Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review

Page: [1073 - 1092] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Depression is a prevalent disease worldwide, limiting psychosocial functioning and thequality of life. Linalool is the main constituent of some essential oils from aromatic plants, representing about 70% of these volatile concentrates. Evidence of the linalool activity on the central nervous system, mainly acting as an antidepressant agent, is increasingly abundant. This review aimed to extend the knowledge of linalool's antidepressant action mechanisms, which is fundamental for future research, intending to highlight this natural compound as a new antidepressant phytomedication. A critical analysis is proposed here with probable hypotheses of the synergic mechanisms that support the evidence of antidepressant effects of the linalool. The literature search has been conducted in databases for published scientific articles before December 2020, using relevant keywords. Several pieces of evidence point to the anticonvulsant, sedative, and anxiolytic actions. In addition to these activities, other studies have revealed that linalool acts on the monoaminergic and neuroendocrine systems, inflammatory process, oxidative stress, and neurotrophic factors, such as BDNF, resulting in considerable advances in the knowledge of the etiology of depression. In this context, linalool emerges as a promising bioactive compound in the therapeutic arsenal, capable of interacting with numerous pathophysiological factors and acting on several targets. This review claims to contribute to future studies, highlighting the gaps in the linalool knowledge, such as its kinetics, doses, routes of administration, and multiple targets of interaction, to clarify its antidepressant activity.

Keywords: Linalool, neuropharmacological effects, therapeutic effects, antidepressant bioactive compound, depression, essential oils.

Graphical Abstract

[1]
World Health Organization. Fact Sheets: Depression. Available from: https://www.who.int/en/news-room/fact-sheets/detail/depression (Accessed August 10, 2020).
[2]
Leonard, B.E. Impact of inflammation on neurotransmitter changes in major depression: An insight into the action of antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 261-267.
[http://dx.doi.org/10.1016/j.pnpbp.2013.10.018] [PMID: 24189118]
[3]
Villas Boas, G.R.; Boerngen de Lacerda, R.; Paes, M.M.; Gubert, P.; Almeida, W.L.D.C.; Rescia, V.C.; de Carvalho, P.M.G.; de Carvalho, A.A.V.; Oesterreich, S.A. Molecular aspects of depression: A review from neurobiology to treatment. Eur. J. Pharmacol., 2019, 851, 99-121.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.024] [PMID: 30776369]
[4]
Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragrance J., 2014, 29(4), 193-219.
[http://dx.doi.org/10.1002/ffj.3197]
[5]
Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces, 2018, 171, 566-578.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.001] [PMID: 30098535]
[6]
Perry, N.; Perry, E. Aromatherapy in the management of psychiatric disorders: clinical and neuropharmacological perspectives. CNS Drugs, 2006, 20(4), 257-280.
[http://dx.doi.org/10.2165/00023210-200620040-00001] [PMID: 16599645]
[7]
Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. Anxiolytic Terpenoids and Aromatherapy for Anxiety and Depression. In: Reviews on New Drug Targets in Age-Related Disorders; Guest, P.C., Ed.; Springer: Cham, 2020; pp. 283-296.
[http://dx.doi.org/10.1007/978-3-030-42667-5_11]
[8]
Sugawara, Y.; Shigetho, A.; Yoneda, M.; Tuchiya, T.; Matumura, T.; Hirano, M. Relationship between mood change, odour and its physiological effects in humans while inhaling the fragrances of essential oils as well as linalool and its enantiomers. Molecules, 2013, 18(3), 3312-3338.
[http://dx.doi.org/10.3390/molecules18033312] [PMID: 23486108]
[9]
Guzmán-Gutiérrez, S.L.; Bonilla-Jaime, H.; Gómez-Cansino, R.; Reyes-Chilpa, R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci., 2015, 128, 24-29.
[http://dx.doi.org/10.1016/j.lfs.2015.02.021] [PMID: 25771248]
[10]
Ferrari, F.; Villa, R.F. The neurobiology of depression: An integrated overview from biological theories to clinical evidence. Mol. Neurobiol., 2017, 54(7), 4847-4865.
[http://dx.doi.org/10.1007/s12035-016-0032-y] [PMID: 27510505]
[11]
Cleare, J.A. Biological Models of Unipolar Depression. In: Mood Disorders: A Handbook of Science and Practice; Power, M., Ed.; Wiley & Sons: Chichester, 2004; pp. 29-46.
[http://dx.doi.org/10.1002/9780470696385.ch2]
[12]
Camardese, G.; Di Giuda, D.; Di Nicola, M.; Cocciolillo, F.; Giordano, A.; Janiri, L.; Guglielmo, R. Imaging studies on dopamine transporter and depression: A review of literature and suggestions for future research. J. Psychiatr. Res., 2014, 51, 7-18.
[http://dx.doi.org/10.1016/j.jpsychires.2013.12.006] [PMID: 24433847]
[13]
Paykel, E.S. The evolution of life events research in psychiatry. J. Affect. Disord., 2001, 62(3), 141-149.
[http://dx.doi.org/10.1016/S0165-0327(00)00174-9] [PMID: 11223102]
[14]
Gold, P.W.; Machado-Vieira, R.; Pavlatou, M.G. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plast., 2015, 2015, 581976.
