Controlled Alignment of Nanowires for Transparent Conductive Films: Methods and Applications

Page: [571 - 586] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Nanowires (NWs) have received extensive attention as the candidate materials for transparent conductive films (TCFs) in recent years. To date, the aligned nanowire (NW)-based TCFs with the same arrangement direction have shown superior characteristics to their random counterparts in applications.

To fully develop the potential of NW TCFs in devices and provide inspiration for the development of subsequent NW alignment processes, this review summarizes state-of-the-art alignment techniques and emphasizes their mechanisms in detail from multiple perspectives.

According to the mechanism of NW alignment, this review divides these techniques into seven categories, i.e., the assisted assembly of fluid flow, meniscus, pressure, template, electromagnetic field, contact and strain, and analyzes the characteristics of these techniques. Moreover, by briefly enumerating the applications of aligned NW films in solar cells, organic light-emitting diodes, and touch screens, the superiority of aligned NW films over random NW films is also addressed.

Contact-assisted assembly exhibits the best arrangement effect, reaching a 98.6% alignment degree within ±1°. Under the same conditions, shorter NWs show better alignment in several cases. The combination of various assembly techniques is also an effective means to improve the alignment effect.

There is still room for improvement in the precise control of NW position, density, and orientation in a simple, efficient and compatible process. Therefore, follow-up research work is needed to conquer these problems. Moreover, a process that can realize NWs’ alignment and film patterning simultaneously is also a desirable scheme for fabricating personalized devices.

Keywords: Ordered nanowires, random, alignment, transparent conductive films, build-up mechanism, device applications.

Graphical Abstract

[1]
Hecht, D.S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 2011, 23(13), 1482-1513.
[http://dx.doi.org/10.1002/adma.201003188] [PMID: 21322065]
[2]
Jiu, J.; Suganuma, K. Metallic nanowires and their application. IEEE Trans. Compon. Packaging Manuf. Technol., 2016, 6, 1733-1751.
[http://dx.doi.org/10.1109/TCPMT.2016.2581829]
[3]
Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J-P.; Bellet, D. Metallic nanowire-based transparent electrodes for next generation flexible devices: A review. Small, 2016, 12(44), 6052-6075.
[http://dx.doi.org/10.1002/smll.201602581] [PMID: 27753213]
[4]
Williams, N.X.; Noyce, S.; Cardenas, J.A.; Catenacci, M.; Wiley, B.J.; Franklin, A.D. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale, 2019, 11(30), 14294-14302.
[http://dx.doi.org/10.1039/C9NR03378E] [PMID: 31318368]
[5]
Wang, W.; Peng, H.; Chen, S. Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 1838-1841.
[http://dx.doi.org/10.1039/C5TC04223B]
[6]
Kim, B.S.; Shin, K-Y.; Pyo, J.B.; Lee, J.; Son, J.G.; Lee, S-S.; Park, J.H. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks. ACS Appl. Mater. Interfaces, 2016, 8(4), 2582-2590.
[http://dx.doi.org/10.1021/acsami.5b10317] [PMID: 26760896]
[7]
Lin, S.; Wang, H.; Zhang, X.; Wang, D.; Zu, D.; Song, J.; Liu, Z.; Huang, Y.; Huang, K.; Tao, N.; Li, Z.; Bai, X.; Li, B.; Lei, M.; Yu, Z.; Wu, H. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy, 2019, 62, 111-116.
[http://dx.doi.org/10.1016/j.nanoen.2019.04.071]
[8]
Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S.L.; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano, 2017, 11(4), 4346-4357.
[http://dx.doi.org/10.1021/acsnano.7b01714] [PMID: 28397485]
[9]
Menamparambath, M.M.; Ajmal, C.M.; Kim, K.H.; Yang, D.; Roh, J.; Park, H.C.; Kwak, C.; Choi, J-Y.; Baik, S. Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films. Sci. Rep., 2015, 5, 16371.
