Histone Deacetylases and their Inhibitors in Colorectal Cancer Therapy: Current Evidence and Future Considerations

Page: [2979 - 2994] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Colorectal cancer (CRC) comprises a heterogeneous group of gastrointestinal tract tumors. It is a multifactorial disease, and a plethora of distinct factors are involved in its pathogenesis and pathophysiology. The development of CRC is not limited to genetic changes, but epigenetic and environmental factors are also involved. Among the epigenetic factors, histone deacetylases (HDACs), a group of epigenetic enzymes that regulate gene expression, have been reported to be over-expressed in CRC. HDACs and their inhibitors seem to play an important role in the molecular pathophysiology of CRC. The aim of this review was to define the role of HDAC inhibitors as potential anticancer agents against CRC.

Keywords: Histone, deacetylase, inhibitors, HDAC, HDACI, colorectal cancer, targeted therapy, epigenetics.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. JAMA, 2017, 318(6), 572-574.
[http://dx.doi.org/10.1001/jama.2017.7630] [PMID: 28787497]
[3]
Koh, K.S.; Telisinghe, P.U.; Bickle, I.; Abdullah, M.S.; Chong, C.F.; Chong, V.H. Characteristics of young colorectal cancer in Brunei Darussalam: An epidemiologic study of 29 years (1986-2014). Asian Pac. J. Cancer Prev., 2015, 16(8), 3279-3283.
[http://dx.doi.org/10.7314/APJCP.2015.16.8.3279] [PMID: 25921132]
[4]
Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS One, 2011, 6(6), e20456.
[http://dx.doi.org/10.1371/journal.pone.0020456] [PMID: 21674008]
[5]
Liang, P.S.; Chen, T.Y.; Giovannucci, E. Cigarette smoking and colorectal cancer incidence and mortality: Systematic review and meta-analysis. Int. J. Cancer, 2009, 124(10), 2406-2415.
[http://dx.doi.org/10.1002/ijc.24191] [PMID: 19142968]
[6]
Limsui, D.; Vierkant, R.A.; Tillmans, L.S.; Wang, A.H.; Weisenberger, D.J.; Laird, P.W.; Lynch, C.F.; Anderson, K.E.; French, A.J.; Haile, R.W.; Harnack, L.J.; Potter, J.D.; Slager, S.L.; Smyrk, T.C.; Thibodeau, S.N.; Cerhan, J.R.; Limburg, P.J. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J. Natl. Cancer Inst., 2010, 102(14), 1012-1022.
[http://dx.doi.org/10.1093/jnci/djq201] [PMID: 20587792]
[7]
Taylor, D.P.; Burt, R.W.; Williams, M.S.; Haug, P.J.; Cannon-Albright, L.A. Population-based family history-specific risks for colorectal cancer: A constellation approach. Gastroenterology, 2010, 138(3), 877-885.
[http://dx.doi.org/10.1053/j.gastro.2009.11.044] [PMID: 19932107]
[8]
Mao, Q.D.; Zhang, W.; Zhao, K.; Cao, B.; Yuan, H.; Wei, L.Z.; Song, M.Q.; Liu, X.S. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. Braz. J. Med. Biol. Res., 2017, 50(6), e6103.
[http://dx.doi.org/10.1590/1414-431x20176103] [PMID: 28538837]
[9]
Zhao, Y.; Wang, X.; Wang, Y. Helicobacter pylori infection and colorectal carcinoma risk: A meta-analysis. J. Cancer Res. Ther., 2016, 12(Suppl.), 15-18.
[http://dx.doi.org/10.4103/0973-1482.191621] [PMID: 27721244]
[10]
Park, C.H.; Eun, C.S.; Han, D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res., 2018, 16(3), 338-345.
[http://dx.doi.org/10.5217/ir.2018.16.3.338] [PMID: 30090032]
[11]
Lao, V.V.; Grady, W.M. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(12), 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[12]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[13]
Mariadason, J.M. HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008, 3(1), 28-37.
[http://dx.doi.org/10.4161/epi.3.1.5736] [PMID: 18326939]
[14]
Garmpi, A.; Garmpis, N.; Damaskos, C.; Valsami, S.; Spartalis, E.; Lavaris, A.; Patelis, N.; Margonis, G.A.; Apostolou, K.G.; Spartalis, M.; Andreatos, N.; Diamantis, E.; Tsivelekas, K.; Moschos, M.M.; Nonni, A.; Tsourouflis, G.; Markatos, K.; Antoniou, E.A.; Kontzoglou, K.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors as a new anticancer option: How far can we go with expectations? delivery systems. J. BUON, 2018, 23(4), 846-861.
[PMID: 30358185]
[15]
Richon, V.M.; O’Brien, J.P. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin. Cancer Res., 2002, 8(3), 662-664.
[PMID: 11895892]
[16]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[17]
Damaskos, C.; Garmpis, N.; Valsami, S.; Spartalis, E.; Antoniou, E.A.; Tomos, P.; Karamaroudis, S.; Zoumpou, T.; Pergialiotis, V.; Stergios, K.; Michaelides, C.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: A novel therapeutic weapon against medullary thyroid cancer? Anticancer Res., 2016, 36(10), 5019-5024.
