Characterization, ACE Inhibitory and Antioxidative Properties of Peptide Fractions Obtained from White Shrimp (Litopenaeus vannamei)

Article ID: e210921196686 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Aquatic organisms are considered to be an important source of bioactive peptides with a high antioxidant and antihypertensive capacity. Therefore, the objective of this study was to hydrolyse peptide fractions from white shrimp (Litopenaeus vannamei) muscle by Alcalase and Protamex and to evaluate the angiotensin I-converting enzyme (ACE) inhibitory and the antioxidant activities.

Methods: Protein hydrolysates of White shrimp were obtained by enzymatic hydrolysis using Alcalase and Protamex until the degree of hydrolysis reached 10% and 20%. Peptide fractions were obtained from White shrimp protein hydrolysates by ultrafiltration using membranes with sizes of 10 and 3 kDa. The antioxidant activity was evaluated for the three peptide fractions (F1: >10 kDa, F2: 3-10 kDa and F3: <3 kDa). To measure the antihypertensive activity, fractions with molecular sizes of less than 3 kDa were used.

Results: The fractions obtained with Alcalase showed greater inhibitory effects on the ACE. In general, the molecular weight of the fractions influenced the antioxidant activity, with fractions smaller than 3 kDa having a high capacity for sequestering the DPPH radical, while peptide fractions with a size greater than 10 kDa presented higher reducing power. However, in capturing the ABTS radical, a high antioxidant capacity was observed for both fractions.

Conclusion: The results suggest white shrimp would be an attractive raw material for the manufacture of antioxidant and anti-hypertensive nutraceutical ingredients.

Keywords: White shrimp, peptide, enzymatic hydrolysis, ACE inhibitory, antioxidative activity, alcalase, protamex.

[1]
Baba, W.N.; Baby, B.; Mudgil, P.; Gan, C.Y.; Vijayan, R.; Maqsood, S. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. Lebensm. Wiss. Technol., 2021, 143, 111135.
[http://dx.doi.org/10.1016/j.lwt.2021.111135]
[2]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem., 2018, 245, 205-222.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[3]
Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from fish by-product protein hydrolysates and its functional properties: an overview. Mar. Biotechnol. (NY), 2018, 20(2), 118-130.
[http://dx.doi.org/10.1007/s10126-018-9799-3] [PMID: 29532335]
[4]
Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem., 2017, 228, 506-517.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.039] [PMID: 28317757]
[5]
Sutopo, C.C.Y.; Sutrisno, A.; Wang, L.F.; Hsu, J.L. Identification of a potent Angiotensin-I converting enzyme inhibitory peptide from Black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochem., 2020, 95, 204.
[http://dx.doi.org/10.1016/j.procbio.2020.02.010]
[6]
Sarabandi, K.; Jafari, S.M. Fractionation of flaxseed-derived bioactive peptides and their influence on nanoliposomal carriers. J. Agric. Food Chem., 2020, 68(51), 15097-15106.
[http://dx.doi.org/10.1021/acs.jafc.0c02583] [PMID: 33290068]
[7]
Kaur, A.; Kehinde, B.A.; Sharma, P.; Sharma, D.; Kaur, S. Recently isolated food-derived antihypertensive hydrolysates and peptides: a review. Food Chem., 2021, 346, 128719.
[http://dx.doi.org/10.1016/j.foodchem.2020.128719] [PMID: 33339686]
[8]
Ejike, C.E.C.C.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Technol., 2017, 59, 30.
[http://dx.doi.org/10.1016/j.tifs.2016.10.026]
[9]
Wu, J.; Liao, W.; Udenigwe, C.C. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends Food Sci. Technol., 2017, 69, 214.
[http://dx.doi.org/10.1016/j.tifs.2017.07.011]
[10]
Roslan, J.; Mustapa, K.S.M.; Khairul, K.F.; Abdullah, N. Assessment on multilayer ultrafiltration membrane for fractionation of tilapia by-product protein hydrolysate with Angiotensin I-Converting Enzyme (ACE) inhibitory activity. Separ. Purif. Tech., 2017, 17, 250.
