419.2015.1009062] [PMID: 25686628]
[20]
Kamata, M.; Wu, R.P.; An, D.S.; Saxe, J.P.; Damoiseaux, R.; Phelps, M.E.; Huang, J.; Chen, I.S. Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochem. Biophys. Res. Commun., 2006, 348(3), 1101-1106.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.158] [PMID: 16904642]
[21]
Su, B-N.; Pawlus, A.D.; Jung, H-A.; Keller, W.J.; McLaughlin, J.L.; Kinghorn, A.D. Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity. J. Nat. Prod., 2005, 68(4), 592-595.
[http://dx.doi.org/10.1021/np0495985] [PMID: 15844957]
[22]
Choi, J.; Lee, K.T.; Choi, M.Y.; Nam, J.H.; Jung, H.J.; Park, S.K.; Park, H.J. Antinociceptive anti-inflammatory effect of Monotropein isolated from the root of Morinda officinalis. Biol. Pharm. Bull., 2005, 28(10), 1915-1918.
[http://dx.doi.org/10.1248/bpb.28.1915] [PMID: 16204945]
[23]
Joy, A.; Chaitra, N.; Ashok, M.; Handral, M. Antiosteoporotic activity of anthraquinone isolated from Morinda citrifolia fruits in rats. Asian J. Pharm. Clin. Res., 2016, 9, 209-213.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i5.13269]
[24]
Trim, A.R.; Hill, R. The preparation and properties of aucubin, asperuloside and some related glycosides. Biochem. J., 1952, 50(3), 310-319.
[http://dx.doi.org/10.1042/bj0500310] [PMID: 14915951]
[25]
Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[26]
Khoomsab, R.; Khoomsab, K. Extraction and determination of anthraquinone from herbal plant as bird repellent. Sci. Technol. Asia, 2019, 24, 14-20.
[27]
Wei, L.; Zhang, W.; Yin, L.; Yan, F.; Xu, Y.; Chen, F. Extraction optimization of total triterpenoids from Jatropha curcas leaves using response surface methodology and evaluations of their antimicrobial and antioxidant capacities. Electron. J. Biotechnol., 2015, 18, 88-95.
[http://dx.doi.org/10.1016/j.ejbt.2014.12.005]
[28]
Bhatnagar, A.S.; Hemavathy, J.; Gopala Krishna, A.G. Development of a rapid method for determination of lignans content in sesame oil. J. Food Sci. Technol., 2015, 52, 521-527.
[http://dx.doi.org/10.1007/s13197-013-1012-0]
[29]
Vianna, D.; Corvello, F.; Ródio, C.; Bruxel, F.; Velho, A.; Carvalho, E.S.; von Poser, G.; Teixeira, H.F. Spectrophotometric determination of coumarins incorporated into nanoemulsions containing Pterocaulon balansae extract. Lat. Am. J. Pharm., 2015, 30, 1487-1491.
[30]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111, 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[31]
Singh, S.; Nair, V.; Gupta, Y.K. Linseed oil: An investigation of its antiarthritic activity in experimental models. Phytother. Res., 2012, 26(2), 246-252.
[http://dx.doi.org/10.1002/ptr.3535] [PMID: 21656600]
[32]
Ho, W.Y.; Liang, W.S.; Yeap, S.K.; Beh, B.K.; Yousr, A.H.N.; Alitheen, N.B. In vitro and in vivo antioxidant activity of Veronia amygdalina water extract. Afr. J. Biotechnol., 2012, 11, 4090-4094.
[33]
El-Maddawy, Z.K.; Gad, S.B. Hepato-renal protection of silymarin in comparison with vitamin E in rats. Glob. J. Pharmacol., 2012, 6, 236-244.
[34]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[35]
Aebi, H. Methods in Enzymatic Analysis; Academic Press: New York, 1974.
[36]
Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc., 2006, 1(6), 3159-3165.
[http://dx.doi.org/10.1038/nprot.2006.378] [PMID: 17406579]
[37]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[38]
De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597.
[http://dx.doi.org/10.1128/AAC.01242-08] [PMID: 19204190]
[39]
Chang, M.R.; Cury, A.E. Amphotericin B-metronidazole combination against Candida spp. Rev. Iberoam. Micol., 1998, 15(2), 78-80.
[PMID: 17655414]
[40]
Jones, R.N.; Barry, A.L. The antimicrobial activity of A-56268 (TE-031) and roxithromycin (RU965) against Legionella using broth microdilution method. J. Antimicrob. Chemother., 1987, 19(6), 841-842.
[http://dx.doi.org/10.1093/jac/19.6.841] [PMID: 2956231]
[41]
Guriya, R.; Moon, A.; Talreja, K. Phytochemical profiling and characterization of bioactive compounds from Brassica oleracea. Int. J. Pharmacogn. Phytochem. Res., 2015, 7, 825-831.