[http://dx.doi.org/10.1038/srep16371] [PMID: 26575970]
[10]
Tang, Q.; Shen, H.; Yao, H.; Jiang, Y.; Zheng, C.; Gao, K. Preparation of silver nanowire/AZO composite film as a transparent conductive material. Ceram. Int., 2017, 43, 1106-1113.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.048]
[11]
Youn, D-H.; Yu, Y-J.; Choi, J.S.; Park, N-M.; Yun, S.J.; Lee, I.; Kim, G-H. Transparent conducting films of silver hybrid films formed by near-field electrospinning. Mater. Lett., 2016, 185, 139-142.
[http://dx.doi.org/10.1016/j.matlet.2016.08.128]
[12]
Kim, T.; Kim, Y.W.; Lee, H.S.; Kim, H.; Yang, W.S.; Suh, K.S. Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater., 2013, 23, 1250-1255.
[http://dx.doi.org/10.1002/adfm.201202013]
[13]
Koga, H.; Nogi, M.; Komoda, N.; Nge, T.T.; Sugahara, T.; Suganuma, K. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater., 2014, 6, e93.
[http://dx.doi.org/10.1038/am.2014.9]
[14]
Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S-J.; Kim, J.Y.; Ko, H. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett., 2015, 15(12), 7933-7942.
[http://dx.doi.org/10.1021/acs.nanolett.5b03019] [PMID: 26540011]
[15]
Li, W.; Zhang, H.; Shi, S.; Xu, J.; Qin, X.; He, Q.; Yang, K.; Dai, W.; Liu, G.; Zhou, Q.; Yu, H.; Silva, S.R.P.; Fahlman, M. Recent progress in silver nanowire networks for flexible organic electronics. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8, 4636-4674.
[http://dx.doi.org/10.1039/C9TC06865A]
[16]
Dong, J.; Goldthorpe, I.A. Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency. Nanotechnology, 2018, 29(4), 045705.
[http://dx.doi.org/10.1088/1361-6528/aa9ab2] [PMID: 29135469]
[17]
Chai, J.; Buriak, J.M. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano, 2008, 2(3), 489-501.
[http://dx.doi.org/10.1021/nn700341s] [PMID: 19206575]
[18]
Fang, H.; Wu, W.; Song, J.; Wang, Z.L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C, 2009, 113, 16571-16574.
[http://dx.doi.org/10.1021/jp907072z]
[19]
Holmes, J.D.; Johnston, K.P.; Doty, R.C.; Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457), 1471-1473.
[http://dx.doi.org/10.1126/science.287.5457.1471] [PMID: 10688792]
[20]
Nishitani-Gamo, M.; Shibasaki, T.; Gamo, H.; Nakagawa, K.; Ando, T. Liquid-phase deposition of aligned carbon nanotubes using cobalt catalyst. Jpn. J. Appl. Phys., 2007, 46(9B), 6329-6334.
[http://dx.doi.org/10.1143/JJAP.46.6329]
[21]
Sadeghzadeh Attar, A.; Hassani, Z. Fabrication and growth mechanism of single-crystalline rutile TiO2 nanowires by liquid-phase deposition process in a porous alumina template. J. Mater. Sci. Technol., 2015, 31(8), 828-833.
[http://dx.doi.org/10.1016/j.jmst.2014.12.010]
[22]
Hu, H.; Wang, S.; Feng, X.; Pauly, M.; Decher, G.; Long, Y. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chem. Soc. Rev., 2020, 49(2), 509-553.
[http://dx.doi.org/10.1039/C9CS00382G] [PMID: 31845689]
[23]
Su, B.; Wu, Y.; Jiang, L. The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev., 2012, 41(23), 7832-7856.
[http://dx.doi.org/10.1039/c2cs35187k] [PMID: 22990498]
[24]
Liu, M.; Wu, Z.; Lau, W.M.; Yang, J. Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett., 2012, 4, 142-153.
[http://dx.doi.org/10.1007/BF03353705]
[25]
Wang, M.C.P.; Gates, B.D. Directed assembly of nanowires. Mater. Today, 2009, 12, 34-43.