[http://dx.doi.org/10.21873/anticanres.11070] [PMID: 27798860]
[18]
Giaginis, C.; Damaskos, C.; Koutsounas, I.; Zizi-Serbetzoglou, A.; Tsoukalas, N.; Patsouris, E.; Kouraklis, G.; Theocharis, S. Histone deacetylase (HDAC)-1, -2, -4 and -6 expression in human pancreatic adenocarcinoma: Associations with clinicopathological parameters, tumor proliferative capacity and patients’ survival. BMC Gastroenterol., 2015, 15, 148.
[http://dx.doi.org/10.1186/s12876-015-0379-y] [PMID: 26502922]
[19]
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[20]
Sambucetti, L.C.; Fischer, D.D.; Zabludoff, S.; Kwon, P.O.; Chamberlin, H.; Trogani, N.; Xu, H.; Cohen, D. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem., 1999, 274(49), 34940-34947.
[http://dx.doi.org/10.1074/jbc.274.49.34940] [PMID: 10574969]
[21]
Whetstine, J.R.; Ceron, J.; Ladd, B.; Dufourcq, P.; Reinke, V.; Shi, Y. Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol. Cell, 2005, 18(4), 483-490.
[http://dx.doi.org/10.1016/j.molcel.2005.04.006] [PMID: 15893731]
[22]
Lutz, L.; Fitzner, I.C.; Ahrens, T.; Geißler, A.L.; Makowiec, F.; Hopt, U.T.; Bogatyreva, L.; Hauschke, D.; Werner, M.; Lassmann, S. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro. Am. J. Cancer Res., 2016, 6(3), 664-676.
[PMID: 27152243]
[23]
Weichert, W.; Röske, A.; Niesporek, S.; Noske, A.; Buckendahl, A.C.; Dietel, M.; Gekeler, V.; Boehm, M.; Beckers, T.; Denkert, C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res., 2008, 14(6), 1669-1677.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0990] [PMID: 18347167]
[24]
Chakrabarti, A.; Melesina, J.; Kolbinger, F.R.; Oehme, I.; Senger, J.; Witt, O.; Sippl, W.; Jung, M. Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med. Chem., 2016, 8(13), 1609-1634.
[http://dx.doi.org/10.4155/fmc-2016-0117] [PMID: 27572818]
[25]
Kang, Y.; Nian, H.; Rajendran, P.; Kim, E.; Dashwood, W.M.; Pinto, J.T.; Boardman, L.A.; Thibodeau, S.N.; Limburg, P.J.; Löhr, C.V.; Bisson, W.H.; Williams, D.E.; Ho, E.; Dashwood, R.H. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis., 2014, 5(10), e1476.
[http://dx.doi.org/10.1038/cddis.2014.422] [PMID: 25321483]
[26]
Wilson, A.J.; Byun, D.S.; Nasser, S.; Murray, L.B.; Ayyanar, K.; Arango, D.; Figueroa, M.; Melnick, A.; Kao, G.D.; Augenlicht, L.H.; Mariadason, J.M. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol. Biol. Cell, 2008, 19(10), 4062-4075.
[http://dx.doi.org/10.1091/mbc.e08-02-0139] [PMID: 18632985]
[27]
He, P.; Liang, J.; Shao, T.; Guo, Y.; Hou, Y.; Li, Y. HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int. J. Clin. Exp. Med., 2015, 8(4), 6510-6516.
[PMID: 26131280]
[28]
Wang, Q.; Tan, R.; Zhu, X.; Zhang, Y.; Tan, Z.; Su, B.; Li, Y. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression. Oncotarget, 2016, 7(9), 10064-10072.
[http://dx.doi.org/10.18632/oncotarget.7134] [PMID: 26848526]
[29]
Lee, J.H.; Jeong, E.G.; Choi, M.C.; Kim, S.H.; Park, J.H.; Song, S.H.; Park, J.; Bang, Y.J.; Kim, T.Y. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Mol. Cells, 2010, 30(2), 107-112.
[http://dx.doi.org/10.1007/s10059-010-0094-z] [PMID: 20680488]
[30]
Gao, C.; Cheng, X.; Lam, M.; Liu, Y.; Liu, Q.; Chang, K.S.; Kao, H.Y. Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies. Mol. Biol. Cell, 2008, 19(7), 3020-3027.
[http://dx.doi.org/10.1091/mbc.e07-11-1203] [PMID: 18463162]
[31]
Blixt, N.C.; Faulkner, B.K.; Astleford, K.; Lelich, R.; Schering, J.; Spencer, E.; Gopalakrishnan, R.; Jensen, E.D.; Mansky, K.C. Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One, 2017, 12(9), e0185441.
[http://dx.doi.org/10.1371/journal.pone.0185441] [PMID: 28953929]
[32]
Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443.
[http://dx.doi.org/10.1038/86507] [PMID: 11283670]
[33]
Nosho, K.; Shima, K.; Irahara, N.; Kure, S.; Firestein, R.; Baba, Y.; Toyoda, S.; Chen, L.; Hazra, A.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod. Pathol., 2009, 22(7), 922-932.