[42]
Akihisa, T.; Matsumoto, K.; Tokuda, H.; Yasukawa, K.; Seino, K.; Nakamoto, K.; Kuninaga, H.; Suzuki, T.; Kimura, Y. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod., 2007, 70(5), 754-757.
[http://dx.doi.org/10.1021/np068065o] [PMID: 17480098]
[43]
Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature, 2015, 517(7534), 293-301.
[http://dx.doi.org/10.1038/nature14189] [PMID: 25592534]
[44]
Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol., 2015, 47(3), 292-298.
[http://dx.doi.org/10.4103/0253-7613.157127] [PMID: 26069367]
[45]
De Aquino, P.E.A.; Magalhães, T.R.; Nicolau, L.A.D.; Leal, L.K.; de Aquino, N.C.; Dos Santos, S.M.; Neves, K.R.T.; Silveira, E.R.; Viana, G.S. The anti-inflammatory effects of N-methyl-(2S,4R)- trans-4-hydroxy-l-proline from Syderoxylon obtusifolium are related to its inhibition of TNF-α and inflammatory enzymes. Phytomedicine, 2017, 24(24), 14-23.
[http://dx.doi.org/10.1016/j.phymed.2016.11.010] [PMID: 28160854]
[46]
Jackson, L.M.; Wu, K.C.; Mahida, Y.R.; Jenkins, D.; Hawkey, C.J. Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gastric mucosa. Gut, 2000, 47(6), 762-770.
[http://dx.doi.org/10.1136/gut.47.6.762] [PMID: 11076873]
[47]
Hong, R.; Sur, B.; Yeom, M.; Lee, B.; Kim, K.S.; Rodriguez, J.P.; Lee, S.; Kang, K.S.; Huh, C-K.; Lee, S.C.; Hahm, D-H. Anti-inflammatory and anti-arthritic effects of the ethanolic extract of Aralia continentalis Kitag. in IL-1β-stimulated human fibroblast-like synoviocytes and rodent models of polyarthritis and nociception. Phytomedicine, 2018, 38, 45-56.
[http://dx.doi.org/10.1016/j.phymed.2017.10.016] [PMID: 29425654]
[48]
Okusada, K.; Nakamoto, K.; Nishida, M.; Fujita-Hamabe, W.; Kamiya, K.; Mizushina, Y.; Satake, T.; Tokuyama, S. The antinociceptive and anti-inflammatory action of the CHCl3-soluble phase and its main active component, damnacanthal, isolated from the root of Morinda citrifolia. Biol. Pharm. Bull., 2011, 34(1), 103-107.
[http://dx.doi.org/10.1248/bpb.34.103] [PMID: 21212526]
[49]
Jawed, H.; Shah, S.U.A.; Jamall, S.; Simjee, S.U.N. N-(2-hydroxy phenyl) acetamide inhibits inflammation-related cytokines and ROS in Adjuvant-Induced Arthritic (AIA) rats. Int. Immunopharmacol., 2010, 10(8), 900-905.
[http://dx.doi.org/10.1016/j.intimp.2010.04.028] [PMID: 20452462]
[50]
Tripathy, S.; Sahoo, S.; Pradhan, D.; Sahoo, S.; Satapathy, D. Evaluation of anti-arthritic potential of Hybanthus enneaspermus. Afr. J. Pharm. Pharmacol., 2009, 2009(3), 611-614.
[51]
Tatiya, A.U.; Saluja, A.K.; Kalaskar, M.G.; Surana, S.J.; Patil, P.H. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng) bark. J. Tradit. Complement. Med., 2017, 7(4), 441-451.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.009] [PMID: 29034192]
[52]
Wang, F.; Qiao, Y-h.; Niu, H-m.; Zhao, H. Anti-arthritic effect of total anthraquinone from Polygonum cuspidatum on type II collagen-induced arthritis in rats. Trop. J. Pharm. Res., 2017, 16, 2453-2459.
[http://dx.doi.org/10.4314/tjpr.v16i10.20]
[53]
Diplock, A.T.; Charleux, J-L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr., 1998, 80(Suppl. 1), S77-S112.
[http://dx.doi.org/10.1079/BJN19980106] [PMID: 9849355]
[54]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[55]
Bouayed, J.; Bohn, T. Exogenous antioxidants- double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[56]
Amartya, G.K.; Partha, G.; Upal, M.K.; Shibnath, G. Hepatoprotective & antioxidant effect & stereoidal saponins of solanum of Solanum xanthocarpum and Solanum nigrum in paracetomol induce hepatotoxicity in rats. Pharmacologyonline, 2009, 1, 757-768.