[http://dx.doi.org/10.1016/S1369-7021(09)70158-0]
[26]
Wang, J-L.; Hassan, M.; Liu, J-W.; Yu, S-H. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives. Adv. Mater., 2018, 30(48), e1803430.
[http://dx.doi.org/10.1002/adma.201803430] [PMID: 30357968]
[27]
Bian, R.; Meng, L.; Zhang, M.; Chen, L.; Liu, H. Aligning one-dimensional nanomaterials by solution processes. ACS Omega, 2019, 4(1), 1816-1823.
[http://dx.doi.org/10.1021/acsomega.8b02700] [PMID: 31459436]
[28]
Wu, S.; Shang, Y.; Cao, A. Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Res., 2020, 13, 1191-1204.
[http://dx.doi.org/10.1007/s12274-019-2560-z]
[29]
Huang, Y.; Duan, X.; Wei, Q.; Lieber, C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291(5504), 630-633.
[http://dx.doi.org/10.1126/science.291.5504.630] [PMID: 11158671]
[30]
Liu, M.; Chen, Y.; Guo, Q.; Li, R.; Sun, X.; Yang, J. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing. Nanotechnology, 2011, 22(12), 125302.
[http://dx.doi.org/10.1088/0957-4484/22/12/125302] [PMID: 21317493]
[31]
Wu, Y.; Jiang, Z.; Zan, X.; Lin, Y.; Wang, Q. Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel. Colloids Surf. B Biointerfaces, 2017, 158, 620-626.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.039] [PMID: 28755559]
[32]
Liu, J-W.; Wang, J-L.; Huang, W-R.; Yu, L.; Ren, X-F.; Wen, W-C.; Yu, S-H. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate. Sci. Rep., 2012, 2, 987.
[http://dx.doi.org/10.1038/srep00987] [PMID: 23248750]
[33]
Hu, H.; Pauly, M.; Felix, O.; Decher, G. Spray-assisted alignment of Layer-by-Layer assembled silver nanowires: a general approach for the preparation of highly anisotropic nano-composite films. Nanoscale, 2017, 9(3), 1307-1314.
[http://dx.doi.org/10.1039/C6NR08045F] [PMID: 28059411]
[34]
Sekar, S.; Lemaire, V.; Hu, H.; Decher, G.; Pauly, M. Anisotropic optical and conductive properties of oriented 1D-nanoparticle thin films made by spray-assisted self-assembly. Faraday Discuss., 2016, 191, 373-389.
[http://dx.doi.org/10.1039/C6FD00017G] [PMID: 27460036]
[35]
Malakooti, M.H.; Julé, F.; Sodano, H.A. Printed nanocomposite energy harvesters with controlled alignment of barium titanate nanowires. ACS Appl. Mater. Interfaces, 2018, 10(44), 38359-38367.
[http://dx.doi.org/10.1021/acsami.8b13643] [PMID: 30360049]
[36]
Yang, D.; Lu, B.; Zhao, Y.; Jiang, X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater., 2007, 19, 3702-3706.
[http://dx.doi.org/10.1002/adma.200700171]
[37]
Theron, A.; Zussman, E.; Yarin, A.L. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001, 12, 384-390.
[http://dx.doi.org/10.1088/0957-4484/12/3/329]
[38]
Roskov, K.E.; Kozek, K.A.; Wu, W.C.; Chhetri, R.K.; Oldenburg, A.L.; Spontak, R.J.; Tracy, J.B. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers. Langmuir, 2011, 27(23), 13965-13969.
[http://dx.doi.org/10.1021/la2021066] [PMID: 21834540]
[39]
Zhang, C-L.; Lv, K-P.; Hu, N-Y.; Yu, L.; Ren, X-F.; Liu, S-L.; Yu, S-H. Macroscopic-scale alignment of ultralong Ag nanowires in polymer nanofiber mat and their hierarchical structures by magnetic-field-assisted electrospinning. Small, 2012, 8(19), 2936-2940.