[http://dx.doi.org/10.1038/modpathol.2009.49] [PMID: 19430421]
[34]
Deubzer, H.E.; Schier, M.C.; Oehme, I.; Lodrini, M.; Haendler, B.; Sommer, A.; Witt, O. HDAC11 is a novel drug target in carcinomas. Int. J. Cancer, 2013, 132(9), 2200-2208.
[http://dx.doi.org/10.1002/ijc.27876] [PMID: 23024001]
[35]
Tomson, T.; Battino, D.; Perucca, E. The remarkable story of valproic acid. Lancet Neurol., 2016, 15(2), 141.
[http://dx.doi.org/10.1016/S1474-4422(15)00398-1] [PMID: 28463122]
[36]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), E1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[37]
Damaskos, C.; Garmpis, N.; Karatzas, T.; Nikolidakis, L.; Kostakis, I.D.; Garmpi, A.; Karamaroudis, S.; Boutsikos, G.; Damaskou, Z.; Kostakis, A.; Kouraklis, G. Histone deacetylase (HDAC) inhibitors: Current evidence for therapeutic activities in pancreatic cancer. Anticancer Res., 2015, 35(6), 3129-3135.
[PMID: 26026072]
[38]
Theocharis, S.; Klijanienko, J.; Giaginis, C.; Rodriguez, J.; Jouffroy, T.; Girod, A.; Alexandrou, P.; Sastre-Garau, X. Histone deacetylase-1 and -2 expression in mobile tongue squamous cell carcinoma: Associations with clinicopathological parameters and patients survival. J. Oral Pathol. Med., 2011, 40(9), 706-714.
[http://dx.doi.org/10.1111/j.1600-0714.2011.01031.x] [PMID: 21457345]
[39]
Damaskos, C.; Tomos, I.; Garmpis, N.; Karakatsani, A.; Dimitroulis, D.; Garmpi, A.; Spartalis, E.; Kampolis, C.F.; Tsagkari, E.; Loukeri, A.A.; Margonis, G.A.; Spartalis, M.; Andreatos, N.; Schizas, D.; Kokkineli, S.; Antoniou, E.A.; Nonni, A.; Tsourouflis, G.; Markatos, K.; Kontzoglou, K.; Kostakis, A.; Tomos, P. Histone deacetylase inhibitors as a novel targeted therapy against non-small cell lung cancer: Where are we now and what should we expect? Anticancer Res., 2018, 38(1), 37-43.
[http://dx.doi.org/10.21873/anticanres.12189] [PMID: 29277754]
[40]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Dimitroulis, D.; Spartalis, E.; Margonis, G.A.; Schizas, D.; Deskou, I.; Doula, C.; Magkouti, E.; Andreatos, N.; Antoniou, E.A.; Nonni, A.; Kontzoglou, K.; Mantas, D. Targeting histone deacetylases in malignant melanoma: A future therapeutic agent or just great expectations? Anticancer Res., 2017, 37(10), 5355-5362.
[http://dx.doi.org/10.21873/anticanres.11961] [PMID: 28982843]
[41]
Spartalis, E.; Athanasiadis, D.I.; Chrysikos, D.; Spartalis, M.; Boutzios, G.; Schizas, D.; Garmpis, N.; Damaskos, C.; Paschou, S.A.; Ioannidis, A.; Tsourouflis, G.; Dimitroulis, D.; Nikiteas, N.I. Histone deacetylase inhibitors and anaplastic thyroid carcinoma. Anticancer Res., 2019, 39(3), 1119-1127.
[http://dx.doi.org/10.21873/anticanres.13220] [PMID: 30842140]
[42]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Georgakopoulou, V.E.; Sarantis, P.; Antoniou, E.A.; Karamouzis, M.V.; Nonni, A.; Schizas, D.; Diamantis, E.; Koustas, E.; Farmaki, P.; Syllaios, A.; Patsouras, A.; Kontzoglou, K.; Trakas, N.; Dimitroulis, D. Histone deacetylase inhibitors in the treatment of hepatocellular carcinoma: Current evidence and future opportunities. J. Pers. Med., 2021, 11(3), 223.
[http://dx.doi.org/10.3390/jpm11030223] [PMID: 33809844]
[43]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[44]
Ribrag, V.; Kim, W.S.; Bouabdallah, R.; Lim, S.T.; Coiffier, B.; Illes, A.; Lemieux, B.; Dyer, M.J.S.; Offner, F.; Felloussi, Z.; Kloos, I.; Luan, Y.; Vezan, R.; Graef, T.; Morschhauser, F. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: Results of a phase II study. Haematologica, 2017, 102(5), 903-909.
[http://dx.doi.org/10.3324/haematol.2016.154377] [PMID: 28126962]
[45]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Spartalis, E.; Kalampokas, E.; Kalampokas, T.; Margonis, G.A.; Schizas, D.; Andreatos, N.; Angelou, A.; Lavaris, A.; Athanasiou, A.; Apostolou, K.G.; Spartalis, M.; Damaskou, Z.; Daskalopoulou, A.; Diamantis, E.; Tsivelekas, K.; Alavanos, A.; Valsami, S.; Moschos, M.M.; Sampani, A.; Nonni, A.; Antoniou, E.A.; Mantas, D.; Tsourouflis, G.; Markatos, K.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Kostakis, A.; Dimitroulis, D. Targeting histone deacetylases in endometrial cancer: A paradigm-shifting therapeutic strategy? Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 950-960.