[http://dx.doi.org/10.1016/j.seppur.2016.09.038]
[11]
Abejón, R.; Belleville, M.P.; Sanchez-Marcano, J.; Garea, A.; Irabien, A. Optimal design of industrial scale continuous process for fractionation by membrane technologies of protein hydrolysate derived from fish wastes. Separ. Purif. Tech., 2018, 197, 137.
[http://dx.doi.org/10.1016/j.seppur.2017.12.057]
[12]
Centenaro, G.S.; Salas-Mellado, M.; Pires, C.; Batista, I.; Nunes, M.L.; Prentice, C. Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Appl. Biochem. Biotechnol., 2014, 172(6), 2877-2893.
[http://dx.doi.org/10.1007/s12010-014-0732-6] [PMID: 24449375]
[13]
Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.C.; Barkia, A.; Nasri, M. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J. Funct. Foods, 2015, 13, 225.
[http://dx.doi.org/10.1016/j.jff.2014.12.042]
[14]
Roslan, J.; Mustapa Kamal, S.M.; Khairul, K.F.; Abdullah, N. Evaluation on performance of dead-end ultrafiltration membrane in fractionating tilapia by-product protein hydrolysate. Separ. Purif. Tech., 2017, 2018(195), 21-29.
[15]
Zhu, Z.; Yuan, F.; Xu, Z.; Wang, W.; Di, X.; Barba, F.J.; Shen, W.; Koubaa, M. Stirring-assisted dead-end ultrafiltration for protein and polyphenol recovery from purple sweet potato juices: Filtration behavior investigation and HPLC-DAD-ESI-MS2profiling. Separ. Purif. Tech., 2016, 169, 25.
[http://dx.doi.org/10.1016/j.seppur.2016.05.023]
[16]
Zhang, Y.; He, S.; Bonneil, É.; Simpson, B.K. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: in vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chem., 2020, 306, 125581.
[http://dx.doi.org/10.1016/j.foodchem.2019.125581] [PMID: 31606636]
[17]
Jang, H.L.; Liceaga, A.M.; Yoon, K.Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. J. Funct. Foods, 2016, 20, 433.
[http://dx.doi.org/10.1016/j.jff.2015.11.020]
[18]
Yang, Z.C.; Yang, L.; Zhang, Y.X.; Yu, H.F.; An, W. Effect of heat and pH denaturation on the structure and conformation of recombinant human hepatic stimulator substance. Protein J., 2007, 26(5), 303-313.
[http://dx.doi.org/10.1007/s10930-007-9072-5] [PMID: 17514414]
[19]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: a review. Peptides, 2010, 31(10), 1949-1956.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[20]
Lima, K.O.; Quadros, C.C.; Rocha, M.; Lacerda, J.T.J.G.; Juliano, M.A.; Dias, M.; Mendes, M.A.; Prentice, C. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). Lebensm. Wiss. Technol., 2019, 111, 408.
[http://dx.doi.org/10.1016/j.lwt.2019.05.043]
[21]
Silveira, C.M.; Aquino, S.A.; Latorres, J.M.; Salas-Mellado, M.M. In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocoll., 2019, 91, 19.
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.018]
[22]
Jain, S.; Anal, A.K. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J. Food Sci. Technol., 2017, 54(5), 1062-1072.
[http://dx.doi.org/10.1007/s13197-017-2530-y] [PMID: 28416855]
[23]
Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.C.; Montero, P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res. Int., 2011, 44, 1044.
[http://dx.doi.org/10.1016/j.foodres.2011.03.010]
[24]
Lara, G.; Hostins, B.; Bezerra, A.; Poersch, L.; Wasielesky, W. The effects of different feeding rates and re-feeding of Litopenaeus vannamei in a biofloc culture system. Aquacult. Eng., 2017, 77, 20.
[http://dx.doi.org/10.1016/j.aquaeng.2017.02.003]
[25]
Zhu, L.; Zhang, S.; Hou, C.; Liang, X.; Saif Dehwah, M.A.; Tan, B.; Shi, L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. Dev. Comp. Immunol., 2021, 119, 104041.
[http://dx.doi.org/10.1016/j.dci.2021.104041] [PMID: 33577842]
[26]
Khan, M.R.; Azam, M. Shrimp as a substantial source of carcinogenic heterocyclic amines. Food Res. Int., 2021, 140(December 2020), 109977.
