Silver Nanoparticle Enhances Secretion of Exosomes in SH-SY5Y Cells: Potential Therapeutic Strategy for Human Neuroblastoma Cancer

Page: [623 - 645] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: Exosomes-a subset of extracellular vesicles (EVs)-are secreted by virtually all cells, including human neuroblastoma cancer (SH-SY5Y) cells, into bodily fluids. Oxidative stress is critically involved in exosome biogenesis and release. Silver nanoparticles (AgNPs) induce cytotoxicity, oxidative stress, and apoptosis in cancer and non-cancer cells.

Methods: Here, we studied whether AgNPs-induced oxidative stress could enhance exosome biogenesis and release under low serum conditions in the presence of AgNPs. Although several studies have reported various mechanisms that contribute to EV biogenesis and release from cells, none exists on the involvement of external stimuli by controlling acetylcholinesterase (AChE) and neutralsphingomyelinase (n-SMase) activities, total protein concentration of exosomes, and exosome count.

Results: Owing to cytotoxic and oxidative stresses, AgNPs-treated cells and exosome release were significantly facilitated, which strongly correlated with the AgNPs-induced oxidative stress. Moreover, the expression levels of some important exosome biomarkers were found to be significant under oxidative stress conditions. N-acetylcysteine prevented oxidative stress-induced exosome biogenesis and release. Furthermore, we identified the involvement of the ceramide pathway in exosome functions by inhibiting AChE and n-SMase activities, and exosome protein/counts. These data contribute to the understanding of how AgNPs and intracellular molecular pathways affect exosome biogenesis and release in SH-SY5Y cells.

Conclusion: To the best of our knowledge, this is the first study showing that AgNPs stimulate exosome biogenesis and release by inducing oxidative stress and ceramide pathways.

Keywords: Neuroblastoma cancer, silver nanoparticles, exosome, acetylcholinesterase activity, neutral-sphingomyelinase, cytotoxicity, oxidative stress, apoptosis.

[1]
Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 2005, 7(3), 211-217.
[http://dx.doi.org/10.1016/j.ccr.2005.02.013] [PMID: 15766659]
[2]
Sun, W.; Luo, J.D.; Jiang, H.; Duan, D.D. Tumor exosomes: a double-edged sword in cancer therapy. Acta Pharmacol. Sin., 2018, 39(4), 534-541.
[http://dx.doi.org/10.1038/aps.2018.17] [PMID: 29542685]
[3]
Raposo, G.; Marks, M.S.; Cutler, D.F. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr. Opin. Cell Biol., 2007, 19(4), 394-401.
[http://dx.doi.org/10.1016/j.ceb.2007.05.001] [PMID: 17628466]
[4]
van Niel, G.; Raposo, G.; Candalh, C.; Boussac, M.; Hershberg, R.; Cerf-Bensussan, N.; Heyman, M. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology, 2001, 121(2), 337-349.
[http://dx.doi.org/10.1053/gast.2001.26263] [PMID: 11487543]
[5]
Quah, B.J.; O’Neill, H.C. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol. Dis., 2005, 35(2), 94-110.
[http://dx.doi.org/10.1016/j.bcmd.2005.05.002] [PMID: 15975838]
[6]
McLellan, A.D. Exosome release by primary B cells. Crit. Rev. Immunol., 2009, 29(3), 203-217.
[http://dx.doi.org/10.1615/CritRevImmunol.v29.i3.20] [PMID: 19538135]
[7]
Lachenal, G.; Pernet-Gallay, K.; Chivet, M.; Hemming, F.J.; Belly, A.; Bodon, G.; Blot, B.; Haase, G.; Goldberg, Y.; Sadoul, R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci., 2011, 46(2), 409-418.
[http://dx.doi.org/10.1016/j.mcn.2010.11.004] [PMID: 21111824]
[8]
Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res., 2015, 25(8), 981-984.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[9]
Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci., 2019, 9, 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[10]
Tamai, K.; Tanaka, N.; Nakano, T.; Kakazu, E.; Kondo, Y.; Inoue, J.; Shiina, M.; Fukushima, K.; Hoshino, T.; Sano, K.; Ueno, Y.; Shimosegawa, T.; Sugamura, K. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun., 2010, 399(3), 384-390.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.083] [PMID: 20673754]
[11]
Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci., 2013, 126(Pt 24), 5553-5565.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[12]
Kajimoto, T.; Okada, T.; Miya, S.; Zhang, L.; Nakamura, S. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun., 2013, 4, 2712.
[http://dx.doi.org/10.1038/ncomms3712] [PMID: 24231649]
[13]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[14]
Vidal, M.J.; Stahl, P.D. The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur. J. Cell Biol., 1993, 60(2), 261-267.
[PMID: 8330623]
[15]
Hsu, C.; Morohashi, Y.; Yoshimura, S.; Manrique-Hoyos, N.; Jung, S.; Lauterbach, M.A.; Bakhti, M.; Grønborg, M.; Möbius, W.; Rhee, J.; Barr, F.A.; Simons, M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol., 2010, 189(2), 223-232.
