Big Data for Treatment Planning: Pathways and Possibilities for Smart Healthcare Systems

Article ID: e170921196607 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Treatment planning is one of the crucial stages of healthcare assessment and delivery. Moreover, it also has a significant impact on patient outcomes and system efficiency. With the evolution of transformative healthcare technologies, most areas of healthcare have started collecting data at different levels, as a result of which there is a splurge in the size and complexity of health data being generated every minute.

Introduction: This paper explores the different characteristics of health data with respect to big data. Besides this, it also classifies research efforts in treatment planning on the basis of the informatics domain being used, which includes medical informatics, imaging informatics and translational bioinformatics.

Methods: This is a survey paper that reviews existing literature on the use of big data technologies for treatment planning in the healthcare ecosystem. Therefore, a qualitative research methodology was adopted for this work.

Results: Review of existing literature has been analyzed to identify potential gaps in research, identifying and providing insights into high prospect areas for potential future research.

Conclusion: The use of big data for treatment planning is rapidly evolving, and findings of this research can head start and streamline specific research pathways in the field.

Keywords: Big data, treatment planning, medical informatics, medical imaging, translational bioinformatics, smart healthcare.

Graphical Abstract

[1]
Agrawal R, Prabakaran S. Big data in digital healthcare: lessons learnt and recommendations for general practice. Heredity 2020; 124(4): 525-34.
[http://dx.doi.org/10.1038/s41437-020-0303-2] [PMID: 32139886]
[2]
Bakken S, Koleck TA, Dreisbach C, Hickey KT. Enabling precision health approaches for symptom science through big data and data science. Genomics of Pain and Co- Morbid Symptoms Cham: Springer. 2020; pp. 239-55.
[3]
Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 2020; 60: 573-89.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023324] [PMID: 31518513]
[4]
Goceri E. Future healthcare: Will digital data lead to better care? New Trends and Issues Proceedings on Advances in Pure and Applied Sciences 2017; 8: 07-11.
[5]
Goceri E, Songul C. Mobile health technologies for patients with mental illness. International conference on advanced technologies. Antalya, Turkey. 2018.
[6]
Celesti F, Celesti A, Carnevale L, et al. Big data analytics in ge- nomics: The point on deep learning solutions. 2017 IEEE Symposium on Computers and Communications (ISCC). 306-9.
[http://dx.doi.org/10.1109/ISCC.2017.8024547]
[7]
Wu C, Buyya R, Ramamohanarao K. Big data analytics= machine learning+ cloud computing 2016.
[http://dx.doi.org/10.1016/B978-0-12-805394-2.00001-5]
[8]
Khan S, Liu X, Shakil KA, Alam M. A survey on scholarly data: From big data perspective. Inf Process Manage 2017; 53(4): 923-44.
[http://dx.doi.org/10.1016/j.ipm.2017.03.006]
[9]
EMC Digital Universe with Research & Analysis by IDC, The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things, EMC 2014. Available from: https://www.emc.com/leadership/digital-universe/2014iview/index.htm
[10]
Banks MA. Sizing up big data. Nat Med 2020; 26(1): 5-6.
[http://dx.doi.org/10.1038/s41591-019-0703-0] [PMID: 31932781]
[11]
HL7.org, FHIR, HL7 2019. Available from: https://www.hl7.org/fhir/
[12]
HHS, Summary of the HIPAA Security Rule, HHS Available from: https://www.hhs.gov/hipaa/for- professionals/security/laws-regulations/index.html
[14]
Treatment planning Demystified, Quintessence Publishing Blog Available from: https://www.quintpub.net/news/2019/12/treatment- planning-demystified/
[15]
Araujo LH, Horn L, Merritt RE, Shilo K, Xu-Welliver M, Carbone DP. Cancer of the lung: Non–small cell lung cancer and small cell lung cancer. Abeloff’s Clinical Oncology. 2020; pp. 1108-58.
[16]
Gomez DR, Li H, Zhang X, Chang JY, Liao Z, Lin SH. Lung cancerPro- ton Therapy Elsevier. 2021; pp. 205-14.
[17]
Little JW, Falace DA, Miller CS, Rhodus NL. Rheumatologic and connective tissue disorders.Little and Falace’s Dental Management of the Medically Compromised Patient (Eighth Edition) Mosby. 2013; pp. 320-46.
[18]