[http://dx.doi.org/10.1002/smll.201201353] [PMID: 22821678]
[40]
Lee, H.; Seong, B.; Kim, J.; Jang, Y.; Byun, D. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Small, 2014, 10(19), 3918-3922.
[http://dx.doi.org/10.1002/smll.201400936] [PMID: 24925213]
[41]
Hu, H.; Wang, S.; Wang, S.; Liu, G.; Cao, T.; Long, Y. Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater., 2019, 29, 1902922.
[http://dx.doi.org/10.1002/adfm.201902922]
[42]
Cui, H-W.; Jiu, J-T.; Sugahara, T.; Nagao, S.; Suganuma, K.; Uchida, H. ‘Chrysanthemum petal’ arrangements of silver nano wires. Nanotechnology, 2014, 25(48), 485705.
[http://dx.doi.org/10.1088/0957-4484/25/48/485705] [PMID: 25397618]
[43]
Li, W-Z.; Wei, W.; Chen, J-Y.; He, J-X.; Xue, S-N.; Zhang, J.; Liu, X.; Li, X.; Fu, Y.; Jiao, Y-H.; Zhang, K.; Liu, F.; Han, E-H. Stirring-assisted assembly of nanowires at liquid-solid interfaces. Nanotechnology, 2013, 24(10), 105302.
[http://dx.doi.org/10.1088/0957-4484/24/10/105302] [PMID: 23416634]
[44]
Zhu, R.; Lai, Y.; Nguyen, V.; Yang, R. Scalable alignment and transfer of nanowires in a Spinning Langmuir Film. Nanoscale, 2014, 6(20), 11976-11980.
[http://dx.doi.org/10.1039/C4NR02645D] [PMID: 25177924]
[45]
Duan, S-K.; Niu, Q-L.; Wei, J-F.; He, J-B.; Yin, Y-A.; Zhang, Y. Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys., 2015, 17(12), 8106-8112.
[http://dx.doi.org/10.1039/C4CP05989A] [PMID: 25726960]
[46]
Yin, F.; Lu, H.; Pan, H.; Ji, H.; Pei, S.; Liu, H.; Huang, J.; Gu, J.; Li, M.; Wei, J. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep., 2019, 9(1), 2403.
[http://dx.doi.org/10.1038/s41598-019-38931-x] [PMID: 30787401]
[47]
Cai, J.; Li, X.; Ma, L.; Jiang, Y.; Zhang, D. Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos. Sci. Technol., 2019, 171, 199-205.
[http://dx.doi.org/10.1016/j.compscitech.2018.12.018]
[48]
Chen, Y-R.; Hong, C-C.; Liou, T-M.; Hwang, K.C.; Guo, T-F. Roller-induced bundling of long silver nanowire networks for strong interfacial adhesion, highly flexible, transparent conductive electrodes. Sci. Rep., 2017, 7(1), 16662.
[http://dx.doi.org/10.1038/s41598-017-16843-y] [PMID: 29192222]
[49]
Takemoto, A.; Araki, T.; Noda, Y.; Uemura, T.; Yoshimoto, S.; Abbel, R.; Rentrop, C.; van den Brand, J.; Sekitani, T. Fine printing method of silver nanowire electrodes with alignment and accumulation. Nanotechnology, 2019, 30(37), 37LT03.
[http://dx.doi.org/10.1088/1361-6528/ab2aad] [PMID: 31212258]
[50]
Park, B.; Bae, I-G.; Huh, Y.H. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics. Sci. Rep., 2016, 6, 19485.
[http://dx.doi.org/10.1038/srep19485] [PMID: 26778621]
[51]
Meng, L.; Bian, R.; Guo, C.; Xu, B.; Liu, H.; Jiang, L. Aligning Ag nanowires by a facile bioinspired directional liquid transfer: Toward anisotropic flexible conductive electrodes. Adv. Mater., 2018, 30(25), e1706938.