[27]
Latorres, J.M.; Rios, D.G.; Saggiomo, G.; Wasielesky, W., Jr; Prentice-Hernandez, C. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol., 2018, 55(2), 721-729.
[http://dx.doi.org/10.1007/s13197-017-2983-z] [PMID: 29391637]
[28]
Wu, D.; Li, M.; Ding, J.; Zheng, J.; Zhu, B.W.; Lin, S. Structure-activity relationship and pathway of antioxidant shrimp peptides in a PC12 cell model. J. Funct. Foods, 2020, 70, 103978.
[http://dx.doi.org/10.1016/j.jff.2020.103978]
[29]
Lee, A.J.; Gerez, I.; Shek, L.P.C.; Lee, B.W. Shellfish allergy-An Asia-Pacific perspective. Asian Pac. J. Allergy Immunol., 2012, 30(1), 3-10.
[PMID: 22523902]
[30]
Lopata, A.L.; O’Hehir, R.E.; Lehrer, S.B. Shellfish allergy. Clin. Exp. Allergy, 2010, 40(6), 850-858.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03513.x] [PMID: 20412131]
[31]
Lv, L.; Qu, X.; Yang, N.; Liu, Z.; Wu, X. Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment. Food Res. Int., 2021, 140, 109997.
[http://dx.doi.org/10.1016/j.foodres.2020.109997] [PMID: 33648231]
[32]
Liu, Y.; Li, X.; Chen, Z.; Yu, J.; Wang, F.; Wang, J. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food Chem., 2014, 151, 459-465.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.089] [PMID: 24423557]
[33]
Cheng, Z.; Moore, J.; Yu, L. High-throughput relative DPPH radical scavenging capacity assay. J. Agric. Food Chem., 2006, 54(20), 7429-7436.
[http://dx.doi.org/10.1021/jf0611668] [PMID: 17002404]
[34]
Zhang, S.B.; Wang, Z.; Xu, S.Y. Antioxidant and antithrombotic activities of rapeseed peptides. J. Am. Oil Chem. Soc., 2008, 85, 521.
[http://dx.doi.org/10.1007/s11746-008-1217-y]
[35]
Chi, C.F.; Hu, F.Y.; Wang, B.; Li, T.; Ding, G.F. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Foods, 2015, 15, 301.
[http://dx.doi.org/10.1016/j.jff.2015.03.045]
[36]
Lahogue, V.; Réhel, K.; Taupin, L.; Haras, D.; Allaume, P. A HPLC-UV method for the determination of Angiotensin I-Converting Enzyme (ACE) inhibitory activity. Food Chem., 2010, 118, 870.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.080]
[37]
Wu, J.; Aluko, R.E.; Muir, A.D. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. J. Chromatogr. A, 2002, 950(1-2), 125-130.
[http://dx.doi.org/10.1016/S0021-9673(02)00052-3] [PMID: 11990985]
[38]
Ding, Q.; Wu, R.A.; Yin, L.; Zhang, W.; He, R.; Zhang, T.; Jiang, H.; Luo, L.; Ma, H.; Dai, C. Antioxidation and memory protection effects of solid-state-fermented rapeseed meal peptides on D-galactose-induced memory impairment in aging-mice. J. Food Process Eng., 2019, 42, 1.
[http://dx.doi.org/10.1111/jfpe.13145]
[39]
Khositanon, P.; Panya, N.; Roytrakul, S.; Krobthong, S.; Chanroj, S.; Choksawangkarn, W. Effects of fermentation periods on antioxidant and angiotensin I-converting enzyme inhibitory activities of peptides from fish sauce by-products. Lebensm. Wiss. Technol., 2021, 135, 10122.
[http://dx.doi.org/10.1016/j.lwt.2020.110122]
[40]
Borawska, J.; Darewicz, M.; Vegarud, G.E.; Minkiewicz, P. Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in vitro hydrolysates. Food Chem., 2016, 194, 770-779.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.075] [PMID: 26471617]
[41]
Sabeena Farvin, K.H.; Andersen, L.L.; Otte, J.; Nielsen, H.H.; Jessen, F.; Jacobsen, C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: fractionation and characterisation of peptide fractions. Food Chem., 2016, 204, 409-419.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.145] [PMID: 26988519]
[42]
Kamau, S.M.; Lu, R. The effect of enzymes and hydrolysis conditions on degree of hydrolysis and DPPH radical scavening activity of whey protein hydrolysates. Curr Res. Dairy Sci., 2011, 3, 25.