[http://dx.doi.org/10.1155/2015/581976] [PMID: 25878903]
[15]
Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav. Brain Res., 2018, 341, 79-90.
[http://dx.doi.org/10.1016/j.bbr.2017.12.025] [PMID: 29284108]
[16]
Paez-Pereda, M.; Hausch, F.; Holsboer, F. Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert Opin. Investig. Drugs, 2011, 20(4), 519-535.
[http://dx.doi.org/10.1517/13543784.2011.565330] [PMID: 21395482]
[17]
Maric, N.P.; Adzic, M. Pharmacological modulation of HPA axis in depression - new avenues for potential therapeutic benefits. Psychiatr. Danub., 2013, 25(3), 299-305.
[PMID: 24048401]
[18]
Paudel, Y.N.; Shaikh, M.F.; Shah, S.; Kumari, Y.; Othman, I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur. J. Pharmacol., 2018, 837, 145-155.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.020] [PMID: 30125565]
[19]
Gimeno, D.; Kivimäki, M.; Brunner, E.J.; Elovainio, M.; De Vogli, R.; Steptoe, A.; Kumari, M.; Lowe, G.D.; Rumley, A.; Marmot, M.G.; Ferrie, J.E. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med., 2009, 39(3), 413-423.
[http://dx.doi.org/10.1017/S0033291708003723] [PMID: 18533059]
[20]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[21]
Wittenberg, G.M.; Stylianou, A.; Zhang, Y.; Sun, Y.; Gupta, A.; Jagannatha, P.S.; Wang, D.; Hsu, B.; Curran, M.E.; Khan, S.; Chen, G.; Bullmore, E.T.; Drevets, W.C.; Drevets, W.C. Effects of immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol. Psychiatry, 2020, 25(6), 1275-1285.
[http://dx.doi.org/10.1038/s41380-019-0471-8] [PMID: 31427751]
[22]
Goshen, I.; Kreisel, T.; Ounallah-Saad, H.; Renbaum, P.; Zalzstein, Y.; Ben-Hur, T.; Levy-Lahad, E.; Yirmiya, R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology, 2007, 32(8-10), 1106-1115.
[http://dx.doi.org/10.1016/j.psyneuen.2007.09.004] [PMID: 17976923]
[23]
Ben Menachem-Zidon, O.; Goshen, I.; Kreisel, T.; Ben Menahem, Y.; Reinhartz, E.; Ben Hur, T.; Yirmiya, R. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology, 2008, 33(9), 2251-2262.
[http://dx.doi.org/10.1038/sj.npp.1301606] [PMID: 17987063]
[24]
Wigner, P.; Czarny, P.; Galecki, P.; Su, K-P.; Sliwinski, T. The molecular aspects of oxidative & nitrosative stress and the tryptophan catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Res., 2018, 262, 566-574.
[http://dx.doi.org/10.1016/j.psychres.2017.09.045] [PMID: 28951145]
[25]
Gould, E.; Tanapat, P.; Rydel, T.; Hastings, N. Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry, 2000, 48(8), 715-720.
[http://dx.doi.org/10.1016/S0006-3223(00)01021-0] [PMID: 11063968]
[26]
Manji, H.K.; Drevets, W.C.; Charney, D.S. The cellular neurobiology of depression. Nat. Med., 2001, 7(5), 541-547.
[http://dx.doi.org/10.1038/87865] [PMID: 11329053]
[27]
Sharma, A.N.; da Costa e Silva, B.F.; Soares, J.C.; Carvalho, A.F.; Quevedo, J. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J. Affect. Disord., 2016, 197, 9-20.
[http://dx.doi.org/10.1016/j.jad.2016.02.067] [PMID: 26956384]
[28]
Cobb, J.A.; Simpson, J.; Mahajan, G.J.; Overholser, J.C.; Jurjus, G.J.; Dieter, L.; Herbst, N.; May, W.; Rajkowska, G.; Stockmeier, C.A. Hippocampal volume and total cell numbers in major depressive disorder. J. Psychiatr. Res., 2013, 47(3), 299-306.
[http://dx.doi.org/10.1016/j.jpsychires.2012.10.020] [PMID: 23201228]
[29]
Duman, R.S. Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psychiatry, 2002, 17(S3)(Suppl. 3), 306-310.
[http://dx.doi.org/10.1016/S0924-9338(02)00654-5] [PMID: 15177086]
[30]
Duman, R.S.; Li, N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1601), 2475-2484.
[http://dx.doi.org/10.1098/rstb.2011.0357] [PMID: 22826346]
[31]
Martinotti, G.; Pettorruso, M.; De Berardis, D.; Varasano, P.A.; Lucidi, P.G.; De Remigis, V.; Valchera, A.; Ricci, V.; Di Nicola, M.; Janiri, L.; Biggio, G.; Di Giannantonio, M. Agomelatine increases BDNF serum levels in depressed patients in correlation with the improvement of depressive symptoms. Int. J. Neuropsychopharmacol., 2016, 19(5), pyw003.
