Fruits for Seizures? A Systematic Review on the Potential Anti-Convulsant Effects of Fruits and their Phytochemicals

Page: [1925 - 1940] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.

Keywords: Epilepsy, drug-resistant, fruit extract, anti-seizure, pro-convulsant, anti-oxidant.

Graphical Abstract

[1]
Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med., 2015, 5(6), a022426.
[http://dx.doi.org/10.1101/cshperspect.a022426] [PMID: 26033084]
[2]
Sirven, J.I. Epilepsy: A spectrum disorder. Cold Spring Harb. Perspect. Med., 2015, 5(9), a022848.
[http://dx.doi.org/10.1101/cshperspect.a022848]
[3]
Misra, U.K.; Kalita, J. Management of provoked seizure. Ann. Indian Acad. Neurol., 2011, 14(1), 2-8.
[http://dx.doi.org/10.4103/0972-2327.78041] [PMID: 21633606]
[4]
Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment. P&T, 2010, 35(7), 392-415.
[PMID: 20689626]
[5]
Fu, J.; Peng, L.; Li, J.; Tao, T.; Chen, Y. Effects of second-generation antiepileptic drugs compared to first-generation antiepileptic drugs on bone metabolism in patients with epilepsy: A meta-analysis. Horm. Metab. Res., 2019, 51(8), 511-521.
[http://dx.doi.org/10.1055/a-0963-0054] [PMID: 31408897]
[6]
LaPenna, P.; Tormoehlen, L.M. The pharmacology and toxicology of third-generation anticonvulsant drugs. J. Med. Toxicol., 2017, 13(4), 329-342.
[http://dx.doi.org/10.1007/s13181-017-0626-4] [PMID: 28815428]
[7]
Hanaya, R.; Arita, K. The new antiepileptic drugs: Their neuropharmacology and clinical indications. Neurol. Med. Chir. (Tokyo), 2016, 56(5), 205-220.
[http://dx.doi.org/10.2176/nmc.ra.2015-0344] [PMID: 26935782]
[8]
Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol., 2017, 8, 301.
[http://dx.doi.org/10.3389/fneur.2017.00301] [PMID: 28729850]
[9]
Xue-Ping, W.; Hai-Jiao, W.; Li-Na, Z.; Xu, D.; Ling, L. Risk factors for drug-resistant epilepsy: A systematic review and metaanalysis. Medicine (Baltimore), 2019, 98(30), e16402-e.
[http://dx.doi.org/10.1097/MD.0000000000016402]
[10]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47-e.
[11]
Diniz, T.C.; Silva, J.C.; de Lima-Saraiva, S.R.G.; Ribeiro, F.P.; Pacheco, A.G.; de Freitas, R.M.; Quintans-Júnior, L.J. Quintans, Jde.S.; Mendes, R.L.; Almeida, J.R. The role of flavonoids on oxidative stress in epilepsy. Oxid. Med. Cell. Longev., 2015, 2015, 171756.
[http://dx.doi.org/10.1155/2015/171756] [PMID: 25653736]
[12]
Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci., 2018, 14(3), 341-357.
[http://dx.doi.org/10.7150/ijbs.23247] [PMID: 29559851]
[13]
Silvestro, S.; Mammana, S.; Cavalli, E.; Bramanti, P.; Mazzon, E. Use of cannabidiol in the treatment of epilepsy: Efficacy and security in clinical trials. Molecules, 2019, 24(8), 1459.
[http://dx.doi.org/10.3390/molecules24081459] [PMID: 31013866]
[14]
Liu, H.; Yang, Y.; Wang, Y.; Tang, H.; Zhang, F.; Zhang, Y.; Zhao, Y. Ketogenic diet for treatment of intractable epilepsy in adults: A meta-analysis of observational studies. Epilepsia Open, 2018, 3(1), 9-17.
[http://dx.doi.org/10.1002/epi4.12098] [PMID: 29588983]
[15]
Neal, E.G.; Chaffe, H.; Schwartz, R.H.; Lawson, M.S.; Edwards, N.; Fitzsimmons, G.; Whitney, A.; Cross, J.H. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol., 2008, 7(6), 500-506.
[http://dx.doi.org/10.1016/S1474-4422(08)70092-9] [PMID: 18456557]
[16]
D’Andrea Meira, I.; Romão, T.T.; Pires do Prado, H.J.; Krüger, L.T.; Pires, M.E.P.; da Conceição, P.O. Ketogenic diet and epilepsy: What we know so far. Front. Neurosci., 2019, 13, 5.
