Microbiome in Critical Care: An Unconventional and Unknown Ally

Page: [3179 - 3188] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The digestive tract represents an interface between the external environment and the body where the interaction of a complex polymicrobial ecology has an important influence on health and disease. The physiological mechanisms that are altered during hospitalization and in the intensive care unit (ICU) contribute to the pathobiota’s growth. Intestinal dysbiosis occurs within hours of being admitted to ICU. This may be due to different factors, such as alterations of normal intestinal transit, administration of various medications, or alterations in the intestinal wall, which causes a cascade of events that will lead to the increase of nitrates and decrease of oxygen concentration, and the liberation of free radicals.

Objective: This work aims to report the latest updates on the microbiota’s contribution to developing sepsis in patients in the ICU department. In this short review, the latest scientific findings on the mechanisms of intestinal immune defenses performed both locally and systemically have been reviewed. Additionally, we considered it necessary to review the literature on the basis of the many studies carried out on the microbiota in the critically ill as a prevention to the spread of the infection in these patients.

Materials and Methods: This review has been written to answer four main questions:

1- What are the main intestinal flora’s defense mechanisms that help us to prevent the risk of developing systemic diseases?

2- What are the main Systemic Abnormalities of Dysbiosis?

3- What are the Modern Strategies Used in ICU to Prevent the Infection Spreading?

4- What is the Relationship between COVID-19 and Microbiota?

We reviewed 72 articles using the combination of following keywords: "microbiota" and "microbiota" and "intensive care", "intensive care" and "gut", "critical illness", "microbiota" and "critical care", "microbiota" and "sepsis", "microbiota" and "infection", and "gastrointestinal immunity" in: Cochrane Controlled Trials Register, Cochrane Library, Medline and Pubmed, Google Scholar, Ovid/Wiley. Moreover, we also consulted the site ClinicalTrials.com to find out studies that have been recently conducted or are currently ongoing.

Results: The critical illness can alter intestinal bacterial flora leading to homeostasis disequilibrium. Despite numerous mechanisms, such as epithelial cells with calciform cells that together build a mechanical barrier for pathogenic bacteria, the presence of mucous associated lymphoid tissue (MALT) which stimulates an immune response through the production of interferon-gamma (IFN-y) and THN-a or or from the production of anti-inflammatory cytokines produced by lymphocytes Thelper 2. But these defenses can be altered following hospitalization in ICU and lead to serious complications, such as acute respiratory distress syndrome (ARDS), health care associated pneumonia (HAP) and ventilator associated pneumonia (VAP), systemic infection and multiple organ failure (MOF), but also to the development of coronary artery disease (CAD). In addition, the microbiota has a significant impact on the development of intestinal complications and the severity of the SARS-COVID-19 patients.

Conclusion: The microbiota is recognized as one of the important factors that can worsen the clinical conditions of patients who are already very frail in the intensive care unit. At the same time, the microbiota also plays a crucial role in the prevention of ICU-associated complications. By using the resources that are available, such as probiotics, synbiotics or fecal microbiota transplantation (FMT), we can preserve the integrity of the microbiota and the GUT, which will later help maintain homeostasis in ICU patients.

Keywords: Microbiota and ICU, ICU and GUT, microbiota and critical illness, microbiota and critical care, sepsis, infection, gastrointestinal immunity, SARS-COVID19.