[http://dx.doi.org/10.1002/adma.201706938] [PMID: 29707831]
[52]
Feng, J.; Xia, H.; You, F.; Mao, H.; Ma, X.; Tao, H.; Zhao, X.; Wang, M-C. Alignment of Ag nanowires on glass sheet by dip-coating technique. J. Alloys Compd., 2018, 735, 607-612.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.154]
[53]
Shin, M.G.; Choi, C.J.; Jung, Y.; Choi, J.H.; Ko, J.S. Alignment of silver nanowires using heat-assisted dip-coating method. AIP Adv., 2020, 10, 035101.
[http://dx.doi.org/10.1063/1.5133989]
[54]
Faustini, M.; Louis, B.; Albouy, P.A.; Kuemmel, M.; Grosso, D. Preparation of sol-gel films by dip-coating in extreme conditions. J. Phys. Chem. C, 2010, 114, 7637-7645.
[http://dx.doi.org/10.1021/jp9114755]
[55]
Pu, D.; Zhou, W.; Li, Y.; Chen, J.; Chen, J.; Zhang, H.; Mi, B.; Wang, L.; Ma, Y. Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes. RSC Advances, 2015, 5, 100725-100729.
[http://dx.doi.org/10.1039/C5RA20097K]
[56]
Huang, J.; Fan, R.; Connor, S.; Yang, P. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem. Int. Ed., 2007, 46(14), 2414-2417.
[http://dx.doi.org/10.1002/anie.200604789] [PMID: 17328024]
[57]
Kim, J-H.; Park, J-W. Novel patterning method for nanomaterials and its application to flexible organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2018, 10(11), 9704-9717.
[http://dx.doi.org/10.1021/acsami.7b19173] [PMID: 29473412]
[58]
Lee, S.G.; Kim, H.; Choi, H.H.; Bong, H.; Park, Y.D.; Lee, W.H.; Cho, K. Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates. Adv. Mater., 2013, 25(15), 2162-2166.
[http://dx.doi.org/10.1002/adma.201203687] [PMID: 23355141]
[59]
Whang, D.; Jin, S.; Wu, Y.; Lieber, C.M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett., 2003, 3, 1255-1259.
[http://dx.doi.org/10.1021/nl0345062]
[60]
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett., 2003, 3, 1229-1233.
[http://dx.doi.org/10.1021/nl0344209]
[61]
Chen, M.; Phang, I.Y.; Lee, M.R.; Yang, J.K.W.; Ling, X.Y. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering. Langmuir, 2013, 29(23), 7061-7069.
[http://dx.doi.org/10.1021/la4012108] [PMID: 23706081]
[62]
Tao, A.R.; Huang, J.; Yang, P. Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res., 2008, 41(12), 1662-1673.
[http://dx.doi.org/10.1021/ar8000525] [PMID: 18683954]
[63]
Yang, P. Nanotechnology: wires on water. Nature, 2003, 425(6955), 243-244.
[http://dx.doi.org/10.1038/425243a] [PMID: 13679895]
[64]
Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc., 2001, 123(18), 4360-4361.
[http://dx.doi.org/10.1021/ja0059138] [PMID: 11457213]
[65]
Yang, P.; Kim, F. Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem, 2002, 3(6), 503-506.
[http://dx.doi.org/10.1002/1439-7641(20020617)3:6<503:AID-CPHC503>3.0.CO;2-U] [PMID: 12465488]
[66]
Yu, G.; Cao, A.; Lieber, C.M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol., 2007, 2(6), 372-377.
[http://dx.doi.org/10.1038/nnano.2007.150] [PMID: 18654310]
[67]
Yu, G.; Li, X.; Lieber, C.M.; Cao, A. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem., 2008, 18, 728-734.
[http://dx.doi.org/10.1039/b713697h]
[68]
Wu, S.; Huang, K.; Shi, E.; Xu, W.; Fang, Y.; Yang, Y.; Cao, A. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control. ACS Nano, 2014, 8(4), 3522-3530.
[http://dx.doi.org/10.1021/nn406610d] [PMID: 24660781]
[69]
He, Y.; Nagashima, K.; Kanai, M.; Meng, G.; Zhuge, F.; Rahong, S.; Li, X.; Kawai, T.; Yanagida, T. Nanoscale size-selective deposition of nanowires by micrometer scale hydrophilic patterns. Sci. Rep., 2014, 4, 5943.