[http://dx.doi.org/10.1093/ijnp/pyw003] [PMID: 26775293]
[32]
Dvojkovic, A.; Nikolac, P.M.; Sagud, M.; Nedic Erjavec, G.; Mihaljevic Peles, A.; Svob Strac, D.; Vuksan Cusa, B.; Tudor, L.; Kusevic, Z.; Konjevod, M.; Zivkovic, M.; Jevtovic, S.; Pivac, N. Effect of vortioxetine vs. escitalopram on plasma BDNF and platelet serotonin in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 105, 110016.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110016] [PMID: 32534176]
[33]
Dos Santos, É.R.Q.; Maia, C.S.F.; Fontes Junior, E.A.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. J. Ethnopharmacol., 2018, 212, 43-49.
[http://dx.doi.org/10.1016/j.jep.2017.10.013] [PMID: 29037915]
[34]
Guzmán-Gutiérrez, S.L.; Gómez-Cansino, R.; García-Zebadúa, J.C.; Jiménez-Pérez, N.C.; Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles. J. Ethnopharmacol., 2012, 143(2), 673-679.
[http://dx.doi.org/10.1016/j.jep.2012.07.026] [PMID: 22867633]
[35]
López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Front. Pharmacol., 2017, 8, 280.
[http://dx.doi.org/10.3389/fphar.2017.00280] [PMID: 28579958]
[36]
Lee, B.K.; Jung, A.N.; Jung, Y-S. Linalool ameliorates memory loss and behavioral impairment induced by REM-sleep deprivation through the serotonergic pathway. Biomol. Ther. (Seoul), 2018, 26(4), 368-373.
[http://dx.doi.org/10.4062/biomolther.2018.081] [PMID: 29915164]
[37]
Luscombe, G.P.; Martin, K.F.; Hutchins, L.J.; Gosden, J.; Heal, D.J. Mediation of the antidepressant-like effect of 8-OH-DPAT in mice by postsynaptic 5-HT1A receptors. Br. J. Pharmacol., 1993, 108(3), 669-677.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb12859.x] [PMID: 8467355]
[38]
Haddjeri, N.; Blier, P.; de Montigny, C. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J. Neurosci., 1998, 18(23), 10150-10156.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-10150.1998] [PMID: 9822768]
[39]
Millan, M.J. The role of monoamines in the actions of established and “novel” antidepressant agents: A critical review. Eur. J. Pharmacol., 2004, 500(1-3), 371-384.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.038] [PMID: 15464046]
[40]
Bourin, M.; Colombel, M.C.; Malinge, M.; Bradwejn, J. Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity. J. Psychiatry Neurosci., 1991, 16(4), 199-203.
[PMID: 1786262]
[41]
O’Neill, M.F.; Osborne, D.J.; Woodhouse, S.M.; Conway, M.W. Selective imidazoline I2 ligands do not show antidepressant-like activity in the forced swim test in mice. J. Psychopharmacol., 2001, 15(1), 18-22.
[http://dx.doi.org/10.1177/026988110101500104] [PMID: 11277603]
[42]
Abbasi-Maleki, S.; Kadkhoda, Z.; Taghizad-Farid, R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. J. Tradit. Complement. Med., 2019, 10(4), 327-335.
[http://dx.doi.org/10.1016/j.jtcme.2019.01.003] [PMID: 32695649]
[43]
Hao, C-W.; Lai, W-S.; Ho, C-T.; Sheen, L-Y. Antidepressant-like effect of lemon essential oil is through a modulation in the levels of norepinephrine, dopamine, and serotonin in mice: use of the tail suspension test. J. Funct. Foods, 2013, 5(1), 370-379.
[http://dx.doi.org/10.1016/j.jff.2012.11.008]
[44]
Komiya, M.; Takeuchi, T.; Harada, E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav. Brain Res., 2006, 172(2), 240-249.
[http://dx.doi.org/10.1016/j.bbr.2006.05.006] [PMID: 16780969]
[45]
Yamada, K.; Mimaki, Y.; Sashida, Y. Effects of inhaling the vapor of Lavandula burnatii super-derived essential oil and linalool on plasma adrenocorticotropic hormone (ACTH), catecholamine and gonadotropin levels in experimental menopausal female rats. Biol. Pharm. Bull., 2005, 28(2), 378-379.
[http://dx.doi.org/10.1248/bpb.28.378] [PMID: 15684505]
[46]
Jasnic, N.; Djordjevic, J.; Djurasevic, S.; Lakic, I.; Vujovic, P.; Spasojevic, N.; Cvijic, G. Specific regulation of ACTH secretion under the influence of low and high ambient temperature—The role of catecholamines and vasopressin. J. Therm. Biol., 2012, 37(7), 469-474.
[http://dx.doi.org/10.1016/j.jtherbio.2012.04.003]
[47]
Yamamoto, N.; Fujiwara, S.; Saito-Iizumi, K.; Kamei, A.; Shinozaki, F.; Watanabe, Y.; Abe, K.; Nakamura, A. Effects of inhaled (S)-linalool on hypothalamic gene expression in rats under restraint stress. Biosci. Biotechnol. Biochem., 2013, 77(12), 2413-2418.
[http://dx.doi.org/10.1271/bbb.130524] [PMID: 24317057]
[48]
Yoshida, K.; Yamamoto, N.; Fujiwara, S.; Kamei, A.; Abe, K.; Nakamura, A. Inhalation of a racemic mixture (R,S)-linalool by rats experiencing restraint stress alters neuropeptide and MHC class I gene expression in the hypothalamus. Neurosci. Lett., 2017, 653, 314-319.
