An Overview of Synthesis and Biological Activity of Dihydropyrimidine Derivatives

Page: [701 - 728] Pages: 28

  • * (Excluding Mailing and Handling)

Abstract

Dihydropyrimidine derivatives are the most important scaffolds due to structural similarities with natural products; it is a heterocyclic compound. The chemistry of Dihydropyrimidine is a growing field. Various reaction schemes for the preparation of Dihydropyrimidines produce different biological effects and offer vast scope in the field of medicinal chemistry. This article's goal is to analyze the work that reported the recent chemistry and pharmacological activities of dihydropyrimidine derivatives.

Keywords: Dihydropyrimidine, bignelli reaction, anticancer, antimicrobial, antiviral, synthesis.

Graphical Abstract

[1]
Katritzky, Alan R.; Ramsden, Christopher A.; Scriven, Eric F.V.; Richard, J.K. Taylor Comprehensive Heyterocyclic chemistry 1 , 24-35.
[2]
Thipparapu, G.; Ajumeera, R.; Venkatesan, V. Novel dihydropyrimidine derivatives as potential HDAC inhibitors: In silico study. In Silico Pharmacol., 2017, 5, 10.
[http://dx.doi.org/10.1007/s40203-017-0030-4] [PMID: 29085767]
[3]
Baluja, S.; Gajera, R.; Chanda, S. Antibacterial studies of dihydropyrimidinones and pyrimidinethiones. J. Bacteriol. Mycol. (Monroe Township), 2017, 5(6), 414-418.
[4]
Sawant, R.; Sarode, V. Synthesis, spectral characterization and analgesic activity of 2-methylthio-1,4-dihydropyrimidines. Iran. J. Pharm. Res., 2011, 10(4), 733-739.
[PMID: 24250408]
[5]
Ali, M.R.; Verma, G.; Akhter, M.; Alam, M.M. Synthesis and anticonvulsant activity of some newer dihydro-pyrimidine -5-carbonitrile derivative: Part II. J. Taibah Univ. Med. Sci., 2015, 7, 1-7.
[http://dx.doi.org/10.1016/j.jtumed.2015.07.002]
[6]
Gangwar, N.; Kasana, V.K. 3, 4-Dihydropyrimidin-2(1H)-one derivatives: Organocatalysed microwave assisted synthesis and evaluation of their antioxidant activity. Med. Chem. Res., 2012, 21(12), 4506-4511.
[http://dx.doi.org/10.1007/s00044-012-9987-z]
[7]
Sari, O.; Roy, V.; Métifiot, M.; Marchand, C.; Pommier, Y.; Bourg, S.; Bonnet, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of dihydropyrimidine α,γ-diketobutanoic acid derivatives targeting HIV integrase. Eur. J. Med. Chem., 2015, 104(104), 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.015] [PMID: 26451771]
[8]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M. Synthesis and in-vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[9]
Rami, C.; Patel, L.; Patel, C.N.; Parmar, J.P. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives. J. Pharm. Bioallied Sci., 2013, 5(4), 277-289.
[http://dx.doi.org/10.4103/0975-7406.120078] [PMID: 24302836]
[10]
Safari, S.; Ghavimi, R.; Asl, N.R.; Sepehr, S. Synthesis, biological evaluation and molecular docking study of dihydropyrimidine derivatives as potential anticancer agents. J. Heterocycl. Chem., 2020, 191-199.
[http://dx.doi.org/10.1002/jhet.3822]
[11]
Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo [3, 2-a]pyrimidine derivatives. Farmaco (Societa Chimica Italiana), 1999, 54(9), 588-593.
[12]
Radini, A.M.; Elsheikh, T.M.Y.; Telbani, E.M.E.; Khidre, R.E. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[13]
El Hamouly, W.S.; Amine, K.M.; Tawfik, H.A.; Dawood, D.H. Synthesis and antihypertensive activity of certain substituted dihydropyridines and pyrimidinones. Egypt. Pharmaceut. J., 2020, 12, 20-27.