[http://dx.doi.org/10.1083/jcb.200911018] [PMID: 20404108]
[16]
Subra, C.; Laulagnier, K.; Perret, B.; Record, M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie, 2007, 89(2), 205-212.
[http://dx.doi.org/10.1016/j.biochi.2006.10.014] [PMID: 17157973]
[17]
Subra, C.; Grand, D.; Laulagnier, K.; Stella, A.; Lambeau, G.; Paillasse, M.; De Medina, P.; Monsarrat, B.; Perret, B.; Silvente-Poirot, S.; Poirot, M.; Record, M. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res., 2010, 51(8), 2105-2120.
[http://dx.doi.org/10.1194/jlr.M003657] [PMID: 20424270]
[18]
Phuyal, S.; Hessvik, N.P.; Skotland, T.; Sandvig, K.; Llorente, A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J., 2014, 281(9), 2214-2227.
[http://dx.doi.org/10.1111/febs.12775] [PMID: 24605801]
[19]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Palladium nanoparticle-induced oxidative stress, endoplasmic reticulum stress, apoptosis, and immunomodulation enhance the biogenesis and release of exosome in human leukemia monocytic cells (THP-1). Int. J. Nanomedicine, 2021, 16, 2849-2877.
[http://dx.doi.org/10.2147/IJN.S305269] [PMID: 33883895]
[20]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): oxidative stress and the ceramide pathway are key players. Int. J. Nanomedicine, 2021, 16, 515-538.
[http://dx.doi.org/10.2147/IJN.S291138] [PMID: 33519199]
[21]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Qasim, M.; Kim, J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019, 8(4), E307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[22]
Llorente, A.; van Deurs, B.; Sandvig, K. Cholesterol regulates prostasome release from secretory lysosomes in PC-3 human prostate cancer cells. Eur. J. Cell Biol., 2007, 86(7), 405-415.
[http://dx.doi.org/10.1016/j.ejcb.2007.05.001] [PMID: 17601634]
[23]
Li, J.; Lee, Y.; Johansson, H.J.; Mäger, I.; Vader, P.; Nordin, J.Z.; Wiklander, O.P.; Lehtiö, J.; Wood, M.J.; Andaloussi, S.E. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J. Extracell. Vesicles, 2015, 4, 26883.
[http://dx.doi.org/10.3402/jev.v4.26883] [PMID: 26022510]
[24]
Savina, A.; Furlán, M.; Vidal, M.; Colombo, M.I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem., 2003, 278(22), 20083-20090.
[http://dx.doi.org/10.1074/jbc.M301642200] [PMID: 12639953]
[25]
King, H.W.; Michael, M.Z.; Gleadle, J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2012, 12, 421.
[http://dx.doi.org/10.1186/1471-2407-12-421] [PMID: 22998595]
[26]
Koumangoye, R.B.; Sakwe, A.M.; Goodwin, J.S.; Patel, T.; Ochieng, J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One, 2011, 6(9), e24234.
[http://dx.doi.org/10.1371/journal.pone.0024234] [PMID: 21915303]
[27]
Théry, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol., 1999, 147(3), 599-610.
[http://dx.doi.org/10.1083/jcb.147.3.599] [PMID: 10545503]
[28]
Atienzar-Aroca, S.; Flores-Bellver, M.; Serrano-Heras, G.; Martinez-Gil, N.; Barcia, J.M.; Aparicio, S.; Perez-Cremades, D.; Garcia-Verdugo, J.M.; Diaz-Llopis, M.; Romero, F.J.; Sancho-Pelluz, J. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J. Cell. Mol. Med., 2016, 20(8), 1457-1466.
[http://dx.doi.org/10.1111/jcmm.12834] [PMID: 26999719]
[29]
Zhu, L.; Zang, J.; Liu, B.; Yu, G.; Hao, L.; Liu, L.; Zhong, J. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes. J. Cell. Physiol., 2020, 235(10), 7392-7409.
[http://dx.doi.org/10.1002/jcp.29641] [PMID: 32096219]
[30]
Wang, T.; Gilkes, D.M.; Takano, N.; Xiang, L.; Luo, W.; Bishop, C.J.; Chaturvedi, P.; Green, J.J.; Semenza, G.L. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc. Natl. Acad. Sci. USA, 2014, 111(31), E3234-E3242.
[http://dx.doi.org/10.1073/pnas.1410041111] [PMID: 24938788]
[31]
Emam, S.E.; Ando, H.; Abu Lila, A.S.; Shimizu, T.; Ukawa, M.; Okuhira, K.; Ishima, Y.; Mahdy, M.A.; Ghazy, F.S.; Ishida, T. A novel strategy to increase the yield of exosomes (extracellular vesicles) for an expansion of basic research. Biol. Pharm. Bull., 2018, 41(5), 733-742.