[http://dx.doi.org/10.1016/j.neulet.2017.05.046] [PMID: 28595953]
[49]
Nakamura, A.; Fujiwara, S.; Matsumoto, I.; Abe, K. Stress repression in restrained rats by (R)-(-)-linalool inhalation and gene expression profiling of their whole blood cells. J. Agric. Food Chem., 2009, 57(12), 5480-5485.
[http://dx.doi.org/10.1021/jf900420g] [PMID: 19456160]
[50]
Höferl, M.; Krist, S.; Buchbauer, G. Chirality influences the effects of linalool on physiological parameters of stress. Planta Med., 2006, 72(13), 1188-1192.
[http://dx.doi.org/10.1055/s-2006-947202] [PMID: 16983600]
[51]
Caputo, L.; Reguilon, M.D.; Mińarro, J.; De Feo, V.; Rodriguez-Arias, M. Lavandula angustifolia essential oil and linalool counteract social aversion induced by social defeat. Molecules, 2018, 23(10), 2694.
[http://dx.doi.org/10.3390/molecules23102694] [PMID: 30347669]
[52]
Kim, I-H.; Kim, C.; Seong, K.; Hur, M-H.; Lim, H.M.; Lee, M.S. Essential oil inhalation on blood pressure and salivary cortisol levels in prehypertensive and hypertensive subjects. Evid. Based Complement. Alternat. Med., 2012, 2012, 984203.
[http://dx.doi.org/10.1155/2012/984203] [PMID: 23259002]
[53]
Toda, M.; Morimoto, K. Effect of lavender aroma on salivary endocrinological stress markers. Arch. Oral Biol., 2008, 53(10), 964-968.
[http://dx.doi.org/10.1016/j.archoralbio.2008.04.002] [PMID: 18635155]
[54]
Seol, G.H.; Lee, Y.H.; Kang, P.; You, J.H.; Park, M.; Min, S.S. Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination. J. Altern. Complement. Med., 2013, 19(7), 664-670.
[http://dx.doi.org/10.1089/acm.2012.0148] [PMID: 23360656]
[55]
Atsumi, T.; Tonosaki, K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res., 2007, 150(1), 89-96.
[http://dx.doi.org/10.1016/j.psychres.2005.12.012] [PMID: 17291597]
[56]
Sánchez-Vidaña, D.I.; Po, K.K-T.; Fung, T.K-H.; Chow, J.K-W.; Lau, W.K-W.; So, P-K.; Lau, B.W-M.; Tsang, H.W-H. Lavender essential oil ameliorates depression-like behavior and increases neurogenesis and dendritic complexity in rats. Neurosci. Lett., 2019, 701, 180-192.
[http://dx.doi.org/10.1016/j.neulet.2019.02.042] [PMID: 30825591]
[57]
Leuner, B.; Caponiti, J.M.; Gould, E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 2012, 22(4), 861-868.
[http://dx.doi.org/10.1002/hipo.20947] [PMID: 21692136]
[58]
Ayuob, N.N.; Firgany, A.E.L.; El-Mansy, A.A.; Ali, S. Can Ocimum basilicum relieve chronic unpredictable mild stress-induced depression in mice? Exp. Mol. Pathol., 2017, 103(2), 153-161.
[http://dx.doi.org/10.1016/j.yexmp.2017.08.007] [PMID: 28823898]
[59]
Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; Wang, D. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 2013, 180(1), e47-e54.
[http://dx.doi.org/10.1016/j.jss.2012.10.050] [PMID: 23228323]
[60]
Batista, P.A.; Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Brum, L.F.S.; Story, G.M.; Santos, A.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain, 2010, 11(11), 1222-1229.
[http://dx.doi.org/10.1016/j.jpain.2010.02.022] [PMID: 20452289]
[61]
Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother., 2019, 118, 109295.
[http://dx.doi.org/10.1016/j.biopha.2019.109295] [PMID: 31545255]
[62]
Li, Y.; Lv, O.; Zhou, F.; Li, Q.; Wu, Z.; Zheng, Y. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res., 2015, 40(7), 1520-1525.
[http://dx.doi.org/10.1007/s11064-015-1629-7] [PMID: 26040565]
[63]
Barrera-Sandoval, A.M.; Osorio, E.; Cardona-Gómez, G.P. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur. J. Pharmacol., 2019, 857, 172420.
[http://dx.doi.org/10.1016/j.ejphar.2019.172420] [PMID: 31136761]
[64]
Sabogal-Guáqueta, A.M.; Osorio, E.; Cardona-Gómez, G.P. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology, 2016, 102, 111-120.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.002] [PMID: 26549854]
[65]
Hansson, E.; Werner, T.; Björklund, U.; Skiöldebrand, E. Therapeutic innovation: Inflammatory-reactive astrocytes as targets of inflammation. IBRO Rep., 2016, 1, 1-9.
[http://dx.doi.org/10.1016/j.ibror.2016.06.001] [PMID: 30135924]
[66]
Peana, A.T.; De Montis, M.G.; Sechi, S.; Sircana, G.; D’Aquila, P.S.; Pippia, P. Effects of (-)-linalool in the acute hyperalgesia induced by carrageenan, L-glutamate and prostaglandin E2. Eur. J. Pharmacol., 2004, 497(3), 279-284.