[http://dx.doi.org/10.26355/eurrev_201802_14376] [PMID: 29509243]
[46]
Moschos, M.M.; Dettoraki, M.; Androudi, S.; Kalogeropoulos, D.; Lavaris, A.; Garmpis, N.; Damaskos, C.; Garmpi, A.; Tsatsos, M. The role of histone deacetylase inhibitors in uveal melanoma: Current evidence. Anticancer Res., 2018, 38(7), 3817-3824.
[http://dx.doi.org/10.21873/anticanres.12665] [PMID: 29970501]
[47]
Palmieri, D.; Lockman, P.R.; Thomas, F.C.; Hua, E.; Herring, J.; Hargrave, E.; Johnson, M.; Flores, N.; Qian, Y.; Vega-Valle, E.; Taskar, K.S.; Rudraraju, V.; Mittapalli, R.K.; Gaasch, J.A.; Bohn, K.A.; Thorsheim, H.R.; Liewehr, D.J.; Davis, S.; Reilly, J.F.; Walker, R.; Bronder, J.L.; Feigenbaum, L.; Steinberg, S.M.; Camphausen, K.; Meltzer, P.S.; Richon, V.M.; Smith, Q.R.; Steeg, P.S. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res., 2009, 15(19), 6148-6157.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1039] [PMID: 19789319]
[48]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Kalampokas, E.; Kalampokas, T.; Spartalis, E.; Daskalopoulou, A.; Valsami, S.; Kontos, M.; Nonni, A.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylases as new therapeutic targets in triple-negative breast cancer: Progress and promises. Cancer Genomics Proteomics, 2017, 14(5), 299-313.
[http://dx.doi.org/10.21873/cgp.20041] [PMID: 28870998]
[49]
Ree, A.H.; Dueland, S.; Folkvord, S.; Hole, K.H.; Seierstad, T.; Johansen, M.; Abrahamsen, T.W.; Flatmark, K. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol., 2010, 11(5), 459-464.
[http://dx.doi.org/10.1016/S1470-2045(10)70058-9] [PMID: 20378407]
[50]
Fakih, M.G.; Groman, A.; McMahon, J.; Wilding, G.; Muindi, J.R. A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother. Pharmacol., 2012, 69(3), 743-751.
[http://dx.doi.org/10.1007/s00280-011-1762-1] [PMID: 22020318]
[51]
Fakih, M.G.; Pendyala, L.; Fetterly, G.; Toth, K.; Zwiebel, J.A.; Espinoza-Delgado, I.; Litwin, A.; Rustum, Y.M.; Ross, M.E.; Holleran, J.L.; Egorin, M.J. A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin. Cancer Res., 2009, 15(9), 3189-3195.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2999] [PMID: 19383814]
[52]
Fu, S.; Hou, M.M.; Naing, A.; Janku, F.; Hess, K.; Zinner, R.; Subbiah, V.; Hong, D.; Wheler, J.; Piha-Paul, S.; Tsimberidou, A.; Karp, D.; Araujo, D.; Kee, B.; Hwu, P.; Wolff, R.; Kurzrock, R.; Meric-Bernstam, F. Phase I study of pazopanib and vorinostat: A therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann. Oncol., 2015, 26(5), 1012-1018.
[http://dx.doi.org/10.1093/annonc/mdv066] [PMID: 25669829]
[53]
Sung, M.W.; Waxman, S. Combination of cytotoxic-differentiation therapy with 5-fluorouracil and phenylbutyrate in patients with advanced colorectal cancer. Anticancer Res., 2007, 27(2), 995-1001.
[PMID: 17465233]
[54]
Ngamphaiboon, N.; Dy, G.K.; Ma, W.W.; Zhao, Y.; Reungwetwattana, T.; DePaolo, D.; Ding, Y.; Brady, W.; Fetterly, G.; Adjei, A.A. A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(1), 225-232.
[http://dx.doi.org/10.1007/s10637-014-0174-6] [PMID: 25371323]
[55]
Munster, P.; Marchion, D.; Bicaku, E.; Lacevic, M.; Kim, J.; Centeno, B.; Daud, A.; Neuger, A.; Minton, S.; Sullivan, D. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: Phase I/II trial of valproic acid and epirubicin/FEC. Clin. Cancer Res., 2009, 15(7), 2488-2496.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1930] [PMID: 19318486]
[56]
Strickler, J.H.; Starodub, A.N.; Jia, J.; Meadows, K.L.; Nixon, A.B.; Dellinger, A.; Morse, M.A.; Uronis, H.E.; Marcom, P.K.; Zafar, S.Y.; Haley, S.T.; Hurwitz, H.I. Phase I study of bevacizumab, everolimus, and panobinostat (LBH-589) in advanced solid tumors. Cancer Chemother. Pharmacol., 2012, 70(2), 251-258.