[http://dx.doi.org/10.1038/srep05943] [PMID: 25087699]
[70]
Heo, K.; Cho, E.; Yang, J-E.; Kim, M-H.; Lee, M.; Lee, B.Y.; Kwon, S.G.; Lee, M-S.; Jo, M-H.; Choi, H-J.; Hyeon, T.; Hong, S. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett., 2008, 8(12), 4523-4527.
[http://dx.doi.org/10.1021/nl802570m] [PMID: 19367934]
[71]
Yang, B-R.; Cao, W.; Liu, G-S.; Chen, H-J.; Noh, Y-Y.; Minari, T.; Hsiao, H-C.; Lee, C-Y.; Shieh, H-P.D.; Liu, C. Microchannel wetting for controllable patterning and alignment of silver nanowire with high resolution. ACS Appl. Mater. Interfaces, 2015, 7(38), 21433-21441.
[http://dx.doi.org/10.1021/acsami.5b06370] [PMID: 26340378]
[72]
Zhou, X.; Zhou, Y.; Ku, J.C.; Zhang, C.; Mirkin, C.A. Capillary force-driven, large-area alignment of multi-segmented nanowires. ACS Nano, 2014, 8(2), 1511-1516.
[http://dx.doi.org/10.1021/nn405627s] [PMID: 24450422]
[73]
Probst, P.T.; Sekar, S.; König, T.A.F.; Formanek, P.; Decher, G.; Fery, A.; Pauly, M. Highly oriented nanowire thin films with anisotropic optical properties driven by the simultaneous influence of surface templating and shear forces. ACS Appl. Mater. Interfaces, 2018, 10(3), 3046-3057.
[http://dx.doi.org/10.1021/acsami.7b15042] [PMID: 29268607]
[74]
Segat Frare, B.L.; Puydinger dos Santos, M.V.; Beron, F. Alignment optimization of the dielectrophoresis of Ni nanowires through external magnetic field. IEEE Magn. Lett., 2019, 10, 1-5.
[http://dx.doi.org/10.1109/LMAG.2019.2922930]
[75]
Oh, K.; Chung, J-H.; Riley, J.J.; Liu, Y.; Liu, W.K. Fluid flow-assisted dielectrophoretic assembly of nanowires. Langmuir, 2007, 23(23), 11932-11940.
[http://dx.doi.org/10.1021/la701755s] [PMID: 17935364]
[76]
Freer, E.M.; Grachev, O.; Duan, X.; Martin, S.; Stumbo, D.P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol., 2010, 5(7), 525-530.
[http://dx.doi.org/10.1038/nnano.2010.106] [PMID: 20526324]
[77]
Liu, Y.; Chung, J-H.; Liu, W.K.; Ruoff, R.S. Dielectrophoretic assembly of nanowires. J. Phys. Chem. B, 2006, 110(29), 14098-14106.
[http://dx.doi.org/10.1021/jp061367e] [PMID: 16854106]
[78]
Raychaudhuri, S.; Dayeh, S.A.; Wang, D.; Yu, E.T. Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett., 2009, 9(6), 2260-2266.
[http://dx.doi.org/10.1021/nl900423g] [PMID: 19419157]
[79]
Wang, X.; Chen, K.; Liu, L.; Xiang, N.; Ni, Z. Dielectrophoresis-based multi-step nanowire assembly on a flexible superstrate. Nanotechnology, 2018, 29(2), 025301.
[http://dx.doi.org/10.1088/1361-6528/aa9a22] [PMID: 29130902]
[80]
Morrow, T.J.; Li, M.; Kim, J.; Mayer, T.S.; Keating, C.D. Programmed assembly of DNA-coated nanowire devices. Science, 2009, 323(5912), 352.