[1]
McDermott, A.J.; Huffnagle, G.B. The microbiome and regulation of mucosal immunity. Immunology, 2014, 142(1), 24-31.
[http://dx.doi.org/10.1111/imm.12231] [PMID: 24329495]
[2]
Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 2010, 10(2), 131-144.
[http://dx.doi.org/10.1038/nri2707] [PMID: 20098461]
[3]
del Rio, M.L.; Bernhardt, G.; Rodriguez-Barbosa, J.I.; Förster, R. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev., 2010, 234(1), 268-281.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00874.x] [PMID: 20193025]
[4]
Sun, C.M.; Hall, J.A.; Blank, R.B.; Bouladoux, N.; Oukka, M.; Mora, J.R.; Belkaid, Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med., 2007, 204(8), 1775-1785.
[http://dx.doi.org/10.1084/jem.20070602] [PMID: 17620362]
[5]
Hinde, K.; Lewis, Z.T. Microbiota. Mother’s littlest helpers. Science, 2015, 348(6242), 1427-1428.
[http://dx.doi.org/10.1126/science.aac7436] [PMID: 26113704]
[6]
Blaser, M.J. The microbiome revolution. J. Clin. Invest., 2014, 124(10), 4162-4165.
[http://dx.doi.org/10.1172/JCI78366] [PMID: 25271724]
[7]
Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature, 2016, 535(7610), 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[8]
Piccini, F. Alla scoperta del microbioma umano, flora batterica, nutrizione e malattie del progresso. Fabio Piccini. Edizioni del Kindle,
[9]
Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med., 2016, 375(24), 2369-2379.
[http://dx.doi.org/10.1056/NEJMra1600266] [PMID: 27974040]
[10]
Zhang, D.; Frenette, P.S. Cross talk between neutrophils and the microbiota. Blood, 2019, 133(20), 2168-2177.
[http://dx.doi.org/10.1182/blood-2018-11-844555] [PMID: 30898860]
[11]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[12]
Longhitano, Y.; Zanza, C.; Thangathurai, D.; Taurone, S.; Kozel, D.; Racca, F.; Audo, A.; Ravera, E.; Migneco, A.; Piccioni, A.; Franceschi, F. Gut alterations in septic patients: A biochemical literature review. Rev. Recent Clin. Trials, 2020, 15(4), 289-297.
[http://dx.doi.org/10.2174/1574887115666200811105251] [PMID: 32781963]
[13]
Nakov, R.; Segal, J.P.; Settanni, C.R.; Bibbò, S.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. Microbiome: what intensivists should know. Minerva Anestesiol., 2020, 86(7), 777-785.
[http://dx.doi.org/10.23736/S0375-9393.20.14278-0] [PMID: 32368882]
[14]
U.S. National library of medicine. Availalble from: https://clinicaltrials.gov/ [Accessed February 28, 2021].
[15]
Dickson, R.P. The microbiome and critical illness. Lancet Respir. Med., 2016, 4(1), 59-72.
[http://dx.doi.org/10.1016/S2213-2600(15)00427-0] [PMID: 26700442]
[16]
Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol., 2008, 8(6), 411-420.
[http://dx.doi.org/10.1038/nri2316] [PMID: 18469830]
[17]
Yen, T.H.; Wright, N.A. The gastrointestinal tract stem cell niche. Stem Cell Rev., 2006, 2(3), 203-212.
[http://dx.doi.org/10.1007/s12015-006-0048-1] [PMID: 17625256]
[18]
Piccioni, A.; de Cunzo, T.; Valletta, F.; Covino, M.; Rinninella, E.; Raoul, P.; Zanza, C.; Mele, M.C.; Franceschi, F. Gut microbiota and environment in coronary artery disease. Int. J. Environ. Res. Public Health, 2021, 18(8), 4242.
[http://dx.doi.org/10.3390/ijerph18084242] [PMID: 33923612]
[19]