[http://dx.doi.org/10.1007/s00280-012-1911-1] [PMID: 22744359]
[57]
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
[http://dx.doi.org/10.1038/35106079] [PMID: 11902574]
[58]
Li, Q.; Ding, C.; Meng, T.; Lu, W.; Liu, W.; Hao, H.; Cao, L. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J. Pharmacol. Sci., 2017, 135(4), 148-155.
[http://dx.doi.org/10.1016/j.jphs.2017.11.004] [PMID: 29233468]
[59]
Won, H.R.; Ryu, H.W.; Shin, D.H.; Yeon, S.K.; Lee, D.H.; Kwon, S.H. A452, an HDAC6-selective inhibitor, synergistically enhances the anticancer activity of chemotherapeutic agents in colorectal cancer cells. Mol. Carcinog., 2018, 57(10), 1383-1395.
[http://dx.doi.org/10.1002/mc.22852] [PMID: 29917295]
[60]
Fazzone, W.; Wilson, P.M.; Labonte, M.J.; Lenz, H.J.; Ladner, R.D. Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int. J. Cancer, 2009, 125(2), 463-473.
[http://dx.doi.org/10.1002/ijc.24403] [PMID: 19384949]
[61]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[62]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[63]
Lenz, H.J.; Van Cutsem, E.; Khambata-Ford, S.; Mayer, R.J.; Gold, P.; Stella, P.; Mirtsching, B.; Cohn, A.L.; Pippas, A.W.; Azarnia, N.; Tsuchihashi, Z.; Mauro, D.J.; Rowinsky, E.K. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J. Clin. Oncol., 2006, 24(30), 4914-4921.
[http://dx.doi.org/10.1200/JCO.2006.06.7595] [PMID: 17050875]
[64]
Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; Adenis, A.; Tabernero, J.; Yoshino, T.; Lenz, H.J.; Goldberg, R.M.; Sargent, D.J.; Cihon, F.; Cupit, L.; Wagner, A.; Laurent, D. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 303-312.
[http://dx.doi.org/10.1016/S0140-6736(12)61900-X] [PMID: 23177514]
[65]
Inoue, T.; Hibi, K.; Nakayama, G.; Komatsu, Y.; Fukuoka, T.; Kodera, Y.; Ito, K.; Akiyama, S.; Nakao, A. Expression level of thymidylate synthase is a good predictor of chemosensitivity to 5-fluorouracil in colorectal cancer. J. Gastroenterol., 2005, 40(2), 143-147.
[http://dx.doi.org/10.1007/s00535-004-1512-9] [PMID: 15770397]
[66]
Johnston, P.G.; Lenz, H.J.; Leichman, C.G.; Danenberg, K.D.; Allegra, C.J.; Danenberg, P.V.; Leichman, L. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res., 1995, 55(7), 1407-1412.
[PMID: 7882343]
[67]
Lee, J.H.; Park, J.H.; Jung, Y.; Kim, J.H.; Jong, H.S.; Kim, T.Y.; Bang, Y.J. Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol. Cancer Ther., 2006, 5(12), 3085-3095.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0419] [PMID: 17172411]
[68]
Glaser, K.B.; Staver, M.J.; Waring, J.F.; Stender, J.; Ulrich, R.G.; Davidsen, S.K. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: Defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther., 2003, 2(2), 151-163.
[PMID: 12589032]
[69]
Carew, J.S.; Nawrocki, S.T.; Kahue, C.N.; Zhang, H.; Yang, C.; Chung, L.; Houghton, J.A.; Huang, P.; Giles, F.J.; Cleveland, J.L. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood, 2007, 110(1), 313-322.
[http://dx.doi.org/10.1182/blood-2006-10-050260] [PMID: 17363733]
[70]
Carew, J.S.; Nawrocki, S.T.; Cleveland, J.L. Modulating autophagy for therapeutic benefit. Autophagy, 2007, 3(5), 464-467.
[http://dx.doi.org/10.4161/auto.4311] [PMID: 17495516]
[71]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[72]
Habermann, J.K.; Paulsen, U.; Roblick, U.J.; Upender, M.B.; McShane, L.M.; Korn, E.L.; Wangsa, D.; Krüger, S.; Duchrow, M.; Bruch, H.P.; Auer, G.; Ried, T. Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer, 2007, 46(1), 10-26.
[http://dx.doi.org/10.1002/gcc.20382] [PMID: 17044061]
[73]
Upender, M.B.; Habermann, J.K.; McShane, L.M.; Korn, E.L.; Barrett, J.C.; Difilippantonio, M.J.; Ried, T. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res., 2004, 64(19), 6941-6949.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0474] [PMID: 15466185]
[74]
Ried, T.; Knutzen, R.; Steinbeck, R.; Blegen, H.; Schröck, E.; Heselmeyer, K.; du Manoir, S.; Auer, G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer, 1996, 15(4), 234-245.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:4<234:AID-GCC5>3.0.CO;2-2] [PMID: 8703849]
[75]
Buishand, F.O.; Cardin, E.; Hu, Y.; Ried, T. Trichostatin A preferentially reverses the upregulation of gene-expression levels induced by gain of chromosome 7 in colorectal cancer cell lines. Genes Chromosomes Cancer, 2018, 57(1), 35-41.