[http://dx.doi.org/10.1248/bpb.b17-00919] [PMID: 29709910]
[32]
Vulpis, E.; Cecere, F.; Molfetta, R.; Soriani, A.; Fionda, C.; Peruzzi, G.; Caracciolo, G.; Palchetti, S.; Masuelli, L.; Simonelli, L.; D’Oro, U.; Abruzzese, M.P.; Petrucci, M.T.; Ricciardi, M.R.; Paolini, R.; Cippitelli, M.; Santoni, A.; Zingoni, A. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6(3), e1279372.
[http://dx.doi.org/10.1080/2162402X.2017.1279372] [PMID: 28405503]
[33]
Bandari, S.K.; Purushothaman, A.; Ramani, V.C.; Brinkley, G.J.; Chandrashekar, D.S.; Varambally, S.; Mobley, J.A.; Zhang, Y.; Brown, E.E.; Vlodavsky, I.; Sanderson, R.D. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol., 2018, 65, 104-118.
[http://dx.doi.org/10.1016/j.matbio.2017.09.001] [PMID: 28888912]
[34]
Gobbo, J.; Marcion, G.; Cordonnier, M.; Dias, A.M.M.; Pernet, N.; Hammann, A.; Richaud, S.; Mjahed, H.; Isambert, N.; Clausse, V.; Rébé, C.; Bertaut, A.; Goussot, V.; Lirussi, F.; Ghiringhelli, F.; de Thonel, A.; Fumoleau, P.; Seigneuric, R.; Garrido, C. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J. Natl. Cancer Inst., 2015, 108(3)
[http://dx.doi.org/10.1093/jnci/djv330] [PMID: 26598503]
[35]
Lara, P.; Palma-Florez, S.; Salas-Huenuleo, E.; Polakovicova, I.; Guerrero, S.; Lobos-Gonzalez, L.; Campos, A.; Muñoz, L.; Jorquera-Cordero, C.; Varas-Godoy, M.; Cancino, J.; Arias, E.; Villegas, J.; Cruz, L.J.; Albericio, F.; Araya, E.; Corvalan, A.H.; Quest, A.F.G.; Kogan, M.J. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. J. Nanobiotechnology, 2020, 18(1), 20.
[http://dx.doi.org/10.1186/s12951-020-0573-0] [PMID: 31973696]
[36]
Keklikoglou, I.; Cianciaruso, C.; Güç, E.; Squadrito, M.L.; Spring, L.M.; Tazzyman, S.; Lambein, L.; Poissonnier, A.; Ferraro, G.B.; Baer, C.; Cassará, A.; Guichard, A.; Iruela-Arispe, M.L.; Lewis, C.E.; Coussens, L.M.; Bardia, A.; Jain, R.K.; Pollard, J.W.; De Palma, M. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol., 2019, 21(2), 190-202.
[http://dx.doi.org/10.1038/s41556-018-0256-3] [PMID: 30598531]
[37]
Mleczko, J.; Ortega, F.J.; Falcon-Perez, J.M.; Wabitsch, M.; Fernandez-Real, J.M.; Mora, S. Extracellular vesicles from hypoxic adipocytes and obese subjects reduce insulin-stimulated glucose uptake. Mol. Nutr. Food Res., 2018, 62(5), 1700917.
[http://dx.doi.org/10.1002/mnfr.201700917] [PMID: 29292863]
[38]
Guitart, K.; Loers, G.; Buck, F.; Bork, U.; Schachner, M.; Kleene, R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia, 2016, 64(6), 896-910.
[http://dx.doi.org/10.1002/glia.22963] [PMID: 26992135]
[39]
Oskowitz, A.; McFerrin, H.; Gutschow, M.; Carter, M.L.; Pochampally, R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. (Amst.), 2011, 6(3), 215-225.
[http://dx.doi.org/10.1016/j.scr.2011.01.004] [PMID: 21421339]
[40]
Aubertin, K.; Silva, A.K.; Luciani, N.; Espinosa, A.; Djemat, A.; Charue, D.; Gallet, F.; Blanc-Brude, O.; Wilhelm, C. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci. Rep., 2016, 6, 35376.
[http://dx.doi.org/10.1038/srep35376] [PMID: 27752092]
[41]
Sun, Y.; Liu, J. Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances. Clin. Ther., 2014, 36(6), 863-872.
[http://dx.doi.org/10.1016/j.clinthera.2014.04.018] [PMID: 24863262]
[42]
Taverna, S.; Ghersi, G.; Ginestra, A.; Rigogliuso, S.; Pecorella, S.; Alaimo, G.; Saladino, F.; Dolo, V.; Dell’Era, P.; Pavan, A.; Pizzolanti, G.; Mignatti, P.; Presta, M.; Vittorelli, M.L. Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J. Biol. Chem., 2003, 278(51), 51911-51919.
[http://dx.doi.org/10.1074/jbc.M304192200] [PMID: 14523006]
[43]
Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA, 2016, 113(8), E968-E977.