[14]
Elmaghraby, A.M.; Mousa, I.A.; Harb, A.A.; Mahgoub, M.Y. Three Component Reaction: An Efficient Synthesis and Reactions of 3, 4-Dihydropyrimidin-2(1H)-Ones and Thiones Using New Natural Catalyst; ISRN Organic Chemistry Volume,, 2013.
[15]
Lu, J.; Bai, Y.J.; Guo, Y.H.; Wang, Z.J.; Ma, H.R. CoCl2·6H2O or LaCl3·7H2O Catalyzed Biginelli Reaction. One-Pot Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones. Chin. J. Chem., 2002, 20(7), 681-687.
[http://dx.doi.org/10.1002/cjoc.20020200711]
[16]
Esfahani, M.N.; Montazerozohori, M.; Mirrezaee, M.A.; Kashi, H. Efficient and green catalytic synthesis of dihydropyrimidinone (thione) derivatives using Cobalt Nitrate in solvent-free conditions. J. Chil. Chem. Soc., 2014, 59, 1.
[17]
Liu, Z.; Ma, R.; Cao, D.; Liu, C. New efficient synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones catalyzed by Benzotriazolium-Based ionic liquids under solvent-free conditions. Molecules, 2016, 21(4), 462.
[18]
Adib, M.; Ghanbary, K.; Mostofi, M.; Ganjali, M.R. Efficient Ce(NO3)3 x 6H2O-catalyzed solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Molecules, 2006, 11(8), 649-654.
[http://dx.doi.org/10.3390/11080649] [PMID: 17971737]
[19]
Zhang, Y.; Wang, B.; Zhang, X.; Huang, J.; Liu, C. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules, 2015, 20(3), 3811-3820.
[http://dx.doi.org/10.3390/molecules20033811] [PMID: 25730389]
[20]
Maleki, A.; Niksefat, M.; Rahimi, J.; Hajizadeh, Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem., 2019, 13(1), 19.
[http://dx.doi.org/10.1186/s13065-019-0538-2] [PMID: 31384768]
[21]
Koronatov, A.N.; Rostovskii, N.V.; Khlebnikov, A.F. Rh(II)-Catalyzed ring expansion of pyrazoles with diazocarbonyl compounds as a method for the preparation of 1,2-dihydropyrimidines. J. Org. Chem., 2018, 83(16), 9210-9219.
[22]
Chen, Q.; Liu, X.; Guo, F.; Chen, Z. An unexpected rearrangement of pyrazolium halides based on N-N bond cleavage: Synthesis of 1,2-dihydropyrimidines. Chem. Commun. (Camb.), 2017, 53(50), 6792-6795.
[http://dx.doi.org/10.1039/C7CC02525D] [PMID: 28597892]
[23]
Fu, R.; Yang, Y.; Ma, X.; Sun, Y. An efficient, eco-friendly and sustainable one-pot synthesis of 3,4-Dihydropyrimidin-2(1H)-ones directly from alcohols catalyzed by heteropolyanion-based ionic liquids. Molecules, 2017, 22(9), 1531.
[24]
Piqani, B.; Zhang, W. Synthesis of diverse dihydropyrimidine-related scaffolds by fluorous benzaldehyde-based Biginelli reaction and post-condensation modifications. Beilstein J. Org. Chem., 2011, 7, 1294-1298.
[http://dx.doi.org/10.3762/bjoc.7.150] [PMID: 21977214]
[25]
Yar, M.; Bajda, M.; Shahzadi, L.; Shahzad, S.A.; Ahmed, M.; Ashraf, M.; Alam, U.; Khan, I.U.; Khan, A.F. Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking. Bioorg. Chem., 2014, 54(54), 96-104.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.003] [PMID: 24880489]
[26]
Ashish, D. Patel, A.D.; Rahul Barot, R.; Parmar, I; Panchal, I.; Shah, U.: Patel, M.; Mishtry, B. Molecular Docking, In-silico ADMET study and development of 1, 6- Dihydropyrimidine Derivative as protein tyrosine phosphatase inhibitor: An approach to design and develop antidiabetic agents. Curr. Computeraided Drug Des., 2018, 14, 349-362.
[http://dx.doi.org/10.2174/1573409914666180426125721]