[http://dx.doi.org/10.3923/crds.2011.25.35]
[43]
Chi, C.F.; Cao, Z.H.; Wang, B.; Hu, F.Y.; Li, Z.R.; Zhang, B. Antioxidant and functional properties of collagen hydrolysates from Spanish mackerel skin as influenced by average molecular weight. Molecules, 2014, 19(8), 11211-11230.
[http://dx.doi.org/10.3390/molecules190811211] [PMID: 25090114]
[44]
Zamorano-Apodaca, J.C.; García-Sifuentes, C.O.; Carvajal-Millán, E.; Vallejo-Galland, B.; Scheuren-Acevedo, S.M.; Lugo-Sánchez, M.E. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem., 2020, 331, 127350.
[http://dx.doi.org/10.1016/j.foodchem.2020.127350] [PMID: 32590267]
[45]
Girgih, A.T.; Udenigwe, C.C.; Hasan, F.M.; Gill, T.A.; Aluko, R.E. Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Res. Int., 2013, 52, 315.
[http://dx.doi.org/10.1016/j.foodres.2013.03.034]
[46]
Suwal, S.; Ketnawa, S.; Liceaga, A.M.; Huang, J.Y. Electro-membrane fractionation of antioxidant peptides from protein hydrolysates of rainbow trout (Oncorhynchus mykiss) by products. Innov. Food Sci. Emerg. Technol., 2018, 45, 122.
[http://dx.doi.org/10.1016/j.ifset.2017.08.016]
[47]
Luo, F.; Xing, R.; Wang, X.; Yang, H.; Li, P. Antioxidant activities of Rapana venosa meat and visceral mass during simulated gastrointestinal digestion and their membrane ultrafiltration fractions. Int. J. Food Sci. Technol., 2018, 53, 395.
[http://dx.doi.org/10.1111/ijfs.13597]
[48]
Bkhairia, I.; Ben Slama Ben Salem, R.; Nasri, R.; Jridi, M.; Ghorbel, S.; Nasri, M. In-vitro antioxidant and functional properties of protein hydrolysates from golden grey mullet prepared by commercial, microbial and visceral proteases. J. Food Sci. Technol., 2016, 53(7), 2902-2912.
[http://dx.doi.org/10.1007/s13197-016-2200-5] [PMID: 27765961]
[49]
Shazly, A.B.; He, Z.; El-Aziz, M.A.; Zeng, M.; Zhang, S.; Qin, F.; Chen, J. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem., 2017, 232, 753-762.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.071] [PMID: 28490137]
[50]
Chen, M.; Liu, F.; Chiou, B.S.; Sharif, H.R.; Xu, J.; Zhong, F. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values. Food Hydrocoll., 2017, 72, 381.
[http://dx.doi.org/10.1016/j.foodhyd.2017.05.001]
[51]
Nimalaratne, C.; Bandara, N.; Wu, J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem., 2015, 188, 467-472.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.014] [PMID: 26041219]
[52]
Salampessy, J.; Reddy, N.; Phillips, M.; Kailasapathy, K. Isolation and characterization of nutraceutically potential ACE-Inhibitory peptides from leatherjacket (Meuchenia sp.) protein hydrolysates. Lebensm. Wiss. Technol., 2017, 80, 430.
[http://dx.doi.org/10.1016/j.lwt.2017.03.004]
[53]
Ko, S.C.; Jang, J.; Ye, B.; Kim, M.; Choi, I.; Park, W.; Heo, S.; Jung, W. Purification and molecular docking study of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem., 2017, 54, 180.
[http://dx.doi.org/10.1016/j.procbio.2016.12.023]
[54]
Baharuddin, N.A.; Halim, N.R.A.; Sarbon, N.M. Effect of degree of hydrolysis (DH) on the functional properties and Angiotensin I- Converting Enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate. Int. Food Res. J., 2016, 23, 1424.
[55]
Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-inhibitory activity of amaranth proteins. J. Food Sci., 2009, 74(5), H121-H126.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01145.x] [PMID: 19646044]
[56]
Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: a review. J. Funct. Foods, 2010, 2, 1.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]