[http://dx.doi.org/10.1073/pnas.1521230113] [PMID: 26858453]
[44]
Zhang, X.F.; Gurunathan, S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int. J. Nanomedicine, 2016, 11, 3655-3675.
[http://dx.doi.org/10.2147/IJN.S111279] [PMID: 27536105]
[45]
Satapathy, S.R.; Mohapatra, P.; Preet, R.; Das, D.; Sarkar, B.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond.), 2013, 8(8), 1307-1322.
[http://dx.doi.org/10.2217/nnm.12.176] [PMID: 23514434]
[46]
Gurunathan, S.; Raman, J.; Abd Malek, S.N.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomedicine, 2013, 8, 4399-4413.
[PMID: 24265551]
[47]
Han, J.W.; Gurunathan, S.; Jeong, J.K.; Choi, Y.J.; Kwon, D.N.; Park, J.K.; Kim, J.H. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res. Lett., 2014, 9(1), 459.
[http://dx.doi.org/10.1186/1556-276X-9-459] [PMID: 25242904]
[48]
Yuan, Y.G.; Wang, Y.H.; Xing, H.H.; Gurunathan, S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Int. J. Nanomedicine, 2017, 12, 5819-5839.
[http://dx.doi.org/10.2147/IJN.S140605] [PMID: 28860751]
[49]
Yuan, Y.G.; Gurunathan, S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomedicine, 2017, 12, 6537-6558.
[http://dx.doi.org/10.2147/IJN.S125281] [PMID: 28919753]
[50]
Dayem, A.A.; Kim, B.; Gurunathan, S.; Choi, H.Y.; Yang, G.; Saha, S.K.; Han, D.; Han, J.; Kim, K.; Kim, J.H.; Cho, S.G. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways. Biotechnol. J., 2014, 9(7), 934-943.
[http://dx.doi.org/10.1002/biot.201300555] [PMID: 24827677]
[51]
Gurunathan, S.; Kim, J.H. Graphene oxide-silver nanoparticles nanocomposite stimulates differentiation in human neuroblastoma cancer cells (SH-SY5Y). Int. J. Mol. Sci., 2017, 18(12), 2549.
[http://dx.doi.org/10.3390/ijms18122549] [PMID: 29182571]
[52]
Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.H.; Hong, K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci., 2018, 19(8), 2269.
[http://dx.doi.org/10.3390/ijms19082269] [PMID: 30072642]
[53]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants, 2020, 9(4), 357.
[http://dx.doi.org/10.3390/antiox9040357] [PMID: 32344592]
[54]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Mitochondrial peptide humanin protects silver nanoparticles-induced neurotoxicity in human neuroblastoma cancer cells (SH-SY5Y). Int. J. Mol. Sci., 2019, 20(18), 4439.
[http://dx.doi.org/10.3390/ijms20184439] [PMID: 31505887]
[55]
Gurunathan, S.; Kang, M.H.; Kim, J.H. Combination effect of silver nanoparticles and histone deacetylases inhibitor in human alveolar basal epithelial cells. Molecules, 2018, 23(8), 2046.
[http://dx.doi.org/10.3390/molecules23082046] [PMID: 30111752]
[56]
Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; Suresh, S.; Sadovsky, Y.; Huang, T.J. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA, 2017, 114(40), 10584-10589.
[http://dx.doi.org/10.1073/pnas.1709210114] [PMID: 28923936]
[57]
Lim, J.; Choi, M.; Lee, H.; Kim, Y.H.; Han, J.Y.; Lee, E.S.; Cho, Y. Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J. Nanobiotechnology, 2019, 17(1), 1.
[http://dx.doi.org/10.1186/s12951-018-0433-3] [PMID: 30612562]
[58]
Soares Martins, T.; Catita, J.; Martins Rosa, I. A B da Cruz E Silva, O.; Henriques, A.G. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018, 13(6), e0198820.
[http://dx.doi.org/10.1371/journal.pone.0198820] [PMID: 29889903]
[59]
Gennebäck, N.; Hellman, U.; Malm, L.; Larsson, G.; Ronquist, G.; Waldenström, A.; Mörner, S. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J. Extracell. Vesicles, 2013, 2, 2.
[http://dx.doi.org/10.3402/jev.v2i0.20167] [PMID: 24009898]
[60]
Essandoh, K.; Yang, L.; Wang, X.; Huang, W.; Qin, D.; Hao, J.; Wang, Y.; Zingarelli, B.; Peng, T.; Fan, G.C. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim. Biophys. Acta, 2015, 1852(11), 2362-2371.
[http://dx.doi.org/10.1016/j.bbadis.2015.08.010] [PMID: 26300484]
[61]
Tabatadze, N.; Savonenko, A.; Song, H.; Bandaru, V.V.; Chu, M.; Haughey, N.J. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J. Neurosci. Res., 2010, 88(13), 2940-2951.
[http://dx.doi.org/10.1002/jnr.22438] [PMID: 20629193]
[62]
Cheng, Q.; Li, X.; Wang, Y.; Dong, M.; Zhan, F.H.; Liu, J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol. Sin., 2018, 39(4), 561-568.