Melchert TP. Treatment PlanningFoundations of Professional Psychology Elsevier. 2011; pp. 147-66.
[http://dx.doi.org/10.1016/B978-0-12-385079-9.00009-6]
[19]
Goceri E, Songul C. Biomedical information technology: image based computer aided diagnosis systems. International Conference on Advanced Technologies. Antalaya, Turkey. 2018.
[20]
Goceri E. CapsNet topology to classify tumours from brain images and comparative evaluation. IET Image Process 2020; 14(5): 882-9.
[http://dx.doi.org/10.1049/iet-ipr.2019.0312]
[21]
Dura E, Domingo J, Göçeri E, Martí-Bonmatí L. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction. Pattern Anal Appl 2018; 21(4): 1083-95.
[http://dx.doi.org/10.1007/s10044-017-0666-z]
[22]
Göçeri E. A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function (Doctoral dissertation, İzmir Institute of Technology, İzmir)
[23]
Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004; 11(5): 392-402.
[http://dx.doi.org/10.1197/jamia.M1552] [PMID: 15187068]
[24]
Eriksson R, Werge T, Jensen LJ, Brunak S. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population. Drug Saf 2014; 37(4): 237-47.
[http://dx.doi.org/10.1007/s40264-014-0145-z] [PMID: 24634163]
[25]
Sun J, McNaughton CD, Zhang P, et al. Predicting changes in hypertension control using electronic health records from a chronic disease management program. J Am Med Inform Assoc 2014; 21(2): 337-44.
[http://dx.doi.org/10.1136/amiajnl-2013-002033] [PMID: 24045907]
[26]
Forrest GN, Van Schooneveld TC, Kullar R, Schulz LT, Duong P, Postelnick M. Use of electronic health records and clinical decision support systems for antimicrobial stewardship. Clin Infect Dis 2014; 59 (Suppl. 3): S122-33.
[http://dx.doi.org/10.1093/cid/ciu565] [PMID: 25261539]
[27]
Xu H, Aldrich MC, Chen Q, et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc 2015; 22(1): 179-91.
[http://dx.doi.org/10.1136/amiajnl-2014-002649] [PMID: 25053577]
[28]
Hagar Y, Albers D, Pivovarov R, Chase H, Dukic V. El- hadad N. Survival analysis with electronic health record data: Experiments with chronic kidney disease. Statistical Analy- sis and Data Mining: The ASA. Data Sci J 2014; 7(5): 385-403.
[29]
Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood) 2014; 33(7): 1123-31.
[http://dx.doi.org/10.1377/hlthaff.2014.0041] [PMID: 25006137]
[30]
Boland MR, Hripcsak G, Albers DJ, et al. Discovering medical conditions associated with periodontitis using linked electronic health records. J Clin Periodontol 2013; 40(5): 474-82.
[http://dx.doi.org/10.1111/jcpe.12086] [PMID: 23495669]
[31]
Cars T, Wettermark B, Malmström RE, et al. Extraction of electronic health record data in a hospital setting: comparison of automatic and semi-automatic methods using anti-TNF therapy as model. Basic Clin Pharmacol Toxicol 2013; 112(6): 392-400.
[http://dx.doi.org/10.1111/bcpt.12055] [PMID: 23374887]
[32]
Marcos M, Maldonado JA, Martínez-Salvador B, Boscá D, Robles M. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J Biomed Inform 2013; 46(4): 676-89.
[http://dx.doi.org/10.1016/j.jbi.2013.05.004] [PMID: 23707417]
[33]
Goceri E. Diagnosis of skin diseases in the era of deep learning and mobile technology. Comput Biol Med 2021; 134: 104458.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104458] [PMID: 34000524]
[34]
Legrice IJ, Hunter PJ, Smaill BH. Laminar structure of the heart: a mathematical model. Am J Physiol 1997; 272(5 Pt 2): H2466-76.
[PMID: 9176318]
[35]
LeGrice I, Hunter P, Young A, Smaill B. The archi- tecture of the heart: A data–based model. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 2001; 359(1783): 1217-32.
[36]
Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994; 74(6): 1071-96.
[http://dx.doi.org/10.1161/01.RES.74.6.1071] [PMID: 7514509]
[37]
Kaya B, Goceri E, Becker A, et al. Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma. PLoS One 2017; 12(3): e0170991.
[http://dx.doi.org/10.1371/journal.pone.0170991] [PMID: 28282372]
[38]
Feinberg DA, Moeller S, Smith SM, et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010; 5(12): e15710.
[http://dx.doi.org/10.1371/journal.pone.0015710] [PMID: 21187930]
[39]
Banday SA, Mir AH. Statistical textural feature and de- formable model based brain tumor segmentation and vol- ume estimation. Multimedia Tools Appl 2017; 76(3): 3809-28.
[http://dx.doi.org/10.1007/s11042-016-3979-9]
[40]