[http://dx.doi.org/10.1126/science.1165921] [PMID: 19150837]
[81]
Smith, P.A.; Nordquist, C.D.; Jackson, T.N.; Mayer, T.S.; Martin, B.R.; Mbindyo, J.; Mallouk, T.E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett., 2000, 77, 1399-1401.
[http://dx.doi.org/10.1063/1.1290272]
[82]
Sperling, J.R.; Neale, S.L.; Clark, A.W. Bridging the gap: rewritable electronics using real-time light-induced dielectrophoresis on lithium niobate. Sci. Rep., 2017, 7(1), 9660.
[http://dx.doi.org/10.1038/s41598-017-09877-9] [PMID: 28851963]
[83]
Ahmed, W.; Kooij, E.S.; van Silfhout, A.; Poelsema, B. Quantitative analysis of gold nanorod alignment after electric field-assisted deposition. Nano Lett., 2009, 9(11), 3786-3794.
[http://dx.doi.org/10.1021/nl901968e] [PMID: 19719154]
[84]
Lee, C.H.; Kim, D.R.; Zheng, X. Orientation-controlled alignment of axially modulated pn silicon nanowires. Nano Lett., 2010, 10(12), 5116-5122.
[http://dx.doi.org/10.1021/nl103630c] [PMID: 21043492]
[85]
Hangarter, C.M.; Myung, N.V. Magnetic alignment of nanowires. Chem. Mater., 2005, 17, 1320-1324.
[http://dx.doi.org/10.1021/cm047955r]
[86]
Wang, J.; Liu, S.; Ban, C.; Jia, Z.; He, X.; Ma, J.; Pu, X.; Li, W.; Zhi, L. Halbach array assisted assembly of orderly aligned nickel nanowire networks as transparent conductive films. Nanotechnology, 2019, 30(35), 355301.
[http://dx.doi.org/10.1088/1361-6528/ab240e] [PMID: 31121572]
[87]
Beheshti, M.; Choi, J.; Geng, X.; Podlaha-Murphy, E.; Park, S. Patterned electromagnetic alignment of magnetic nanowires. Microelectron. Eng., 2018, 193, 71-78.
[http://dx.doi.org/10.1016/j.mee.2018.02.021] [PMID: 30270956]
[88]
Darmakkolla, S.R.; Ghobadi, M.; Lampert, L.; Pareira, A.F.; Jenike, A.; Tahir, M.; Rananavare, S.B. Morphology-controlled copper nanowire synthesis and magnetic field assisted self-assembly. Nanoscale, 2019, 11(6), 2679-2686.
[http://dx.doi.org/10.1039/C8NR06876C] [PMID: 30534758]
[89]
Li, N.; Huang, G-W.; Xiao, H-M.; Fu, S-Y. Preparation of aligned Fe3O4@Ag-nanowire/poly(vinyl alcohol) nanocomposite films via a low magnetic field. Compos., Part A Appl. Sci. Manuf., 2015, 77, 87-95.
[http://dx.doi.org/10.1016/j.compositesa.2015.06.019]
[90]
Tanase, M.; Silevitch, D.M.; Hultgren, A.; Bauer, L.A.; Searson, P.C.; Meyer, G.J.; Reich, D.H. Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys., 2002, 91, 8549-8551.
[http://dx.doi.org/10.1063/1.1452206]
[91]
Trotsenko, O.; Tokarev, A.; Gruzd, A.; Enright, T.; Minko, S. Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films. Nanoscale, 2015, 7(16), 7155-7161.
[http://dx.doi.org/10.1039/C5NR00154D] [PMID: 25811619]
[92]
Li, N.; Huang, G-W.; Shen, X-J.; Xiao, H-M.; Fu, S-Y. Controllable fabrication and magnetic-field assisted alignment of Fe3O4-coated Ag nanowires via a facile co-precipitation method. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 4879-4884.
[http://dx.doi.org/10.1039/c3tc30270a]
[93]
Tanase, M.; Bauer, L.A.; Hultgren, A.; Silevitch, D.M.; Sun, L.; Reich, D.H.; Searson, P.C.; Meyer, G.J. Magnetic alignment of fluorescent nanowires. Nano Lett., 2001, 1, 155-158.