[http://dx.doi.org/10.1038/aps.2017.118] [PMID: 28858294]
[63]
Jones, M.R.; Seeman, N.C.; Mirkin, C.A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224), 1260901.
[http://dx.doi.org/10.1126/science.1260901] [PMID: 25700524]
[64]
Henglein, A. Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem., 1993, 97(21), 5457-5471.
[http://dx.doi.org/10.1021/j100123a004]
[65]
Sastry, M.; Lala, N.; Patil, V.; Chavan, S.P.; Chittiboyina, A.G. Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles. Langmuir, 1998, 14(15), 4138-4142.
[http://dx.doi.org/10.1021/la9800755]
[66]
Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces, 2009, 74(1), 328-335.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.048] [PMID: 19716685]
[67]
Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9(1), 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[68]
Zaheer, Z. Rafiuddin, Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf. B Biointerfaces, 2012, 90, 48-52.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.037] [PMID: 22055624]
[69]
Kalimuthu, K.; Suresh Babu, R.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces, 2008, 65(1), 150-153.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.018] [PMID: 18406112]
[70]
Mittal, J.; Batra, A.; Singh, A.; Sharma, M.M. Phytofabrication of nanoparticles through plant as nanofactories. Adv. Nat. Sci. Nanosci., 2014, 5(4), 043002.
[http://dx.doi.org/10.1088/2043-6262/5/4/043002]
[71]
Masum, M.M.I.; Siddiqa, M.M.; Ali, K.A.; Zhang, Y.; Abdallah, Y.; Ibrahim, E.; Qiu, W.; Yan, C.; Li, B. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front. Microbiol., 2019, 10, 820.
[http://dx.doi.org/10.3389/fmicb.2019.00820] [PMID: 31110495]
[72]
Demirbas, A.; Yilmaz, V.; Ildiz, N.; Baldemir, A.; Ocsoy, I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J. Mol. Liq., 2017, 248, 1044-1049.
[http://dx.doi.org/10.1016/j.molliq.2017.10.130]
[73]
Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int. J. Nanomedicine, 2015, 10, 4203-4222.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]
[74]
Rashid, M.U.; Coombs, K.M. Serum-reduced media impacts on cell viability and protein expression in human lung epithelial cells. J. Cell. Physiol., 2019, 234(6), 7718-7724.
[http://dx.doi.org/10.1002/jcp.27890] [PMID: 30515823]
[75]
Coccini, T.; Manzo, L.; Bellotti, V.; De Simone, U. Assessment of cellular responses after short- and long-term exposure to silver nanoparticles in human neuroblastoma (SH-SY5Y) and astrocytoma (D384) cells. ScientificWorldJournal, 2014, 2014, 259765.
[http://dx.doi.org/10.1155/2014/259765] [PMID: 24693232]
[76]
Yuan, Z.; Luan, G.; Wang, Z.; Hao, X.; Li, J.; Suo, Y.; Li, G.; Wang, H. Flavonoids from Potentilla parvifolia Fisch. and their neuroprotective effects in human neuroblastoma SH-SY5Y cells in vitro. Chem. Biodivers., 2017, 14(6), e1600487.
[http://dx.doi.org/10.1002/cbdv.201600487] [PMID: 28294523]
[77]
Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[78]
Savina, A.; Vidal, M.; Colombo, M.I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci., 2002, 115(Pt 12), 2505-2515.
[http://dx.doi.org/10.1242/jcs.115.12.2505] [PMID: 12045221]
[79]
Pérez-Aguilar, B.; Vidal, C.J.; Palomec, G.; García-Dolores, F.; Gutiérrez-Ruiz, M.C.; Bucio, L.; Gómez-Olivares, J.L.; Gómez-Quiroz, L.E. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells. Biochim. Biophys. Acta, 2015, 1852(7), 1380-1387.
[http://dx.doi.org/10.1016/j.bbadis.2015.04.003] [PMID: 25869328]
[80]
Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett., 2015, 10, 35.
[http://dx.doi.org/10.1186/s11671-015-0747-0] [PMID: 25852332]
[81]
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int. J. Nanomedicine, 2017, 12, 6487-6502.
[http://dx.doi.org/10.2147/IJN.S135482] [PMID: 28919750]
[82]
Franco-Molina, M.A.; Mendoza-Gamboa, E.; Sierra-Rivera, C.A.; Gómez-Flores, R.A.; Zapata-Benavides, P.; Castillo-Tello, P.; Alcocer-González, J.M.; Miranda-Hernández, D.F.; Tamez-Guerra, R.S.; Rodríguez-Padilla, C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res., 2010, 29(1), 148.
[http://dx.doi.org/10.1186/1756-9966-29-148] [PMID: 21080962]
[83]
Xin, L.; Wang, J.; Fan, G.; Che, B.; Wu, Y.; Guo, S.; Tong, J. Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ. Toxicol., 2016, 31(12), 1691-1699.