[27]
Barakat, A. Mohammad ShahidulIslam M.;Majid, A.M.A.; Ghabbour, H.A.; Fun, H.K.; Javed,RehanImad, K.; SammerYousuf, S.; ChoudharyM.I.;Wadood, A. Synthesis, in-vitro biological activities and in-silico study of dihydropyrimidines derivatives. Bioorg. Med. Chem., 2015, 6740-6748.
[http://dx.doi.org/10.1016/j.bmc.2015.09.001] [PMID: 26381063]
[28]
Bairagi, K.M.; Younis, N.S.; Emeka, P.M. Sangtani; Gonnade, R.G.; Venugopala, K.N.; Alwassil, O.I.; Khalil, H.E.; Nayak. Antidiabetic activity of dihydropyrimidine scaffolds and structural insight by single crystal x-ray studies. Med. Chem., 2019, 27.
[29]
Liu, Y.; Liu, J.; Zhang, R.; Guo, Y.; Wang, H.; Meng, Q.; Sun, Y.; Liu, Z. Synthesis, characterization and anticancer activities evaluation of compounds derived from 3,4-Dihydropyrimidin-2(1H)-one. Molecules, 2019, 24(5), 891.
[http://dx.doi.org/10.3390/molecules24050891] [PMID: 30832453]
[30]
Rana, K.; Arora, A.; Bansal, S.; Chawla, R. Synthesis, in vitro anticancer and antimicrobial evaluation of novel substituted dihydropyrimidines. Indian J. Pharm. Sci., 2014, 76(4), 339-347.
[PMID: 25284932]
[31]
Venugopala, K.N.; Govender, R.; Khedr, M.A.; Venugopala, R.; Aldhubiab, B.E.; Harsha, S.; Odhav, B. Design, synthesis, and computational studies on dihydropyrimidine scaffolds as potential lipoxygenase inhibitors and cancer chemopreventive agents. Drug Des. Devel. Ther., 2015, 9, 911-921.
[http://dx.doi.org/10.2147/DDDT.S73890] [PMID: 25733811]
[32]
Akhtar, W.; Verma, G.; Khan, M.F.; Shaquiquzzaman, M.; Rana, A.; Anwer, T.; Akhter, M.; Alam, M.M. Synthesis of Hybrids of Dihydropyrimidine and Pyridazinone as potential Anti-Breast Cancer Agents. Mini Rev. Med. Chem., 2018, 18(4), 369-379.
[http://dx.doi.org/10.2174/1389557517666170220153456] [PMID: 28486908]
[33]
Mostafa, A.S.; Selim, K.B. Synthesis and anticancer activity of new dihydropyrimidinone derivatives. Eur. J. Med. Chem., 2018, 156, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.004] [PMID: 30015070]
[34]
Bhat, M.A.; Al-Dhfyan, A.; Al-Omar, M.A. Targeting Cancer Stem Cells with Novel 4-(4-Substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thiones. Molecules, 2016, 21(12), 1746.
[http://dx.doi.org/10.3390/molecules21121746] [PMID: 27999374]
[35]
Sahu, M.; Siddiqui, N.; Iqbal, R.; Sharma, V.; Wakode, S. Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1H)-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg. Chem., 2017, 74, 166-178.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.017] [PMID: 28806600]
[36]
Tawfik, H.O.; Moselhy, T.F.E.; Nabaweya, S. El-Din, Mervat H. El-Hamamsy, Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors. Bioorg. Med. Chem., 2020, 28(19), 115687.
[http://dx.doi.org/10.1016/j.bmc.2020.115687] [PMID: 32826133]
[37]
Alavala, R.R.; Kulandaivelu, U.; Bonagiri, P.; Boyapati, S.; Jayaprakash, V.; Subramaniam, A.T. Synthesis and Antiviral activity of dihydropyrimidines - ciprofloxacin mannich bases against various viral strains. Antiinfect. Agents, 2015, 13(2), 154-165.
[http://dx.doi.org/10.2174/221135251302151029111113]
[38]
Kumarasamy, D.; Roy, B.G.; Rocha-Pereira, J.; Neyts, J.; Nanjappan, S.; Maity, S.; Mookerjee, M.; Naesens, L. Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2017, 27(2), 139-142.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.010] [PMID: 27979594]