[http://dx.doi.org/10.3389/fnins.2019.00005] [PMID: 30760973]
[17]
Miranda, M.J.; Turner, Z.; Magrath, G. Alternative diets to the classical ketogenic diet--can we be more liberal? Epilepsy Res., 2012, 100(3), 278-285.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.06.007] [PMID: 22771252]
[18]
Inaloo, S.; Pirsalami, F.; Dastgheib, M.; Moezi, L. The effects of dairy products on seizure tendency in mice. Heliyon, 2019, 5(3), e01331.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01331]
[19]
van Koert, R.R.; Bauer, P.R.; Schuitema, I.; Sander, J.W.; Visser, G.H. Caffeine and seizures: A systematic review and quantitative analysis. Epilepsy Behav., 2018, 80, 37-47.
[http://dx.doi.org/10.1016/j.yebeh.2017.11.003] [PMID: 29414557]
[20]
Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 2015, 4(1), 1.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[21]
Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin attenuates autophagic stress and neuroinflammation in Kainic acid-treated hippocampus in vivo. Evid. Based Complement. Alternat. Med., 2015, 2015, 354326.
[22]
Park, J.; Jeong, K.H.; Shin, W.H.; Bae, Y.S.; Jung, U.J.; Kim, S.R. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy. Neuroreport, 2016, 27(15), 1182-1189.
[http://dx.doi.org/10.1097/WNR.0000000000000678] [PMID: 27584687]
[23]
Shakeel, S.; Rehman, M.U.; Tabassum, N.; Amin, U.; Mir, M.U.R. Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn. Mag., 2017, 13(49)(Suppl. 1), S154-S160.
[http://dx.doi.org/10.4103/0973-1296.203977] [PMID: 28479741]
[24]
Jang, H.; Jeong, K.H.; Kim, S.R. Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy. Epilepsy Res., 2016, 123, 6-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.03.001] [PMID: 27040812]
[25]
Bukhari, I.A.; Pivac, N.; Alhumayyd, M.S.; Mahesar, A.L.; Gilani, A.H. The analgesic and anticonvulsant effects of piperine in mice. J. Physiol. Pharmacol., 2013, 64(6), 789-794.
[PMID: 24388894]
[26]
Mishra, A.; Punia, J.K.; Bladen, C.; Zamponi, G.W.; Goel, R.K. Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels (Austin), 2015, 9(5), 317-323.
[http://dx.doi.org/10.1080/19336950.2015.1092836] [PMID: 26542628]
[27]
Nassiri-Asl, M.; Naserpour Farivar, T.; Abbasi, E.; Sadeghnia, H.R.; Sheikhi, M.; Lotfizadeh, M.; Bazahang, P. Effects of rutin on oxidative stress in mice with kainic acid-induced seizure. J. Integr. Med., 2013, 11(5), 337-342.
[http://dx.doi.org/10.3736/jintegrmed2013042] [PMID: 24063781]
[28]
Alonso‐Castro, A.J.; Alba‐Betancourt, C.; Rocha‐González, E.; Ruiz‐Arredondo, A.; Zapata‐Morales, J.R.; Gasca‐Martínez, D. Neuropharmacological effects of D‐pinitol and its possible mechanisms of action. J. Food Biochem., 2019, 43(12), e13070.
[http://dx.doi.org/10.1111/jfbc.13070]
[29]
Lee, J.M.; Hong, J.; Moon, G.J.; Jung, U.J.; Won, S-Y.; Kim, S.R. Morin prevents granule cell dispersion and neurotoxicity via suppression of mTORC1 in a kainic acid-induced seizure model. Exp. Neurobiol., 2018, 27(3), 226-237.
[http://dx.doi.org/10.5607/en.2018.27.3.226] [PMID: 30022874]
[30]
Satish, K.P.; Sharvanabhava, B.S.; Sainath, R.K.; Rajitha, B.; Venkateshwarlu, E. Effect of Momordica dioica roxb. fruits on pentylentetrazole induced convulsions and oxidative stress in mice. Am. J. Drug Discov. Develop., 2013, 3(3), 166-173.
[http://dx.doi.org/10.3923/ajdd.2013.166.173]
[31]
Abdel Moneim, A.E. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats. CNS Neurol. Disord. Drug Targets, 2014, 13(4), 638-646.