[http://dx.doi.org/10.1016/j.ejphar.2004.06.006] [PMID: 15336945]
[67]
Kim, M-G.; Kim, S-M.; Min, J-H.; Kwon, O-K.; Park, M-H.; Park, J-W.; Ahn, H.I.; Hwang, J.Y.; Oh, S.R.; Lee, J.W.; Ahn, K.S. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int. Immunopharmacol., 2019, 74, 105706.
[http://dx.doi.org/10.1016/j.intimp.2019.105706] [PMID: 31254955]
[68]
Lee, S-C.; Wang, S-Y.; Li, C-C.; Liu, C-T. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. J. Food Drug Anal., 2018, 26(1), 211-220.
[http://dx.doi.org/10.1016/j.jfda.2017.03.006] [PMID: 29389558]
[69]
Elgendy, E.M. Photooxygenation of natural ã-terpinene. Boll. Chim. Farm., 2004, 143(9), 337-339.
[PMID: 15881811]
[70]
Elgendy, E.M.; Semeih, M.Y. Phyto-Monoterpene linalool as precursor to synthesis epoxides and hydroperoxides as anti carcinogenic agents via thermal and photo chemical oxidation reactions. Arab. J. Chem., 2019, 12(7), 966-973.
[http://dx.doi.org/10.1016/j.arabjc.2018.09.008]
[71]
Jabir, M.S.; Taha, A.A.; Sahib, U.I.; Taqi, Z.J.; Al-Shammari, A.M.; Salman, A.S. Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line. Mater. Sci. Eng. C, 2019, 94, 949-964.
[http://dx.doi.org/10.1016/j.msec.2018.10.014] [PMID: 30423784]
[72]
Celik, S.; Ozkaya, A. Effects of intraperitoneally administered lipoic acid, vitamin E, and linalool on the level of total lipid and fatty acids in guinea pig brain with oxidative stress induced by H2O2. J. Biochem. Mol. Biol., 2002, 35(6), 547-552.
[PMID: 12470587]
[73]
Thapa, D.; Richardson, A.J.; Zweifel, B.; Wallace, R.J.; Gratz, S.W. Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human colon cancer cells. J. Food Sci., 2019, 84(7), 1979-1985.
[http://dx.doi.org/10.1111/1750-3841.14665] [PMID: 31206673]
[74]
Mehri, S.; Meshki, M.A.; Hosseinzadeh, H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem. Toxicol., 2015, 38(2), 162-166.
[http://dx.doi.org/10.3109/01480545.2014.919585] [PMID: 24844946]
[75]
Park, H.; Seol, G.H.; Ryu, S.; Choi, I-Y. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury. Arch. Pharm. Res., 2016, 39(4), 555-564.
[http://dx.doi.org/10.1007/s12272-016-0714-z] [PMID: 26832326]
[76]
Kaur, T.; Kaul, S.; Bhardwaj, A. Efficacy of linalool to ameliorate uremia induced vascular calcification in wistar rats. Phytomedicine, 2018, 51, 191-195.
[http://dx.doi.org/10.1016/j.phymed.2018.10.007] [PMID: 30466616]
[77]
Oner, Z.; Altınoz, E.; Elbe, H.; Ekinci, N. The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in Wistar albino rats. Hum. Exp. Toxicol., 2019, 38(7), 803-813.
[http://dx.doi.org/10.1177/0960327119842634] [PMID: 30977406]
[78]
Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Prasad, N.R.; Ponniresan, V.K.; Rathinaraj, P. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One, 2017, 12(5), e0176699.
[http://dx.doi.org/10.1371/journal.pone.0176699] [PMID: 28467450]
[79]
Seol, G-H.; Kang, P.; Lee, H.S.; Seol, G.H. Antioxidant activity of linalool in patients with carpal tunnel syndrome. BMC Neurol., 2016, 16, 17.
[http://dx.doi.org/10.1186/s12883-016-0541-3] [PMID: 26831333]
[80]
Wu, Q.; Yu, L.; Qiu, J.; Shen, B.; Wang, D.; Soromou, L.W.; Feng, H. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway. Int. Immunopharmacol., 2014, 21(2), 456-463.
[http://dx.doi.org/10.1016/j.intimp.2014.05.030] [PMID: 24925757]
[81]
Duarte, A.; Luís, Â.; Oleastro, M.; Domingues, F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 2016, 61, 115-122.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.033]
[82]
Samojlik, I.; Lakić, N.; Mimica-Dukić, N.; Daković-Svajcer, K.; Božin, B. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J. Agric. Food Chem., 2010, 58(15), 8848-8853.
[http://dx.doi.org/10.1021/jf101645n] [PMID: 20608729]
[83]
Noacco, N.; Rodenak-Kladniew, B.; de Bravo, M.G.; Castro, G.R.; Islan, G.A. Simple colorimetric method to determine the in vitro antioxidant activity of different monoterpenes. Anal. Biochem., 2018, 555, 59-66.
[http://dx.doi.org/10.1016/j.ab.2018.06.007] [PMID: 29908862]
[84]
Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem., 2017, 232, 656-663.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.036] [PMID: 28490124]
[85]
Xu, P.; Wang, K.; Lu, C.; Dong, L.; Gao, L.; Yan, M.; Aibai, S.; Yang, Y.; Liu, X. The protective effect of lavender essential oil and its main component linalool against the cognitive deficits induced by D-galactose and aluminum trichloride in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 7426538.