[57]
Placke, M.E.; Wyand, D.S.; Cohen, S.D. Extrahepatic lesions induced by acetaminophen in the mouse. Toxicol. Pathol., 1987, 15(4), 381-387.
[http://dx.doi.org/10.1177/019262338701500401] [PMID: 3432938]
[58]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995, 64, 97-112.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000525] [PMID: 7574505]
[59]
Dringen, R.; Pawlowski, P.G.; Hirrlinger, J. Peroxide detoxification by brain cells. J. Neurosci. Res., 2005, 79(1-2), 157-165.
[http://dx.doi.org/10.1002/jnr.20280] [PMID: 15573410]
[60]
Ighodaro, O.M.; Akinloye, O.A. First line defense antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54, 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[61]
Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J., 1984, 222(3), 649-655.
[http://dx.doi.org/10.1042/bj2220649] [PMID: 6487268]
[62]
Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 2004, 61(2), 192-208.
[http://dx.doi.org/10.1007/s00018-003-3206-5] [PMID: 14745498]
[63]
Radi, R.; Turrens, J.F.; Chang, L.Y.; Bush, K.M.; Crapo, J.D.; Freeman, B.A. Detection of catalase in rat heart mitochondria. J. Biol. Chem., 1991, 266(32), 22028-22034.
[http://dx.doi.org/10.1016/S0021-9258(18)54740-2] [PMID: 1657986]
[64]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[65]
Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem., 2001, 1(6), 529-539.
[http://dx.doi.org/10.2174/1568026013394831] [PMID: 11895129]
[66]
Góth, L.; Rass, P.; Páy, A. Catalase enzyme mutations and their association with diseases. Mol. Diagn., 2004, 8(3), 141-149.
[http://dx.doi.org/10.1007/BF03260057] [PMID: 15771551]
[67]
Jollow, D.J. Glutathione thresholds in reactive metabolite toxicity. Arch. Toxicol. Suppl., 1980, 3, 95-110.
[http://dx.doi.org/10.1007/978-3-642-67389-4_8] [PMID: 6930953]
[68]
Yoshiki, Y.; Okubo, K. Active oxygen scavenging activity of DDMP (2, 3- dihydro-2, 5-dihydroxy-6-methyl-4H-pyran-4-one) saponin in soybean seed. Biosci. Biotechnol. Biochem., 1995, 59, 56-57.
[http://dx.doi.org/10.1271/bbb.59.1556]
[69]
Hu, J.; Lee, S.O.; Hendrich, S.; Murphy, P.A. Quantification of the group B soyasaponins by high-performance liquid chromatography. J. Agric. Food Chem., 2002, 50(9), 2587-2594.
[http://dx.doi.org/10.1021/jf0114740] [PMID: 11958627]
[70]
Alan, L.; Miller, N.D. Antioxidant flavonoids: Structure, function and clinical usage. Altern. Med. Rev., 1996, 1, 103-111.
[71]
Amić, D.; Davidović-Amić, D.; Bĕslo, D.; Rastija, V.; Lucić, B.; Trinajstić, N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem., 2007, 14(7), 827-845.
[http://dx.doi.org/10.2174/092986707780090954] [PMID: 17346166]
[72]
Khan, M.R.; Marium, A.; Shabbir, M.; Saeed, N.; Bokhari, J. Antioxidant and hepatoprotective effects of Oxalis corniculata against carbon tetrachloride (CCl4) induced injuries in rat. Afr. J. Pharm. Pharmacol., 2012, 6, 2255-2267.
[73]
Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med., 2012, 12, 221.
[http://dx.doi.org/10.1186/1472-6882-12-221] [PMID: 23153304]
[74]
Selvamohan, T.; Ramadas, V.; Shibila, ; Kishore, S. Antimicrobial activity of selected medicinal plants against some selected human pathogenic bacteria. Adv. Appl. Sci. Res., 2012, 3, 3374-3381.
[75]
Sunder, J.; Singh, D.R.; Jeyakumar, S.; Kundu, A.; De, A.K. Antibacterial activity in solvent extract of different parts of Morinda citrifolia plant. J. Pharm. Sci. Res., 2011, 3, 1404-1407.
[76]
Nagaraj, R.; Prakash, M.; Karmegam, N. Antibacterial activity of Morinda umbellata L. (Rubiaceae) leaves by Resazurin redox method. Int. J. Curr. Res. Biosci. Plant Biol., 2014, 1, 53-57.
[77]
Ogundare, A.O.; Onifade, A.K. The antimicrobial activity of Morinda lucida leaf extract on Escherichia coli. J. Med. Plants Res., 2009, 3, 319-323.