[39]
Jalali, M.; Mahdavi, M.; Memarian, H.R.; Ranjbar, M.; Soleymani, M.; Fassihi, A.; Abedi, D. Antimicrobial evaluation of some novel derivatives of 3,4-dihydropyrimidine-2(1H)-one. Res. Pharm. Sci., 2012, 7(4), 243-247.
[PMID: 23248675]
[40]
Peng, H.N.; Ye, L.M.; Zhang, M.; Yang, Y.C.; Zheng, J. Synthesis and antimicrobial activity of 3,4-dihydropyrimidin-2(1H)-one derivatives containing a hydrazone moiety. Heterocycl. Commun., 2018, 24(2), 119-125.
[http://dx.doi.org/10.1515/hc-2017-0227]
[41]
B M. V.; Bodke, Y.D.; Telkar, S.; M, A.S.; Venkatesh, T. Fe(III)-montmorillonite catalysed one pot synthesis of 5-substituted dihydropyrimidine derivatives as potent antimicrobial agents. J. Taibah Univ. Med. Sci., 2016, 12(1), 60-69.
[http://dx.doi.org/10.1016/j.jtumed.2016.07.003] [PMID: 31435214]
[42]
Mostafa, A.; Hussein, M.A.; Moty, S.G.A.; Aziz, S.A.A.; Salim, M.A.A. Synthesis and antimicrobial activity of new substituted dihydropyrimidine derivatives. Bull. Pharm. Sci. Assiut Uni., 2011, 34(1), 37-52.
[43]
Desai, N.C.; Vaghani, H.V.H.V.; Patel, B.Y.; Karkar, T.J. Synthesis and antimicrobial activity of fluorine containing Pyrazole-clubbed Dihydropyrimidinones. Indian J. Pharm. Sci., 2018, 80(2), 242-252.
[44]
Akhter, K.; Jahan, K.; Halim, M.E.M.E.; Shefa, S.; Rifat, S.; Khan, K.R.; S.M., Ahmed S.M. Romman, U.K.R. Synthesis of 1-phenyl-3, 4-dihydropyrimidine-2(1H)-ones derivatives under solvent free condition and their antimicrobial activity. Bangladesh J. Sci. Ind. Res., 2019, 54(1), 47-54.
[http://dx.doi.org/10.3329/bjsir.v54i1.40730]
[45]
Alam, M.M.; Akhter, M.; Husain, A.; Marella, A.; Tanwar, O.P.; Ali, R.; Hasan, S.M.; Kumar, H.; Haider, R.; Shaquiquzzaman, M. Anti-inflammatory and antimicrobial activity of 4,5-dihydropyrimidine-5-carbonitrile derivatives: Their synthesis and spectral elucidation. Acta Pol. Pharm., 2012, 69(6), 1077-1085.
[PMID: 23285668]
[46]
Tale, R.H.; Rodge, A.H.; Hatnapure, G.; Keche, A. ChemInform Abstract: The novel 3,4-Dihydropyrimidin-2(1H)-one urea derivatives of N-Aryl Urea: Synthesis, antiinflamatory, antibacterial and antifungal activity evaluation. Bioorg. Med. Chem. Lett., 2011, 21(15), 4648-4651.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.062] [PMID: 21737269]
[47]
Ramesh, B.; Bhalgat, C.M. Novel dihydropyrimidines and its pyrazole derivatives: Synthesis and pharmacological screening. Eur. J. Med. Chem., 2011, 46(5), 1882-1891.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.052] [PMID: 21414695]
[48]
Zaied, M.A.A.; Mahmoud, N.M.; Elgemeie, G.H. Toward developing therapies against corona virus: Synthesis and anti-avian influenza virus activity of novel cytosine thioglycoside analogues. ACS Omega, 2020, 5, 20042-20050.
[http://dx.doi.org/10.1021/acsomega.0c01537] [PMID: 32832758]
[49]
Mao, Q.; Dai, X.; Xu, G.; Su, Y.; Zhang, B.; Liu, D.; Wang, S. Design, synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2019, 181(1), 111558.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.061] [PMID: 31369933]
[50]
Teleb, M.; Zhang, F.X.; Farghaly, A.M.; Aboul Wafa, O.M.; Fronczek, F.R.; Zamponi, G.W.; Fahmy, H. Synthesis of new N3-substituted dihydropyrimidine derivatives as L-/T- type calcium channel blockers. Eur. J. Med. Chem., 2017, 134(134), 52-61.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.080] [PMID: 28399450]