[http://dx.doi.org/10.2174/1871527312666131206095142] [PMID: 24308563]
[32]
Firdous, S.M.; Ahmed, S.; Dey, S. Antiepileptic and central nervous system depressant activity of Sechium edule fruit extract. Bangladesh J. Pharmacol., 2012, 7(3), 199-202.
[33]
Pahuja, M.; Mehla, J.; Reeta, K.H.; Joshi, S.; Gupta, Y.K. Hydroalcoholic extract of Zizyphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats. Epilepsy Behav., 2011, 21(4), 356-363.
[http://dx.doi.org/10.1016/j.yebeh.2011.05.013] [PMID: 21723789]
[34]
Tirumalasetti, J.; Patel, M.M.; Shaikh, U.; Pokala, N.; Harini, K. Protective effect of aqueous extract of Lagenaria siceraria (Molina) against maximal electroshock (MES)- induced convulsions in Albino Rats. Kathmandu Univ. Med. J., 2017, 15(58), 117-120.
[35]
Mehrzadi, S.; Sadr, S.; Hosseinzadeh, A.; Gholamine, B.; Shahbazi, A.; Fallahhuseini, H. Anticonvulsant activity of the ethanolic extract of Punica granatum L. seed. Neurol. Res., 2015, 37(6), 470-475.
[36]
Ostendorf, A.P.; Wong, M. mTOR inhibition in epilepsy: Rationale and clinical perspectives. CNS Drugs, 2015, 29(2), 91-99.
[http://dx.doi.org/10.1007/s40263-014-0223-x] [PMID: 25633849]
[37]
Lévesque, M.; Avoli, M. The kainic acid model of temporal lobe epilepsy. Neurosci. Biobehav. Rev., 2013, 37(10 Pt 2), 2887-2899.
[http://dx.doi.org/10.1016/j.neubiorev.2013.10.011] [PMID: 24184743]
[38]
Liu, J.Y.W.; Dzurova, N.; Al-Kaaby, B.; Mills, K.; Sisodiya, S.M.; Thom, M. Granule cell dispersion in human temporal lobe epilepsy: Proteomics investigation of neurodevelopmental migratory pathways. Front. Cell. Neurosci., 2020, 14, 53.
[http://dx.doi.org/10.3389/fncel.2020.00053] [PMID: 32256318]
[39]
Sha, L-Z.; Xing, X-L.; Zhang, D.; Yao, Y.; Dou, W-C.; Jin, L-R. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS One, 2012, 7(6), e39152-e.
[40]
Zeng, L-H.; Rensing, N.R.; Wong, M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci., 2009, 29(21), 6964-6972.
[http://dx.doi.org/10.1523/JNEUROSCI.0066-09.2009] [PMID: 19474323]
[41]
Galanopoulou, A.S. GABA(A) receptors in normal development and seizures: Friends or foes? Curr. Neuropharmacol., 2008, 6(1), 1-20.
[http://dx.doi.org/10.2174/157015908783769653] [PMID: 19305785]
[42]
Yuen, E.S.M.; Trocóniz, I.F. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure, 2015, 24, 21-27.
[http://dx.doi.org/10.1016/j.seizure.2014.11.006] [PMID: 25564315]
[43]
Pahuja, M.; Kleekal, T.; Reeta, K.H.; Tripathi, M.; Gupta, Y.K. Interaction profile of Zizyphus jujuba with phenytoin, phenobarbitone, and carbamazepine in maximal electroshock-induced seizures in rats. Epilepsy Behav., 2012, 25(3), 368-373.
[http://dx.doi.org/10.1016/j.yebeh.2012.08.014] [PMID: 23103312]
[44]
Patocka, J.; Wu, Q.; Nepovimova, E.; Kuca, K. Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food Chem. Toxicol., 2020, 142, 111393.
[http://dx.doi.org/10.1016/j.fct.2020.111393] [PMID: 32376339]
[45]
Nabavi, S.F.; Braidy, N.; Habtemariam, S.; Orhan, I.E.; Daglia, M.; Manayi, A.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int., 2015, 90, 224-231.
[http://dx.doi.org/10.1016/j.neuint.2015.09.006] [PMID: 26386393]
[46]
Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci., 2019, 22(8), 569-577.
[http://dx.doi.org/10.1080/1028415X.2017.1418786] [PMID: 29284373]
[47]
Hao, F.; Jia, L-H.; Li, X-W.; Zhang, Y-R.; Liu, X-W. Garcinol upregulates GABAA and GAD65 expression, modulates BDNF-TrkB pathway to reduce seizures in pentylenetetrazole (PTZ)-induced epilepsy. Med. Sci. Monit., 2016, 22, 4415-4425.