Kleinschek, M.A.; Boniface, K.; Sadekova, S.; Grein, J.; Murphy, E.E.; Turner, S.P.; Raskin, L.; Desai, B.; Faubion, W.A.; de Waal Malefyt, R.; Pierce, R.H.; McClanahan, T.; Kastelein, R.A. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med., 2009, 206(3), 525-534.
[http://dx.doi.org/10.1084/jem.20081712] [PMID: 19273624]
[20]
Makita, S.; Kanai, T.; Nemoto, Y.; Totsuka, T.; Okamoto, R.; Tsuchiya, K.; Yamamoto, M.; Kiyono, H.; Watanabe, M. Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation. J. Immunol., 2007, 178(8), 4937-4946.
[http://dx.doi.org/10.4049/jimmunol.178.8.4937] [PMID: 17404275]
[21]
Muñoz, M.; Heimesaat, M.M.; Danker, K.; Struck, D.; Lohmann, U.; Plickert, R.; Bereswill, S.; Fischer, A.; Dunay, I.R.; Wolk, K.; Loddenkemper, C.; Krell, H.W.; Libert, C.; Lund, L.R.; Frey, O.; Hölscher, C.; Iwakura, Y.; Ghilardi, N.; Ouyang, W.; Kamradt, T.; Sabat, R.; Liesenfeld, O. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med., 2009, 206(13), 3047-3059.
[http://dx.doi.org/10.1084/jem.20090900] [PMID: 19995958]
[22]
Bailey, M.; Plunkett, F.J.; Rothkötter, H.J.; Vega-Lopez, M.A.; Haverson, K.; Stokes, C.R. Regulation of mucosal immune responses in effector sites. Proc. Nutr. Soc., 2001, 60(4), 427-435.
[http://dx.doi.org/10.1079/PNS2001118] [PMID: 12069394]
[23]
Brandtzaeg, P.; Pabst, R. Let’s go mucosal: communication on slippery ground. Trends Immunol., 2004, 25(11), 570-577.
[http://dx.doi.org/10.1016/j.it.2004.09.005] [PMID: 15489184]
[24]
Lycke, N.Y.; Bemark, M. The role of Peyer’s patches in synchronizing gut IgA responses. Front. Immunol., 2012, 3, 329.
[http://dx.doi.org/10.3389/fimmu.2012.00329] [PMID: 23181060]
[25]
Stecher, B.; Denzler, R.; Maier, L.; Bernet, F.; Sanders, M.J.; Pickard, D.J.; Barthel, M.; Westendorf, A.M.; Krogfelt, K.A.; Walker, A.W.; Ackermann, M.; Dobrindt, U.; Thomson, N.R.; Hardt, W.D. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA, 2012, 109(4), 1269-1274.
[http://dx.doi.org/10.1073/pnas.1113246109] [PMID: 22232693]
[26]
Babrowski, T.; Romanowski, K.; Fink, D.; Kim, M.; Gopalakrishnan, V.; Zaborina, O.; Alverdy, J.C. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis. Surgery, 2013, 153(1), 36-43.
[http://dx.doi.org/10.1016/j.surg.2012.06.022] [PMID: 22862900]
[27]
Hayakawa, M.; Asahara, T.; Henzan, N.; Murakami, H.; Yamamoto, H.; Mukai, N.; Minami, Y.; Sugano, M.; Kubota, N.; Uegaki, S.; Kamoshida, H.; Sawamura, A.; Nomoto, K.; Gando, S. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig. Dis. Sci., 2011, 56(8), 2361-2365.
[http://dx.doi.org/10.1007/s10620-011-1649-3] [PMID: 21384123]
[28]
Vincent, J.L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; Reinhart, K. International study of the prevalence and outcomes of infection in intensive care units. JAMA, 2009, 302(21), 2323-2329.
[http://dx.doi.org/10.1001/jama.2009.1754] [PMID: 19952319]
[29]
Krezalek, M.A.; DeFazio, J.; Zaborina, O.; Zaborin, A.; Alverdy, J.C. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock, 2016, 45(5), 475-482.
[http://dx.doi.org/10.1097/SHK.0000000000000534] [PMID: 26863118]
[30]
Grootjans, J.; Lenaerts, K.; Derikx, J.P.; Matthijsen, R.A.; de Bruïne, A.P.; van Bijnen, A.A.; van Dam, R.M.; Dejong, C.H.; Buurman, W.A. Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am. J. Pathol., 2010, 176(5), 2283-2291.