[http://dx.doi.org/10.1002/gcc.22505] [PMID: 28940826]
[76]
Huang, C.; Wu, X.F.; Wang, X.L. Trichostatin a inhibits phenotypic transition and induces apoptosis of the TAF-treated normal colonic epithelial cells through regulation of TGF-β pathway. Int. J. Biochem. Cell Biol., 2019, 114, 105565.
[http://dx.doi.org/10.1016/j.biocel.2019.105565] [PMID: 31278993]
[77]
Dotse, E.; Bian, Y. Isolation of colorectal cancer stem-like cells. Cytotechnology, 2016, 68(4), 609-619.
[http://dx.doi.org/10.1007/s10616-014-9806-0] [PMID: 25535115]
[78]
Anderson, E.C.; Hessman, C.; Levin, T.G.; Monroe, M.M.; Wong, M.H. The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel), 2011, 3(1), 319-339.
[http://dx.doi.org/10.3390/cancers3010319] [PMID: 21318087]
[79]
Tanase, C.P.; Neagu, A.I.; Necula, L.G.; Mambet, C.; Enciu, A.M.; Calenic, B.; Cruceru, M.L.; Albulescu, R. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J. Gastroenterol., 2014, 20(31), 10790-10801.
[http://dx.doi.org/10.3748/wjg.v20.i31.10790] [PMID: 25152582]
[80]
Zheng, S.; Xin, L.; Liang, A.; Fu, Y. Cancer stem cell hypothesis: A brief summary and two proposals. Cytotechnology, 2013, 65(4), 505-512.
[http://dx.doi.org/10.1007/s10616-012-9517-3] [PMID: 23250634]
[81]
Hermann, P.C.; Bhaskar, S.; Cioffi, M.; Heeschen, C. Cancer stem cells in solid tumors. Semin. Cancer Biol., 2010, 20(2), 77-84.
[http://dx.doi.org/10.1016/j.semcancer.2010.03.004] [PMID: 20371287]
[82]
Huang, T.H.; Wu, S.Y.; Huang, Y.J.; Wei, P.L.; Wu, A.T.; Chao, T.Y. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells. Am. J. Cancer Res., 2017, 7(5), 1227-1237.
[PMID: 28560069]
[83]
Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res., 1998, 241(1), 126-133.
[http://dx.doi.org/10.1006/excr.1998.4027] [PMID: 9633520]
[84]
Wang, T.Y.; Chai, Y.R.; Jia, Y.L.; Gao, J.H.; Peng, X.J.; Han, H.F. Crosstalk among the proteome, lysine phosphorylation, and acetylation in romidepsin-treated colon cancer cells. Oncotarget, 2016, 7(33), 53471-53501.
[http://dx.doi.org/10.18632/oncotarget.10840] [PMID: 27472459]
[85]
Wang, T.Y.; Jia, Y.L.; Zhang, X.; Sun, Q.L.; Li, Y.C.; Zhang, J.H.; Zhao, C.P.; Wang, X.Y.; Wang, L. Treating colon cancer cells with FK228 reveals a link between histone lysine acetylation and extensive changes in the cellular proteome. Sci. Rep., 2015, 5, 18443.
[http://dx.doi.org/10.1038/srep18443] [PMID: 26675280]
[86]
Adachi, M.; Zhang, Y.; Zhao, X.; Minami, T.; Kawamura, R.; Hinoda, Y.; Imai, K. Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin. Cancer Res., 2004, 10(11), 3853-3862.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0806] [PMID: 15173094]
[87]
Shi, Y.; Fu, Y.; Zhang, X.; Zhao, G.; Yao, Y.; Guo, Y.; Ma, G.; Bai, S.; Li, H. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol. Immunother., 2021, 70(1), 61-73.
[http://dx.doi.org/10.1007/s00262-020-02653-1] [PMID: 32632663]
[88]
Bracker, T.U.; Sommer, A.; Fichtner, I.; Faus, H.; Haendler, B.; Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int. J. Oncol., 2009, 35(4), 909-920.
[PMID: 19724929]
[89]
Zhu, S.; Denman, C.J.; Cobanoglu, Z.S.; Kiany, S.; Lau, C.C.; Gottschalk, S.M.; Hughes, D.P.; Kleinerman, E.S.; Lee, D.A. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res., 2015, 32(3), 779-792.
[http://dx.doi.org/10.1007/s11095-013-1231-0] [PMID: 24203492]
[90]
Schmudde, M.; Braun, A.; Pende, D.; Sonnemann, J.; Klier, U.; Beck, J.F.; Moretta, L.; Bröker, B.M. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett., 2008, 272(1), 110-121.
[http://dx.doi.org/10.1016/j.canlet.2008.06.027] [PMID: 18718708]
[91]
Berghuis, D.; Schilham, M.W.; Vos, H.I.; Santos, S.J.; Kloess, S.; Buddingh’, E.P.; Egeler, R.M.; Hogendoorn, P.C.; Lankester, A.C. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin. Sarcoma Res., 2012, 2(1), 8.