[http://dx.doi.org/10.12659/MSM.897579] [PMID: 27855137]
[48]
Kozioł, E.; Deniz, F.S.S.; Orhan, I.E.; Marcourt, L.; Budzyńska, B.; Wolfender, J-L.; Crawford, A.D.; Skalicka-Woźniak, K. High-performance counter-current chromatography isolation and initial neuroactivity characterization of furanocoumarin derivatives from Peucedanum alsaticum L (Apiaceae). Phytomedicine, 2019, 54, 259-264.
[http://dx.doi.org/10.1016/j.phymed.2018.10.030] [PMID: 30668376]
[49]
Zaugg, J.; Eickmeier, E.; Rueda, D.C.; Hering, S.; Hamburger, M. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes . Fitoterapia, 2011, 82(3), 434-440.
[http://dx.doi.org/10.1016/j.fitote.2010.12.001] [PMID: 21147202]
[50]
Tubaş, F.; Per, S.; Taşdemir, A.; Bayram, A.K.; Yıldırım, M.; Uzun, A.; Saraymen, R.; Gümüş, H.; Elmalı, F.; Per, H. Effects of Cornus mas L. and Morus rubra L. extracts on penicillin-induced epileptiform activity: An electrophysiological and biochemical study. Acta Neurobiol. Exp. (Warsz.), 2017, 77(1), 45-56.
[http://dx.doi.org/10.21307/ane-2017-035] [PMID: 28379215]
[51]
Oyemitan, I.A.; Olayera, O.A.; Alabi, A.; Abass, L.A.; Elusiyan, C.A.; Oyedeji, A.O.; Akanmu, M.A. Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice. J. Ethnopharmacol., 2015, 166, 240-249.
[http://dx.doi.org/10.1016/j.jep.2015.03.004] [PMID: 25771354]
[52]
Oyemitan, I.A.; Elusiyan, C.A.; Akanmu, M.A.; Olugbade, T.A. Hypnotic, anticonvulsant and anxiolytic effects of 1-nitro-2-phenylethane isolated from the essential oil of Dennettia tripetala in mice. Phytomedicine, 2013, 20(14), 1315-1322.
[http://dx.doi.org/10.1016/j.phymed.2013.07.005] [PMID: 23920280]
[53]
Chauhan, K.; Sheth, N.; Ranpariya, V.; Parmar, S. Anticonvulsant activity of solasodine isolated from Solanum sisymbriifolium fruits in rodents. Pharm. Biol., 2011, 49(2), 194-199.
[http://dx.doi.org/10.3109/13880209.2010.508499] [PMID: 21062107]
[54]
El-Nabtity, S.M.M.; Abdelaziz, A.S.; Moselhi, M.S.; Giorgi, M. Anticonvulsant activity of hydroalcoholic phoenix Dactylifera fruit extract and Pimpinella anisum oil in mice. Am. J. Anim. Vet. Sci., 2019, 14(2), 127-138.
[http://dx.doi.org/10.3844/ajavsp.2019.127.138]
[55]
Kumari, N.; Tajmul, M.; Yadav, S. Proteomic analysis of mature Lagenaria siceraria seed. Appl. Biochem. Biotechnol., 2015, 175(8), 3643-3656.
[http://dx.doi.org/10.1007/s12010-015-1532-3] [PMID: 25672325]
[56]
Çakır, S.; Orallar, H.; Cetinkaya, A.; Kayacan, Y.; Önal, A.C.; Yildirim, A. Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and physical exercise on acute penicillin induced seizures in gerbils. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(2), 223-228.
[http://dx.doi.org/10.4314/ajtcam.v13i2.26]
[57]
Sulthana, S.; Naz, S. Anti epileptic activity of Sapindus emerginatus vahl fruit extract in Pentylenetetrazole induced seizure model. Int. J. Pharm. Pharm. Sci., 2013, 5(Suppl. 1), 280-284.
[58]
Rajput, M.A.; Khan, R.A.; Assad, T. Anti-epileptic activity of Nelumbo nucifera fruit. Metab. Brain Dis., 2017, 32(6), 1883-1887.