[http://dx.doi.org/10.2353/ajpath.2010.091069] [PMID: 20348235]
[31]
Shimizu, K.; Ogura, H.; Hamasaki, T.; Goto, M.; Tasaki, O.; Asahara, T.; Nomoto, K.; Morotomi, M.; Matsushima, A.; Kuwagata, Y.; Sugimoto, H. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig. Dis. Sci., 2011, 56(4), 1171-1177.
[http://dx.doi.org/10.1007/s10620-010-1418-8] [PMID: 20931284]
[32]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[33]
Lankelma, J.M.; van Vught, L.A.; Belzer, C.; Schultz, M.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med., 2017, 43(1), 59-68.
[http://dx.doi.org/10.1007/s00134-016-4613-z] [PMID: 27837233]
[34]
Zaborin, A.; Smith, D.; Garfield, K.; Quensen, J.; Shakhsheer, B.; Kade, M.; Tirrell, M.; Tiedje, J.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio, 2014, 5(5), e01361-e14.
[http://dx.doi.org/10.1128/mBio.01361-14] [PMID: 25249279]
[35]
McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; Knight, R.; Wischmeyer, P.E. Extreme dysbiosis of the microbiome in critical illness. MSphere, 2016, 1(4), e00199-e16.
[http://dx.doi.org/10.1128/mSphere.00199-16] [PMID: 27602409]
[36]
Paroni Sterbini, F.; Palladini, A.; Masucci, L.; Cannistraci, C.V.; Pastorino, R.; Ianiro, G.; Bugli, F.; Martini, C.; Ricciardi, W.; Gasbarrini, A.; Sanguinetti, M.; Cammarota, G.; Posteraro, B. Effects of proton pump inhibitors on the gastric mucosa-associated microbiota in dyspeptic patients. Appl. Environ. Microbiol., 2016, 82(22), 6633-6644.
[http://dx.doi.org/10.1128/AEM.01437-16] [PMID: 27590821]
[37]
Marshall, J.C.; Christou, N.V.; Meakins, J.L. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann. Surg., 1993, 218(2), 111-119.
[http://dx.doi.org/10.1097/00000658-199308000-00001] [PMID: 8342990]
[38]
Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; Moffatt, M.F.; Cookson, W.O. Disordered microbial communities in asthmatic airways. PLoS One, 2010, 5(1), e8578.
[http://dx.doi.org/10.1371/journal.pone.0008578] [PMID: 20052417]
[39]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Falkowski, N.R.; Huffnagle, G.B.; Curtis, J.L. Bacterial topography of the healthy human lower respiratory tract. MBio, 2017, 8(1), e02287-e16.
[http://dx.doi.org/10.1128/mBio.02287-16] [PMID: 28196961]
[40]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc., 2015, 12(6), 821-830.
[http://dx.doi.org/10.1513/AnnalsATS.201501-029OC] [PMID: 25803243]
[41]
Gleeson, K.; Eggli, D.F.; Maxwell, S.L. Quantitative aspiration during sleep in normal subjects. Chest, 1997, 111(5), 1266-1272.
[http://dx.doi.org/10.1378/chest.111.5.1266] [PMID: 9149581]
[42]
Segal, L.N.; Alekseyenko, A.V.; Clemente, J.C.; Kulkarni, R.; Wu, B.; Gao, Z.; Chen, H.; Berger, K.I.; Goldring, R.M.; Rom, W.N.; Blaser, M.J.; Weiden, M.D. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome, 2013, 1(1), 19.
[http://dx.doi.org/10.1186/2049-2618-1-19] [PMID: 24450871]
[43]
Sekizawa, K.; Ujiie, Y.; Itabashi, S.; Sasaki, H.; Takishima, T. Lack of cough reflex in aspiration pneumonia. Lancet, 1990, 335(8699), 1228-1229.
[http://dx.doi.org/10.1016/0140-6736(90)92758-A] [PMID: 1971077]
[44]
Sands, K.M.; Wilson, M.J.; Lewis, M.A.O.; Wise, M.P.; Palmer, N.; Hayes, A.J.; Barnes, R.A.; Williams, D.W. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J. Crit. Care, 2017, 37, 30-37.