Aji A, Wang F, Saltz JH. Towards building a high perfor- mance spatial query system for large scale medical imaging data. Proceedings of the 20th international conference on advances in geographic information systems. 309-18.
[41]
National Institutes of Health, National Human Genome Research Institute (NHGRI) 2017. Available from: https://www.nih.gov/about-nih/what-we-do/nih- almanac/national-human-genome-research-institute-nhgri
[42]
Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ. Big data for health. IEEE J Biomed Health Inform 2015; 19(4): 1193-208.
[http://dx.doi.org/10.1109/JBHI.2015.2450362] [PMID: 26173222]
[43]
Zlotta AR. Words of wisdom: Re: Genome sequencing identifies a basis for everolimus sensitivity. Eur Urol 2013; 64(3): 516.
[http://dx.doi.org/10.1016/j.eururo.2013.06.031] [PMID: 23915465]
[44]
Iyer G, Hanrahan AJ, Milowsky MI, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 2012; 338(6104): 221.
[http://dx.doi.org/10.1126/science.1226344] [PMID: 22923433]
[45]
TCGA-web, National Cancer Atlas Program 2017. Available from: https://tcga-data.nci.nih. gov/tcga/tcgaHome2.jsp
[46]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[47]
Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013; 45(10): 1113-20.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[48]
Huang L, Li F, Sheng J, et al. DrugComboRanker: drug combination discovery based on target network analysis. Bioinformatics 2014; 30(12): i228-36.
[http://dx.doi.org/10.1093/bioinformatics/btu278] [PMID: 24931988]
[49]
Lee JH, Kim DG, Bae TJ, et al. CDA: combinatorial drug discovery using transcriptional response modules. PLoS One 2012; 7(8): e42573.
[http://dx.doi.org/10.1371/journal.pone.0042573] [PMID: 22905152]
[50]
Dudley JT, Sirota M, Shenoy M, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 2011; 3(96): 96ra76.
[http://dx.doi.org/10.1126/scitranslmed.3002648] [PMID: 21849664]
[51]
Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 2011; 3(96): 96ra77.
[http://dx.doi.org/10.1126/scitranslmed.3001318] [PMID: 21849665]
[52]
Kim KA, Park PW, Hong SJ, Park JY. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance. Clin Pharmacol Ther 2008; 84(2): 236-42.
[http://dx.doi.org/10.1038/clpt.2008.20] [PMID: 18323861]
[53]
Yang GZ, Andreu-Perez J, Hu X, Thiemjarus S. Multi- sensor fusion. Body sensor networks London: Springer. 2014; pp. 301-54.
[54]
Hilario M, Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 2008; 9(2): 102-18.
[http://dx.doi.org/10.1093/bib/bbn005] [PMID: 18310106]
[55]
Aggarwal CC, Ed. Data streams: models and algorithms Springer Science & Business Media . 2007.
[http://dx.doi.org/10.1007/978-0-387-47534-9]
[56]
Andreu J, Angelov P. Real-time human activity recognition from wireless sensors using evolving fuzzy systems. International Conference on Fuzzy Systems. 1-8.
[http://dx.doi.org/10.1109/FUZZY.2010.5584280]
[57]
Bottou L, Bousquet O. The tradeoffs of large scale learning. Adv Neural Inf Process Syst 2008; 20.
[58]
Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longitudinal big data approach for precision health. Nat Med 2019; 25(5): 792-804.
[http://dx.doi.org/10.1038/s41591-019-0414-6] [PMID: 31068711]
[59]
Tresp V, Overhage JM, Bundschus M, Rabizadeh S, Fasching PA, Yu S. Going digital: a survey on digitalization and large-scale data analytics in healthcare. Proc IEEE 2016; 104(11): 2180-206.
[http://dx.doi.org/10.1109/JPROC.2016.2615052]
[60]
Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. J Big Data 2018; 5(1): 1-8.
[http://dx.doi.org/10.1186/s40537-017-0110-7]
[61]
Zhang X, Xing F, Su H, Yang L, Zhang S. High-throughput histopathological image analysis via robust cell segmentation and hashing. Med Image Anal 2015; 26(1): 306-15.
[http://dx.doi.org/10.1016/j.media.2015.10.005] [PMID: 26599156]
[62]
Panayides AS, Amini A, Filipovic ND, et al. AI in medical imaging informatics: Current challenges and future directions. IEEE J Biomed Health Inform 2020; 24(7): 1837-57.
[http://dx.doi.org/10.1109/JBHI.2020.2991043] [PMID: 32609615]
[63]
Caudle KE, Dunnenberger HM, Freimuth RR, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med 2017; 19(2): 215-23.
[http://dx.doi.org/10.1038/gim.2016.87] [PMID: 27441996]
[64]
Barrot CC, Woillard JB, Picard N. Big data in pharmacogenomics: current applications, perspectives and pitfalls. Pharmacogenomics 2019; 20(8): 609-20.
[http://dx.doi.org/10.2217/pgs-2018-0184] [PMID: 31190620]