[http://dx.doi.org/10.1186/2045-3329-2-8] [PMID: 22587892]
[92]
Lees, A.; McIntyre, A.J.; Crawford, N.T.; Falcone, F.; McCann, C.; Holohan, C.; Quinn, G.P.; Roberts, J.Z.; Sessler, T.; Gallagher, P.F.; Gregg, G.M.A.; McAllister, K.; McLaughlin, K.M.; Allen, W.L.; Egan, L.J.; Ryan, A.E.; Labonte-Wilson, M.J.; Dunne, P.D.; Wappett, M.; Coyle, V.M.; Johnston, P.G.; Kerr, E.M.; Longley, D.B.; McDade, S.S. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17808-17819.
[http://dx.doi.org/10.1073/pnas.2001520117] [PMID: 32661168]
[93]
Hicks, K.C.; Knudson, K.M.; Lee, K.L.; Hamilton, D.H.; Hodge, J.W.; Figg, W.D.; Ordentlich, P.; Jones, F.R.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J.; Gameiro, S.R. Cooperative immune-mediated mechanisms of the HDAC inhibitor entinostat, an IL15 superagonist, and a cancer vaccine effectively synergize as a novel cancer therapy. Clin. Cancer Res., 2020, 26(3), 704-716.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0727] [PMID: 31645354]
[94]
Feng, J.; Cen, J.; Li, J.; Zhao, R.; Zhu, C.; Wang, Z.; Xie, J.; Tang, W. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes. Migr., 2015, 9(6), 495-501.
[http://dx.doi.org/10.1080/19336918.2015.1112486] [PMID: 26632346]
[95]
Langlands, A.J.; Carroll, T.D.; Chen, Y.; Näthke, I. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death Dis., 2018, 9(3), 255.
[http://dx.doi.org/10.1038/s41419-017-0199-9] [PMID: 29449562]
[96]
Terranova-Barberio, M.; Pecori, B.; Roca, M.S.; Imbimbo, S.; Bruzzese, F.; Leone, A.; Muto, P.; Delrio, P.; Avallone, A.; Budillon, A.; Di Gennaro, E. Synergistic antitumor interaction between valproic acid, capecitabine and radiotherapy in colorectal cancer: critical role of p53. J. Exp. Clin. Cancer Res., 2017, 36(1), 177.
[http://dx.doi.org/10.1186/s13046-017-0647-5] [PMID: 29212503]
[97]
Ghecham, A.; Senator, A.; Pawlowska, E.; Bouafia, W.; Błasiak, J. Epigenetic modifiers 5-aza-2¢-deoxycytidine and valproic acid differentially change viability, DNA damage and gene expression in metastatic and non-metastatic colon cancer cell lines. Acta Biochim. Pol., 2019, 66(3), 355-360.
[http://dx.doi.org/10.18388/abp.2019_2814] [PMID: 31284710]
[98]
Sanaei, M.; Kavoosi, F.; Mansoori, O. Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apoptosis induction in the human colon cancer SW48 cells in vitro. Exp. Oncol., 2018, 40(2), 95-100.
[http://dx.doi.org/10.31768/2312-8852.2018.40(2):95-100] [PMID: 29949538]
[99]
Patel, M.M.; Patel, B.M. Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur. J. Pharm. Sci., 2018, 121, 188-199.
[http://dx.doi.org/10.1016/j.ejps.2018.05.026] [PMID: 29852291]
[100]
Avallone, A.; Piccirillo, M.C.; Di Gennaro, E.; Romano, C.; Calabrese, F.; Roca, M.S.; Tatangelo, F.; Granata, V.; Cassata, A.; Cavalcanti, E.; Maurea, N.; Maiolino, P.; Silvestro, L.; De Stefano, A.; Giuliani, F.; Rosati, G.; Tamburini, E.; Aprea, P.; Vicario, V.; Nappi, A.; Vitagliano, C.; Casaretti, R.; Leone, A.; Petrillo, A.; Botti, G.; Delrio, P.; Izzo, F.; Perrone, F.; Budillon, A. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: The REVOLUTION study protocol. Ther. Adv. Med. Oncol., 2020, 12, 1758835920929589.
[http://dx.doi.org/10.1177/1758835920929589] [PMID: 32849914]
[101]
Andrews, K.T.; Walduck, A.; Kelso, M.J.; Fairlie, D.P.; Saul, A.; Parsons, P.G. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int. J. Parasitol., 2000, 30(6), 761-768.
[http://dx.doi.org/10.1016/S0020-7519(00)00043-6] [PMID: 10856511]
[102]
Kwon, S.H.; Ahn, S.H.; Kim, Y.K.; Bae, G.U.; Yoon, J.W.; Hong, S.; Lee, H.Y.; Lee, Y.W.; Lee, H.W.; Han, J.W. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J. Biol. Chem., 2002, 277(3), 2073-2080.
[http://dx.doi.org/10.1074/jbc.M106699200] [PMID: 11698395]
[103]
Zhang, J.; Lai, Z.; Huang, W.; Ling, H.; Lin, M.; Tang, S.; Liu, Y.; Tao, Y. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anticancer. Agents Med. Chem., 2017, 17(10), 1374-1382.