[http://dx.doi.org/10.1016/j.jcrc.2016.07.019] [PMID: 27621110]
[45]
Munro, C.L.; Grap, M.J. Oral health and care in the intensive care unit: state of the science. Am. J. Crit. Care, 2004, 13(1), 25-33.
[http://dx.doi.org/10.4037/ajcc2004.13.1.25] [PMID: 14735645]
[46]
Günther, A.; Siebert, C.; Schmidt, R.; Ziegler, S.; Grimminger, F.; Yabut, M.; Temmesfeld, B.; Walmrath, D.; Morr, H.; Seeger, W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care Med., 1996, 153(1), 176-184.
[http://dx.doi.org/10.1164/ajrccm.153.1.8542113] [PMID: 8542113]
[47]
Wu, H.; Kuzmenko, A.; Wan, S.; Schaffer, L.; Weiss, A.; Fisher, J.H.; Kim, K.S.; McCormack, F.X. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest., 2003, 111(10), 1589-1602.
[http://dx.doi.org/10.1172/JCI16889] [PMID: 12750409]
[48]
Poroyko, V.; Meng, F.; Meliton, A.; Afonyushkin, T.; Ulanov, A.; Semenyuk, E.; Latif, O.; Tesic, V.; Birukova, A.A.; Birukov, K.G. Alterations of lung microbiota in a mouse model of LPS-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(1), L76-L83.
[http://dx.doi.org/10.1152/ajplung.00061.2014] [PMID: 25957290]
[49]
Dickson, R.P.; Singer, B.H.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol., 2016, 1(10), 16113.
[http://dx.doi.org/10.1038/nmicrobiol.2016.113] [PMID: 27670109]
[50]
Lukovic, E.; Moitra, V.K.; Freedberg, D.E. The microbiome: implications for perioperative and critical care. Curr. Opin. Anaesthesiol., 2019, 32(3), 412-420.
[http://dx.doi.org/10.1097/ACO.0000000000000734] [PMID: 30925514]
[51]
Spreadborough, P.; Lort, S.; Pasquali, S.; Popplewell, M.; Owen, A.; Kreis, I.; Tucker, O.; Vohra, R.S. A systematic review and meta-analysis of perioperative oral decontamination in patients undergoing major elective surgery. Perioper. Med. (Lond.), 2016, 5, 6.
[http://dx.doi.org/10.1186/s13741-016-0030-7] [PMID: 27006763]
[52]
Kollef, M.H.; Afessa, B.; Anzueto, A.; Veremakis, C.; Kerr, K.M.; Margolis, B.D.; Craven, D.E.; Roberts, P.R.; Arroliga, A.C.; Hubmayr, R.D.; Restrepo, M.I.; Auger, W.R.; Schinner, R. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA, 2008, 300(7), 805-813.
[http://dx.doi.org/10.1001/jama.300.7.805] [PMID: 18714060]
[53]
Muscedere, J.; Rewa, O.; McKechnie, K.; Jiang, X.; Laporta, D.; Heyland, D.K. Subglottic secretion drainage for the prevention of ventilator-associated pneumonia: a systematic review and meta-analysis. Crit. Care Med., 2011, 39(8), 1985-1991.
[http://dx.doi.org/10.1097/CCM.0b013e318218a4d9] [PMID: 21478738]
[54]
Ianiro, G.; Valerio, L.; Masucci, L.; Pecere, S.; Bibbò, S.; Quaranta, G.; Posteraro, B.; Currò, D.; Sanguinetti, M.; Gasbarrini, A.; Cammarota, G. Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year, single-centre cohort study. Clin. Microbiol. Infect., 2017, 23(5), 337.e1-337.e3.
[http://dx.doi.org/10.1016/j.cmi.2016.12.025] [PMID: 28057560]
[55]
Petrof, E.O.; Dhaliwal, R.; Manzanares, W.; Johnstone, J. Probiotics in the critically ill: a systematic review of the randomized trial evidence. Crit. Care Med., 2012, 40, 3290-3302.
[56]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[57]
Fischer, M.; Sipe, B.; Rogers, N.; Sagi, S. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut microbes, 2017, 8, 289e302.