[http://dx.doi.org/10.1002/tox.22171] [PMID: 26172371]
[84]
Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Choi, D.Y.; Song, H.; Park, C.; Kim, J.H.; Hong, K. Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. Int. J. Mol. Sci., 2018, 19(11), 3618.
[http://dx.doi.org/10.3390/ijms19113618] [PMID: 30453526]
[85]
Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett., 2020, 15(1), 115.
[http://dx.doi.org/10.1186/s11671-020-03344-7] [PMID: 32436107]
[86]
Song, X.L.; Li, B.; Xu, K.; Liu, J.; Ju, W.; Wang, J.; Liu, X.D.; Li, J.; Qi, Y.F. Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells. Cell Biol. Toxicol., 2012, 28(4), 225-237.
[http://dx.doi.org/10.1007/s10565-012-9218-x] [PMID: 22415596]
[87]
Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology, 2015, 13, 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
[88]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Graphene oxide-platinum nanoparticle nanocomposites: a suitable biocompatible therapeutic agent for prostate cancer. Polymers (Basel), 2019, 11(4), 733.
[http://dx.doi.org/10.3390/polym11040733] [PMID: 31018506]
[89]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. The effects of apigenin-biosynthesized ultra-small platinum nanoparticles on the human monocytic THP-1 cell line. Cells, 2019, 8(5), 444.
[http://dx.doi.org/10.3390/cells8050444] [PMID: 31083475]
[90]
Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials (Basel), 2019, 9(8), 1089.
[http://dx.doi.org/10.3390/nano9081089] [PMID: 31362420]
[91]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[92]
Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med., 2009, 30(1-2), 42-59.
[http://dx.doi.org/10.1016/j.mam.2008.05.005] [PMID: 18601945]
[93]
Gurunathan, S.; Arsalan Iqbal, M.; Qasim, M.; Park, C.H.; Yoo, H.; Hwang, J.H.; Uhm, S.J.; Song, H.; Park, C.; Do, J.T.; Choi, Y.; Kim, J.H.; Hong, K. Evaluation of graphene oxide induced cellular toxicity and transcriptome analysis in human embryonic kidney cells. Nanomaterials (Basel), 2019, 9(7), 969.
[http://dx.doi.org/10.3390/nano9070969] [PMID: 31269699]
[94]
Skalska, J.; Dąbrowska-Bouta, B.; Strużyńska, L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem. Toxicol., 2016, 97, 307-315.
[http://dx.doi.org/10.1016/j.fct.2016.09.026] [PMID: 27658324]
[95]
Jiang, X. Miclăuş, T.; Wang, L.; Foldbjerg, R.; Sutherland, D.S.; Autrup, H.; Chen, C.; Beer, C. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015, 9(2), 181-189.
[http://dx.doi.org/10.3109/17435390.2014.907457] [PMID: 24738617]
[96]
Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 1996, 87(4), 1595-1599.
[http://dx.doi.org/10.1182/blood.V87.4.1595.bloodjournal8741595] [PMID: 8608252]
[97]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[98]
Capela-Pires, J.; Ferreira, R.; Alves-Pereira, I. Heat shock and titanium dioxide nanoparticles decrease superoxide dismutase and glutathione enzymes activities in Saccharomyces cerevisiae. Green Process. Synth., 2015, 4(3), 225-233.
[http://dx.doi.org/10.1515/gps-2015-0007]
[99]
Gurunathan, S.; Qasim, M.; Park, C.H.; Arsalan Iqbal, M.; Yoo, H.; Hwang, J.H.; Uhm, S.J.; Song, H.; Park, C.; Choi, Y.; Kim, J.H.; Hong, K. Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3). Nanomaterials (Basel), 2019, 9(5), 787.
[http://dx.doi.org/10.3390/nano9050787] [PMID: 31121951]
[100]
Saeed-Zidane, M.; Linden, L.; Salilew-Wondim, D.; Held, E.; Neuhoff, C.; Tholen, E.; Hoelker, M.; Schellander, K.; Tesfaye, D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS One, 2017, 12(11), e0187569.
[http://dx.doi.org/10.1371/journal.pone.0187569] [PMID: 29117219]
[101]
Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4), 479-489.
[http://dx.doi.org/10.1016/S0092-8674(00)80434-1] [PMID: 9390557]
[102]
Srinivasula, S.M.; Ahmad, M.; Fernandes-Alnemri, T.; Alnemri, E.S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell, 1998, 1(7), 949-957.
[http://dx.doi.org/10.1016/S1097-2765(00)80095-7] [PMID: 9651578]
[103]
Sriram, M.I.; Kanth, S.B.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5, 753-762.
[PMID: 21042421]
[104]
Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.; Choi, Y.J.; Kwon, D.N.; Kim, J.H. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int. J. Nanomedicine, 2015, 10, 6257-6276.