[http://dx.doi.org/10.1155/2017/7426538] [PMID: 28529531]
[86]
Nakamura, A.; Fujiwara, S.; Ishijima, T.; Okada, S.; Nakai, Y.; Matsumoto, I.; Misaka, T.; Abe, K. Neuron differentiation-related genes are up-regulated in the hypothalamus of odorant-inhaling rats subjected to acute restraint stress. J. Agric. Food Chem., 2010, 58(13), 7922-7929.
[http://dx.doi.org/10.1021/jf101200p] [PMID: 20536181]
[87]
Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest., 2015, 125(3), 926-938.
[http://dx.doi.org/10.1172/JCI76304] [PMID: 25689247]
[88]
Foster, J.A.; McVey Neufeld, K-A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci., 2013, 36(5), 305-312.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[89]
Limbana, T.; Khan, F.; Eskander, N. Gut microbiome and depression: how microbes affect the way we think. Cureus, 2020, 12(8), e9966.
[PMID: 32983670]
[90]
Du, Y.; Gao, X-R.; Peng, L.; Ge, J-F. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6(6), e04097.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04097] [PMID: 32529075]
[91]
Cabuk, M.; Alcicek, A.; Bozkurt, M.; Imre, N. Antimicrobial Properties of the Essential Oils Isolated from Aromatic Plants and Using Possibility as Alternative Feed Additives. Proceedings of the 2nd National Animal Nutrition Congress, Konya, Turquia, September 8-202003, pp. 184-187.
[92]
Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J. Agric. Food Chem., 2004, 52(19), 6042-6048.
[http://dx.doi.org/10.1021/jf0495340] [PMID: 15366861]
[93]
Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 2010, 15(11), 7532-7546.
[http://dx.doi.org/10.3390/molecules15117532] [PMID: 21030907]
[94]
Ngan, L.T.M.; Moon, J.-K.; Kim, J.-H.; Shibamoto, T.; Ahn, Y.-J. Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World J. Microbiol. Biotechnol., 2012, 28(4), 1575-1583.
[95]
Wang, L.; Zhang, Y.; Fan, G.; Ren, J.N.; Zhang, L.L.; Pan, S.Y. Effects of orange essential oil on intestinal microflora in mice. J. Sci. Food Agric., 2019, 99(8), 4019-4028.
[http://dx.doi.org/10.1002/jsfa.9629] [PMID: 30729524]
[96]
Ghazanfari, S.; Moradi, M.A.; Bardzardi, M.M. Intestinal morphology and microbiology of broiler chicken fed diets containing myrtle (Myrtus communis) essential oil supplementation. Iran. J. Appl. Anim. Sci., 2014, 4(3), 549-554.
[97]
Ghazanfari, S.; Mohammadi, Z.; Moradi, M.A. Effects of coriander essential oil on the performance, blood characteristics, intestinal microbiota and histological of broilers. Braz. J. Poult. Sci., 2015, 17(4), 419-426.
[http://dx.doi.org/10.1590/1516-635X1704419-426]
[98]
Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The effect of lavender (Lavandula angustifolia) essential oil as a drinking water supplement on the production performance, blood biochemical parameters, and ileal microflora in broiler chickens. Poult. Sci., 2019, 98(1), 358-365.
[http://dx.doi.org/10.3382/ps/pey385] [PMID: 30165505]
[99]
Al-Okbi, S.Y.; Amin, M.A.; Mohamed, A.E.A.; Edris, A.E.; Sharaf, O.M.; Mabrok, H.B.; Ramadan, A.A. Basil essential oil and its nanoemulsion mitigate non alcoholic steatohepatitis in rat model with special reference to gut microbiota. J. Oleo Sci., 2020, 69(8), 913-927.
[http://dx.doi.org/10.5650/jos.ess20067] [PMID: 32641615]
[100]
Barbarestani, S.Y.; Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Toghyani, M. Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci., 2020, 233, 103958.
[http://dx.doi.org/10.1016/j.livsci.2020.103958]
[101]
Thompson, A.; Meah, D.; Ahmed, N.; Conniff-Jenkins, R.; Chileshe, E.; Phillips, C.O.; Claypole, T.C.; Forman, D.W.; Row, P.E. Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome. BMC Complement. Altern. Med., 2013, 13, 338.
[http://dx.doi.org/10.1186/1472-6882-13-338] [PMID: 24283351]
[102]
Adell, A. Brain NMDA receptors in schizophrenia and depression. Biomolecules, 2020, 10(6), 947.
[http://dx.doi.org/10.3390/biom10060947] [PMID: 32585886]
[103]
Newport, D.J.; Carpenter, L.L.; McDonald, W.M.; Potash, J.B.; Tohen, M.; Nemeroff, C.B. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am. J. Psychiatry, 2015, 172(10), 950-966.