[http://dx.doi.org/10.2174/1871520617666170419120044] [PMID: 28425856]
[104]
Han, J.W.; Ahn, S.H.; Park, S.H.; Wang, S.Y.; Bae, G.U.; Seo, D.W.; Kwon, H.K.; Hong, S.; Lee, H.Y.; Lee, Y.W.; Lee, H.W. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res., 2000, 60(21), 6068-6074.
[PMID: 11085529]
[105]
Abaza, M.S.; Bahman, A.M.; Al-Attiyah, R. Superior antimitogenic and chemosensitization activities of the combination treatment of the histone deacetylase inhibitor apicidin and proteasome inhibitors on human colorectal cancer cells. Int. J. Oncol., 2014, 44(1), 105-128.
[http://dx.doi.org/10.3892/ijo.2013.2146] [PMID: 24146045]
[106]
Anantharaju, P.G.; Reddy, B.D.; Padukudru, M.A.; Kumari Chitturi, C.M.; Vimalambike, M.G.; Madhunapantula, S.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol. Ther., 2017, 18(7), 492-504.
[http://dx.doi.org/10.1080/15384047.2017.1324374] [PMID: 28506198]
[107]
Booth, L.; Roberts, J.L.; Rais, R.; Cutler, R.E., Jr; Diala, I.; Lalani, A.S.; Hancock, J.F.; Poklepovic, A.; Dent, P. Neratinib augments the lethality of. [regorafenib + sildenafil] J. Cell. Physiol., 2019, 234(4), 4874-4887.
[http://dx.doi.org/10.1002/jcp.27276] [PMID: 30203445]
[108]
Zhang, X.H.; Ma, Q.; Wu, H.P.; Khamis, M.Y.; Li, Y.H.; Ma, L.Y.; Liu, H.M. A review of progress in histone deacetylase 6 inhibitors research: Structural specificity and functional diversity. J. Med. Chem., 2021, 64(3), 1362-1391.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01782] [PMID: 33523672]
[109]
Liang, T.; Fang, H. Structure, functions and selective inhibitors of HDAC6. Curr. Top. Med. Chem., 2018, 18(28), 2429-2447.
[http://dx.doi.org/10.2174/1568026619666181129141822] [PMID: 30499393]
[110]
Miyake, Y.; Keusch, J.J.; Wang, L.; Saito, M.; Hess, D.; Wang, X.; Melancon, B.J.; Helquist, P.; Gut, H.; Matthias, P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol., 2016, 12(9), 748-754.
[http://dx.doi.org/10.1038/nchembio.2140] [PMID: 27454931]
[111]
Liu, W.; Liang, Y.; Si, X. Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur. J. Med. Chem., 2020, 205, 112679.
[http://dx.doi.org/10.1016/j.ejmech.2020.112679] [PMID: 32791404]
[112]
Pulya, S.; Amin, S.A.; Adhikari, N.; Biswas, S.; Jha, T.; Ghosh, B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res., 2021, 163, 105274.
[http://dx.doi.org/10.1016/j.phrs.2020.105274] [PMID: 33171304]
[113]
Younes, A.; Berdeja, J.G.; Patel, M.R.; Flinn, I.; Gerecitano, J.F.; Neelapu, S.S.; Kelly, K.R.; Copeland, A.R.; Akins, A.; Clancy, M.S.; Gong, L.; Wang, J.; Ma, A.; Viner, J.L.; Oki, Y. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: An open-label, dose-escalation, phase 1 trial. Lancet Oncol., 2016, 17(5), 622-631.
[http://dx.doi.org/10.1016/S1470-2045(15)00584-7] [PMID: 27049457]
[114]
Wang, Z.; Tang, F.; Hu, P.; Wang, Y.; Gong, J.; Sun, S.; Xie, C. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncol. Rep., 2016, 36(1), 589-597.
[http://dx.doi.org/10.3892/or.2016.4811] [PMID: 27221381]
[115]
Ojha, R.; Nepali, K.; Chen, C.H.; Chuang, K.H.; Wu, T.Y.; Lin, T.E.; Hsu, K.C.; Chao, M.W.; Lai, M.J.; Lin, M.H.; Huang, H.L.; Chang, C.D.; Pan, S.L.; Chen, M.C.; Liou, J.P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem., 2020, 190, 112086.
[http://dx.doi.org/10.1016/j.ejmech.2020.112086] [PMID: 32058238]
[116]
Knox, T.; Sahakian, E.; Banik, D.; Hadley, M.; Palmer, E.; Noonepalle, S.; Kim, J.; Powers, J.; Gracia-Hernandez, M.; Oliveira, V.; Cheng, F.; Chen, J.; Barinka, C.; Pinilla-Ibarz, J.; Lee, N.H.; Kozikowski, A.; Villagra, A. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci. Rep., 2019, 9(1), 6136.
[http://dx.doi.org/10.1038/s41598-019-42237-3] [PMID: 30992475]
[117]
Khabele, D. The therapeutic potential of class I selective histone deacetylase inhibitors in ovarian cancer. Front. Oncol., 2014, 4, 111.
[http://dx.doi.org/10.3389/fonc.2014.00111] [PMID: 24904826]
[118]
Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]