[http://dx.doi.org/10.2147/IJN.S92449] [PMID: 26491296]
[105]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[106]
Kasai, H.; Yamaizumi, Z.; Berger, M.; Cadet, J. Photosensitized formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine) in DNA by riboflavin: a nonsinglet oxygen-mediated reaction. J. Am. Chem., 1992, 114(24), 9692-9694.
[http://dx.doi.org/10.1021/ja00050a078]
[107]
Bhattacharya, K.; Davoren, M.; Boertz, J.; Schins, R.P.F.; Hoffmann, E.; Dopp, E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol., 2009, 6(1), 17.
[http://dx.doi.org/10.1186/1743-8977-6-17] [PMID: 19545397]
[108]
Salim, E.I.; Abdel-Halim, K.Y.; Abu-Risha, S.E.; Abdel-Latif, A.S. Induction of 8-hydroxydeoxyguanosine and ultrastructure alterations by silver nanoparticles attributing to placental transfer in pregnant rats and fetuses. Hum. Exp. Toxicol., 2019, 38(6), 734-745.
[http://dx.doi.org/10.1177/0960327119836199] [PMID: 30935239]
[109]
Lehmann, S.G.; Toybou, D.; Pradas Del Real, A.E.; Arndt, D.; Tagmount, A. viau, M.; Safi, M.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Salomé, M.; Castillo-Michel, H.; Omaña-Sanz, B.; Hofmann, A.; Vulpe, C.; Simonato, J.P.; Celle, C.; Charlet, L.; Gilbert, B. Crumpling of silver nanowires by endolysosomes strongly reduces toxicity. Proc. Natl. Acad. Sci. USA, 2019, 116(30), 14893-14898.
[http://dx.doi.org/10.1073/pnas.1820041116] [PMID: 31285331]
[110]
Beer, L.; Zimmermann, M.; Mitterbauer, A.; Ellinger, A.; Gruber, F.; Narzt, M.S.; Zellner, M.; Gyöngyösi, M.; Madlener, S.; Simader, E.; Gabriel, C.; Mildner, M.; Ankersmit, H.J. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and Eeosomes for tissue regeneration. Sci. Rep., 2015, 5, 16662.
[http://dx.doi.org/10.1038/srep16662] [PMID: 26567861]
[111]
Xiao, X.; Yu, S.; Li, S.; Wu, J.; Ma, R.; Cao, H.; Zhu, Y.; Feng, J. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One, 2014, 9(2), e89534.
[http://dx.doi.org/10.1371/journal.pone.0089534] [PMID: 24586853]
[112]
Kanemoto, S.; Nitani, R.; Murakami, T.; Kaneko, M.; Asada, R.; Matsuhisa, K.; Saito, A.; Imaizumi, K. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2016, 480(2), 166-172.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.019] [PMID: 27725157]
[113]
Zhang, X.J.; Greenberg, D.S. Acetylcholinesterase involvement in apoptosis. Front. Mol. Neurosci., 2012, 5, 40.
[http://dx.doi.org/10.3389/fnmol.2012.00040] [PMID: 22514517]
[114]
Park, S.E.; Kim, N.D.; Yoo, Y.H. Acetylcholinesterase plays a pivotal role in apoptosome formation. Cancer Res., 2004, 64(8), 2652-2655.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0649] [PMID: 15087373]
[115]
Park, S.E.; Jeong, S.H.; Yee, S.B.; Kim, T.H.; Soung, Y.H.; Ha, N.C.; Kim, N.D.; Park, J.Y.; Bae, H.R.; Park, B.S.; Lee, H.J.; Yoo, Y.H. Interactions of acetylcholinesterase with caveolin-1 and subsequently with cytochrome c are required for apoptosome formation. Carcinogenesis, 2008, 29(4), 729-737.
[http://dx.doi.org/10.1093/carcin/bgn036] [PMID: 18258603]
[116]
Ibrahim, F.; Andre, C.; Iutzeler, A.; Guillaume, Y.C. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1010-1014.
[http://dx.doi.org/10.3109/14756366.2012.705835] [PMID: 24020636]
[117]
Kosaka, N.; Yoshioka, Y.; Hagiwara, K.; Tominaga, N.; Katsuda, T.; Ochiya, T. Trash or Treasure: extracellular microRNAs and cell-to-cell communication. Front. Genet., 2013, 4, 173.
[http://dx.doi.org/10.3389/fgene.2013.00173] [PMID: 24046777]
[118]
Harmati, M.; Gyukity-Sebestyen, E.; Dobra, G.; Janovak, L.; Dekany, I.; Saydam, O.; Hunyadi-Gulyas, E.; Nagy, I.; Farkas, A.; Pankotai, T.; Ujfaludi, Z.; Horvath, P.; Piccinini, F.; Kovacs, M.; Biro, T.; Buzas, K. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci. Rep., 2019, 9(1), 15329.
[http://dx.doi.org/10.1038/s41598-019-51778-6] [PMID: 31653931]
[119]
König, L.; Kasimir-Bauer, S.; Bittner, A.K.; Hoffmann, O.; Wagner, B.; Santos Manvailer, L.F.; Kimmig, R.; Horn, P.A.; Rebmann, V. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. OncoImmunology, 2017, 7(1), e1376153.