[http://dx.doi.org/10.1176/appi.ajp.2015.15040465] [PMID: 26423481]
[104]
de Carvalho Cartágenes, S.; Fernandes, L.M.P.; Carvalheiro, T.C.V.S.; de Sousa, T.M.; Gomes, A.R.Q.; Monteiro, M.C.; de Oliveira Paraense, R.S.; Crespo-López, M.E.; Lima, R.R.; Fontes-Júnior, E.A.; Prediger, R.D.; Maia, C.S.F. “Special K” drug on adolescent rats: oxidative damage and neurobehavioral impairments. Oxid. Med. Cell. Longev., 2019, 2019, 5452727.
[http://dx.doi.org/10.1155/2019/5452727] [PMID: 31001375]
[105]
Elisabetsky, E.; Brum, L.F.S. Linalool as active component of traditional remedies: Anticonvulsant properties and mechanisms of action. Curare, 2003, 26, 45-52.
[106]
de Sousa, D.P.; Nóbrega, F.F.F.; Santos, C.C.M.P.; de Almeida, R.N. Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. Nat. Prod. Commun., 2010, 5(12), 1847-1851.
[http://dx.doi.org/10.1177/1934578X1000501201] [PMID: 21299105]
[107]
Elisabetsky, E.; Brum, L.F.S.; Souza, D.O. Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine, 1999, 6(2), 107-113.
[http://dx.doi.org/10.1016/S0944-7113(99)80044-0] [PMID: 10374249]
[108]
Brum, L.F.S.; Elisabetsky, E.; Souza, D. Effects of linalool on [(3)H]MK801 and [(3)H] muscimol binding in mouse cortical membranes. Phytother. Res., 2001, 15(5), 422-425.
[http://dx.doi.org/10.1002/ptr.973] [PMID: 11507735]
[109]
Sampaio, Lde.F.; Maia, J.G.S.; de Parijós, A.M.; de Souza, R.Z.; Barata, L.E.S. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother. Res., 2012, 26(1), 73-77.
[http://dx.doi.org/10.1002/ptr.3518] [PMID: 21544884]
[110]
de Siqueira, R.J.; Rodrigues, K.M.S.; da Silva, M.T.; Correia Junior, C.A.; Duarte, G.P.; Magalhães, P.J.C.; dos Santos, A.A.; Maia, J.G.S.; da Cunha, P.J.; Lahlou, S. Linalool-rich rosewood oil induces vago-vagal bradycardic and depressor reflex in rats. Phytother. Res., 2014, 28(1), 42-48.
[http://dx.doi.org/10.1002/ptr.4953] [PMID: 23447129]
[111]
Linck, V.M.; da Silva, A.L.; Figueiró, M.; Piato, A.L.; Herrmann, A.P.; Dupont Birck, F.; Caramão, E.B.; Nunes, D.S.; Moreno, P.R.H.; Elisabetsky, E. Inhaled linalool-induced sedation in mice. Phytomedicine, 2009, 16(4), 303-307.
[http://dx.doi.org/10.1016/j.phymed.2008.08.001] [PMID: 18824339]
[112]
Gastón, M.S.; Cid, M.P.; Vázquez, A.M.; Decarlini, M.F.; Demmel, G.I.; Rossi, L.I.; Aimar, M.L.; Salvatierra, N.A. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks. Pharm. Biol., 2016, 54(10), 1954-1961.
[http://dx.doi.org/10.3109/13880209.2015.1137602] [PMID: 26911626]
[113]
de Almeida, R.N.; Araújo, D.A.M.; Gonçalves, J.C.R.; Montenegro, F.C.; de Sousa, D.P.; Leite, J.R.; Mattei, R.; Benedito, M.A.C.; de Carvalho, J.G.; Cruz, J.S.; Maia, J.G.S. Rosewood oil induces sedation and inhibits compound action potential in rodents. J. Ethnopharmacol., 2009, 124(3), 440-443.
[http://dx.doi.org/10.1016/j.jep.2009.05.044] [PMID: 19505550]
[114]
Harada, H.; Kashiwadani, H.; Kanmura, Y.; Kuwaki, T. Linalool odor-induced anxiolytic effects in mice. Front. Behav. Neurosci., 2018, 12, 241.
[http://dx.doi.org/10.3389/fnbeh.2018.00241] [PMID: 30405369]
[115]
Linck, V.M.; da Silva, A.L.; Figueiró, M.; Caramão, E.B.; Moreno, P.R.H.; Elisabetsky, E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine, 2010, 17(8-9), 679-683.
[http://dx.doi.org/10.1016/j.phymed.2009.10.002] [PMID: 19962290]
[116]
Cheng, B-H.; Sheen, L-Y.; Chang, S-T. Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice. J. Tradit. Complement. Med., 2014, 5(1), 27-34.
[http://dx.doi.org/10.1016/j.jtcme.2014.10.007] [PMID: 26151006]
[117]
Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and distribution of floral scent. Bot. Rev., 2006, 72(1), 1-120.
[http://dx.doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2]
[118]
Organisation for Economic Co-operation and Development Screening Information Data Set. Linalool, CAS No. 78-70-6; UNEP Publications: Paris, 2002.
[119]
Maia, J.G.S.; Andrade, E.H.A.; Couto, H.A.R.; Silva, A.C.M.; Marx, F.; Henke, C. Plant sources of Amazon rosewood oil. Quim. Nova, 2007, 30(8), 1906-1910.
[http://dx.doi.org/10.1590/S0100-40422007000800021]
[120]
Maia, J.G.S.; Mourão, R.H.V. Amazon Rosewood (Aniba rosaeodora Ducke) Oils. In: Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: Cambridge, 2016; pp. 193-201.