[58]
Steidler, L.; Hans, W.; Schotte, L.; Neirynck, S.; Obermeier, F.; Falk, W.; Fiers, W.; Remaut, E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science, 2000, 289(5483), 1352-1355.
[http://dx.doi.org/10.1126/science.289.5483.1352] [PMID: 10958782]
[59]
Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012, 7(4), e34938.
[http://dx.doi.org/10.1371/journal.pone.0034938] [PMID: 22529959]
[60]
Manzanares, W.; Lemieux, M.; Langlois, P.L.; Wischmeyer, P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care, 2016, 19, 262.
[http://dx.doi.org/10.1186/s13054-016-1434-y] [PMID: 27538711]
[61]
McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; Gervasio, J.M.; Sacks, G.S.; Roberts, P.R.; Compher, C. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J. Parenter. Enteral Nutr., 2016, 40(2), 159-211.
[http://dx.doi.org/10.1177/0148607115621863] [PMID: 26773077]
[62]
Shimizu, K.; Yamada, T.; Ogura, H.; Mohri, T.; Kiguchi, T.; Fujimi, S.; Asahara, T.; Yamada, T.; Ojima, M.; Ikeda, M.; Shimazu, T. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. Crit. Care, 2018, 22(1), 239.
[http://dx.doi.org/10.1186/s13054-018-2167-x] [PMID: 30261905]
[63]
Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; Segal, J.; Aloi, M.; Masucci, L.; Molinaro, A.; Scaldaferri, F.; Gasbarrini, G.; Lopez-Sanroman, A.; Link, A.; de Groot, P.; de Vos, W.M.; Högenauer, C.; Malfertheiner, P.; Mattila, E.; Milosavljević, T.; Nieuwdorp, M.; Sanguinetti, M.; Simren, M.; Gasbarrini, A. European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66(4), 569-580.
[http://dx.doi.org/10.1136/gutjnl-2016-313017] [PMID: 28087657]
[64]
Kraft, S.C.; Earle, R.H.; Roesler, M.; Esterly, J.R. Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch. Intern. Med., 1976, 136(4), 454-459.
[http://dx.doi.org/10.1001/archinte.1976.03630040056012] [PMID: 1267553]
[65]
von Wichert, P.; Barth, P.; von Wichert, G. Tracheal and bronchial involvement in colitis ulcerosa - a colo-bronchitic syndrome? A case report and some additional considerations. Ger. Med. Sci., 2015, 13, Doc03.
[PMID: 25834480]
[66]
McAleer, J.P.; Kolls, J.K. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol., 2018, 48(1), 39-49.
[http://dx.doi.org/10.1002/eji.201646721] [PMID: 28776643]
[67]
Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc., 2015, 12(Suppl. 2), S150-S156.
[PMID: 26595731]
[68]
Wong, M.C.; Huang, J.; Lai, C.; Ng, R.; Chan, F.K.L.; Chan, P.K.S. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19: A meta-analysis. J. Infect., 2020, 81(2), e31-e38.
[http://dx.doi.org/10.1016/j.jinf.2020.06.012] [PMID: 32535156]
[69]
Zuo, T.; Zhang, F.; Lui, G.C.Y. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, S0016–5085, 34701-34706.
[70]
Li, F.; Lu, H.; Li, X.; Wang, X.; Zhang, Q.; Mi, L. The impact of COVID-19 on intestinal flora: A protocol for systematic review and meta analysis. Medicine (Baltimore), 2020, 99(39), e22273.
[http://dx.doi.org/10.1097/MD.0000000000022273] [PMID: 32991426]
[71]
Kalantar-Zadeh, K.; Ward, S.A.; Kalantar-Zadeh, K.; El-Omar, E.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS Nano, 2020, 14(5), 5179-5182.
[http://dx.doi.org/10.1021/acsnano.0c03402] [PMID: 32356654]