[http://dx.doi.org/10.1021/nl005532s]
[94]
Liu, Z.; Liang, B.; Chen, G.; Yu, G.; Xie, Z.; Gao, L.; Chen, D.; Shen, G. Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 131-137.
[http://dx.doi.org/10.1039/C2TC00055E]
[95]
Yao, J.; Yan, H.; Lieber, C.M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol., 2013, 8(5), 329-335.
[http://dx.doi.org/10.1038/nnano.2013.55] [PMID: 23603986]
[96]
Fan, Z.; Ho, J.C.; Jacobson, Z.A.; Yerushalmi, R.; Alley, R.L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett., 2008, 8(1), 20-25.
[http://dx.doi.org/10.1021/nl071626r] [PMID: 17696563]
[97]
Takahashi, T.; Takei, K.; Ho, J.C.; Chueh, Y-L.; Fan, Z.; Javey, A. Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc., 2009, 131(6), 2102-2103.
[http://dx.doi.org/10.1021/ja8099954] [PMID: 19173560]
[98]
Yerushalmi, R.; Jacobson, Z.A.; Ho, J.C.; Fan, Z.; Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett., 2007, 91(20), 203104.
[http://dx.doi.org/10.1063/1.2813618]
[99]
Lee, J.; Sun, F.; Lee, J. Fabrication of large area flexible and highly transparent film by a simple ag nanowire alignment. J. Exp. Nanosci., 2013, 8, 130-137.
[http://dx.doi.org/10.1080/17458080.2011.561449]
[100]
Dong, J.; Abukhdeir, N.M.; Goldthorpe, I.A. Simple assembly of long nanowires through substrate stretching. Nanotechnology, 2015, 26(48), 485302.
[http://dx.doi.org/10.1088/0957-4484/26/48/485302] [PMID: 26559171]
[101]
Xu, F.; Durham, J.W.; Wiley, B.J.; Zhu, Y. Strain-release assembly of nanowires on stretchable substrates. ACS Nano, 2011, 5(2), 1556-1563.
[http://dx.doi.org/10.1021/nn103183d] [PMID: 21288046]
[102]
Durham, J.W., III; Zhu, Y. Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces, 2013, 5(2), 256-261.
[http://dx.doi.org/10.1021/am302384z] [PMID: 23249184]
[103]
Hsieh, G-W.; Wang, J.; Ogata, K.; Robertson, J.; Hofmann, S.; Milne, W.I. Stretched contact printing of one-dimensional nanostructures for hybrid inorganic-organic field effect transistors. J. Phys. Chem. C, 2012, 116, 7118-7125.
[http://dx.doi.org/10.1021/jp210341g]
[104]
Singh, M.; Rana, S. Silver and copper nanowire films as cost-effective and robust transparent electrode in energy harvesting through photovoltaic: A review. Mater. Today Commun., 2020, 24, 101317.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101317]
[105]
Yu, L.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev., 2016, 116(22), 13413-13453.
[http://dx.doi.org/10.1021/acs.chemrev.6b00179] [PMID: 27704787]
[106]
Lee, J-Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett., 2008, 8(2), 689-692.
[http://dx.doi.org/10.1021/nl073296g] [PMID: 18189445]
[107]
Wu, F.; Li, Z.; Ye, F.; Zhao, X.; Zhang, T.; Yang, X. Aligned silver nanowires as transparent conductive electrodes for flexible optoelectronic devices. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 11074-11080.
[http://dx.doi.org/10.1039/C6TC03671F]
[108]
Lee, Y.; Min, S-Y.; Kim, T-S.; Jeong, S-H.; Won, J.Y.; Kim, H.; Xu, W.; Jeong, J.K.; Lee, T-W. Versatile metal nanowiring platform for large-scale nano- and opto-electronic devices. Adv. Mater., 2016, 28(41), 9109-9116.
[http://dx.doi.org/10.1002/adma.201602855] [PMID: 27572481]