[http://dx.doi.org/10.1016/B978-0-12-416641-7.00020-1]
[121]
Maia, J.G.S.; Zoghbi, M.G.B.; Andrade, E.H.A. Plantas Aromáticas na Amazônia e Seus Óleos Essenciais; Museu Paraense Emílio Goeldi: Belém, 2001.
[122]
Tranchida, P.Q.; Souza, R.C.Z.; Barata, L.E.S.; Mondello, M.; Dugo, P.; Dugo, G.; Mondello, L. Analysis of macacaporanga (Aniba parviflora) leaf essential oil by using comprehensive two-dimensional gas chromatography combined with rapid-scanning quadrupole mass spectrometry. Chromatogr. Today, 2008, 95, 5-9.
[123]
Maia, J.G.S.; Zoghbi, M.G.B.; Andrade, E.H.A. Essential oils of Aeollanthus suaveolens Matt. ex Spreng. J. Essent. Oil Res., 2003, 15(2), 86-87.
[http://dx.doi.org/10.1080/10412905.2003.9712074]
[124]
Lawless, J. The Encyclopedia of Essential Oils; Thorsons: London, 2002.
[125]
Cioanca, O.; Hritcu, L.; Mihasan, M.; Trifan, A.; Hancianu, M. Inhalation of coriander volatile oil increased anxiolytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer’s disease. Physiol. Behav., 2014, 131, 68-74.
[http://dx.doi.org/10.1016/j.physbeh.2014.04.021] [PMID: 24747275]
[126]
Sriti, J.; Bettaieb, I.; Bachrouch, O.; Talou, T.; Marzouk, B. Chemical composition and antioxidant activity of the coriander cake obtained by extrusion. Arab. J. Chem., 2019, 12(7), 1765-1773.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.043]
[127]
Tulsani, N.J.; Hamid, R.; Jacob, F.; Umretiya, N.G.; Nandha, A.K.; Tomar, R.S.; Golakiya, B.A. Transcriptome landscaping for gene mining and SSR marker development in Coriander (Coriandrum sativum L.). Genomics, 2020, 112(2), 1545-1553.
[http://dx.doi.org/10.1016/j.ygeno.2019.09.004] [PMID: 31505244]
[128]
López, P.A.; Widrlechner, M.P.; Simon, P.W.; Rai, S.; Boylston, T.D.; Isbell, T.A.; Bailey, T.B.; Gardner, C.A.; Wilson, L.A. Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet. Resour. Crop Evol., 2008, 55(2), 247-275.
[http://dx.doi.org/10.1007/s10722-007-9232-7]
[129]
Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J. Agric. Food Chem., 2008, 56(1), 241-245.
[http://dx.doi.org/10.1021/jf072447y] [PMID: 18072735]
[130]
Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A source of aroma compounds and a popular culinary and ornamental herb. In: Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, 1999; pp. 499-505.
[131]
Lesage-Meessen, L.; Bou, M.; Sigoillot, J-C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol., 2015, 99(8), 3375-3385.
[http://dx.doi.org/10.1007/s00253-015-6511-7] [PMID: 25761625]
[132]
Lis-Balchin, M. Lavender Essential Oil. In: Lavender, the Genus Lavandula; Lis-Balchin, M., Ed.; Taylor and Francis: London, New York, 2002; p. 117.
[http://dx.doi.org/10.1201/9780203216521-16]
[133]
Denny, E.F.K. Distillation of the Lavender Type Oils: Theory and Practice. In: Lavender, the Genus Lavandula; Lis-Balchin, M., Ed.; Taylor and Francis: London, New York, 2002; pp. 100-116.
[134]
Babu, K.N.; Sajina, A.; Minoo, D.; John, C.Z.; Mini, P.M.; Tushar, K.V.; Rema, J.; Ravindran, P.N. Micropropagation of camphor tree (Cinnamomum camphora). Plant Cell Tissue Organ Cult., 2003, 74(2), 179-183.
[http://dx.doi.org/10.1023/A:1023988110064]
[135]
Chen, C.; Zheng, Y.; Zhong, Y.; Wu, Y.; Li, Z.; Xu, L-A.; Xu, M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics, 2018, 19(1), 550.
[http://dx.doi.org/10.1186/s12864-018-4941-1] [PMID: 30041601]
[136]
Guo, X.; Cui, M.; Deng, M.; Liu, X.; Huang, X.; Zhang, X.; Luo, L. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci. Rep., 2017, 7, 46579.
[http://dx.doi.org/10.1038/srep46579] [PMID: 28425482]
[137]
Shi, W.Y.; He, W.; Wen, G-Y.; Guo, D-X.; Long, G-Y.; Lin, Y-G. Study on chemical constituents of the essential oil and classification of types from Cinnamomum camphora. J. Integr. Plant Biol., 1989, 31(3), 209-214.
[138]
Cheng, B.H.; Lin, C.Y.; Yeh, T.F.; Cheng, S.S.; Chang, S.T. Potential source of S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaf: essential oil profile and enantiomeric purity. J. Agric. Food Chem., 2012, 60(31), 7623-7628.
[http://dx.doi.org/10.1021/jf302248w] [PMID: 22769589]