[http://dx.doi.org/10.1080/2162402X.2017.1376153] [PMID: 29296534]
[120]
Osti, D.; Del Bene, M.; Rappa, G.; Santos, M.; Matafora, V.; Richichi, C.; Faletti, S.; Beznoussenko, G.V.; Mironov, A.; Bachi, A.; Fornasari, L.; Bongetta, D.; Gaetani, P.; DiMeco, F.; Lorico, A.; Pelicci, G. Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin. Cancer Res., 2019, 25(1), 266-276.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1941] [PMID: 30287549]
[121]
van der Pol, E.; Hoekstra, A.G.; Sturk, A.; Otto, C.; van Leeuwen, T.G.; Nieuwland, R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost., 2010, 8(12), 2596-2607.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04074.x] [PMID: 20880256]
[122]
Samuel, P.; Mulcahy, L.A.; Furlong, F.; McCarthy, H.O.; Brooks, S.A.; Fabbri, M.; Pink, R.C.; Carter, D.R.F. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1737), 20170065.
[http://dx.doi.org/10.1098/rstb.2017.0065] [PMID: 29158318]
[123]
Kumar, D.; Gupta, D.; Shankar, S.; Srivastava, R.K. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 2015, 6(5), 3280-3291.
[http://dx.doi.org/10.18632/oncotarget.2462] [PMID: 25682864]
[124]
McAndrews, K.M.; Kalluri, R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer, 2019, 18(1), 52.
[http://dx.doi.org/10.1186/s12943-019-0963-9] [PMID: 30925917]
[125]
Okazaki, T.; Bell, R.M.; Hannun, Y.A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem., 1989, 264(32), 19076-19080.
[http://dx.doi.org/10.1016/S0021-9258(19)47268-2] [PMID: 2808413]
[126]
Okazaki, T.; Bielawska, A.; Bell, R.M.; Hannun, Y.A. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem., 1990, 265(26), 15823-15831.
[http://dx.doi.org/10.1016/S0021-9258(18)55472-7] [PMID: 2394750]
[127]
Hannun, Y.A. Functions of ceramide in coordinating cellular responses to stress. Science, 1996, 274(5294), 1855-1859.
[http://dx.doi.org/10.1126/science.274.5294.1855] [PMID: 8943189]
[128]
Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature, 1997, 387(6633), 569-572.
[http://dx.doi.org/10.1038/42408] [PMID: 9177342]
[129]
Dimanche-Boitrel, M.T.; Meurette, O.; Rebillard, A.; Lacour, S. Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist. Updat., 2005, 8(1-2), 5-14.
[http://dx.doi.org/10.1016/j.drup.2005.02.003] [PMID: 15939338]
[130]
Patwardhan, G.A.; Liu, Y.Y. Sphingolipids and expression regulation of genes in cancer. Prog. Lipid Res., 2011, 50(1), 104-114.
[http://dx.doi.org/10.1016/j.plipres.2010.10.003] [PMID: 20970453]
[131]
Eldh, M.; Ekström, K.; Valadi, H.; Sjöstrand, M.; Olsson, B.; Jernås, M.; Lötvall, J. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One, 2010, 5(12), e15353.
[http://dx.doi.org/10.1371/journal.pone.0015353] [PMID: 21179422]
[132]
Yuan, M.J.; Maghsoudi, T.; Wang, T. Exosomes mediate the intercellular communication after myocardial infarction. Int. J. Med. Sci., 2016, 13(2), 113-116.
[http://dx.doi.org/10.7150/ijms.14112] [PMID: 26941569]
[133]
Harmati, M.; Tarnai, Z.; Decsi, G.; Kormondi, S.; Szegletes, Z.; Janovak, L.; Dekany, I.; Saydam, O.; Gyukity-Sebestyen, E.; Dobra, G.; Nagy, I.; Nagy, K.; Buzas, K. Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. J. Oral Pathol. Med., 2017, 46(4), 259-266.
[http://dx.doi.org/10.1111/jop.12486] [PMID: 27598726]
[134]
de Jong, O.G.; Verhaar, M.C.; Chen, Y.; Vader, P.; Gremmels, H.; Posthuma, G.; Schiffelers, R.M.; Gucek, M.; van Balkom, B.W. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles, 2012, 1, 1.
[http://dx.doi.org/10.3402/jev.v1i0.18396] [PMID: 24009886]
[135]
Gills, J.J.; Zhang, C.; Abu-Asab, M.S.; Castillo, S.S.; Marceau, C.; LoPiccolo, J.; Kozikowski, A.P.; Tsokos, M.; Goldkorn, T.; Dennis, P.A. Ceramide mediates nanovesicle shedding and cell death in response to phosphatidylinositol ether lipid analogs and perifosine. Cell Death Dis., 2012, 3(7), e340.
[http://dx.doi.org/10.1038/cddis.2012.72] [PMID: 22764099]