[http://dx.doi.org/10.1007/s11011-017-0064-7] [PMID: 28776277]
[59]
Smilin Bell Aseervatham, G.; Abbirami, E.; Sivasudha, T.; Ruckmani, K. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit and oxidative stress in pilocarpine-induced epileptic mice. Metab. Brain Dis., 2020, 35(1), 159-173.
[http://dx.doi.org/10.1007/s11011-019-00501-5] [PMID: 31728889]
[60]
Holanda, D.K.R.; Wurlitzer, N.J.; Dionisio, A.P.; Campos, A.R.; Moreira, R.A.; Sousa, P.H.M.; Brito, E.S.; Ribeiro, P.R.V.; Iunes, M.F.; Costa, A.M. Garlic passion fruit ( Passiflora tenuifila Killip): Assessment of eventual acute toxicity, anxiolytic, sedative, and anticonvulsant effects using in vivo assays. Food Res. Int., 2020, 128, 108813.
[http://dx.doi.org/10.1016/j.foodres.2019.108813] [PMID: 31955772]
[61]
Kayacan, Y.; Bahadir, A.; Cetinkaya, A.; Orallar, H.; Cakir, S.; Beyazcicek, E. Penicillin-induced epileptiform ECoG activity in gerbils: Effects of physical exercise and a Diospyros kaki extract. Neurophysiology, 2016, 48(5), 367-374.
[http://dx.doi.org/10.1007/s11062-017-9611-4]
[62]
Olusina, O.K.; Aderibigbe, A.O. Anticonvulsant activity of ethanol extract of Adenopus breviflorus (Roberty) fruit in mice. Int. J. Pharm. Sci. Rev. Res., 2016, 38(2), 24-28.
[63]
Golechha, M.; Bhatia, J.; Ojha, S.; Arya, D.S. Hydroalcoholic extract of Emblica officinalis protects against kainic acid-induced status epilepticus in rats: Evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. Pharm. Biol., 2011, 49(11), 1128-1136.
[http://dx.doi.org/10.3109/13880209.2011.571264] [PMID: 21749189]
[64]
Jo, Y.J.; Eun, J.S.; Kim, H.C.; Cho, H.E.; Lee, M.K.; Hwang, B.Y. Protection by methanol extract of longan (Dimocarpus longan Lour.) peel against kainic acid-induced seizure. Nat. Prod. Sci., 2010, 16(2), 99-106.
[65]
Sharma, A.K.; Agarwal, V.; Kumar, R.; Balasubramaniam, A.; Mishra, A.; Gupta, R. Pharmacological studies on seeds of Alangium salvifolium Linn. Acta Pol. Pharm., 2011, 68(6), 897-904.
[PMID: 22125955]
[66]
Elisabetsky, E.; Brum, L.F.; Souza, D.O. Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine, 1999, 6(2), 107-113.
[http://dx.doi.org/10.1016/S0944-7113(99)80044-0] [PMID: 10374249]
[67]
Kaputlu, I.; Uzbay, T. L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain Res., 1997, 753(1), 98-101.
[http://dx.doi.org/10.1016/S0006-8993(96)01496-5] [PMID: 9125436]
[68]
Kumar, R.; Arora, R.; Agarwal, A.; Gupta, Y.K. Protective effect of Terminalia chebula against seizures, seizure-induced cognitive impairment and oxidative stress in experimental models of seizures in rats. J. Ethnopharmacol., 2018, 215, 124-131.
[http://dx.doi.org/10.1016/j.jep.2017.12.008] [PMID: 29248452]
[69]
Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res., 2003, 23(12), 1719-1726.
[http://dx.doi.org/10.1016/j.nutres.2003.08.005]
[70]
Jung, S-T.; Park, Y-S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Katrich, E.; Trakhtenberg, S.; Gorinstein, S. Some essential phytochemicals and the antioxidant potential in fresh and dried persimmon. Int. J. Food Sci. Nutr., 2005, 56(2), 105-113.
[http://dx.doi.org/10.1080/09637480500081571] [PMID: 16019320]
[71]
Lee, J.H.; Lee, Y.B.; Seo, W.D.; Kang, S.T.; Lim, J.W.; Cho, K.M. Comparative Studies of Antioxidant Activities and Nutritional Constituents of Persimmon Juice ( Diospyros kaki L. cv. Gapjubaekmok). Prev. Nutr. Food Sci., 2012, 17(2), 141-151.
[http://dx.doi.org/10.3746/pnf.2012.17.2.141] [PMID: 24471076]
[72]
Svob Strac, D.; Pivac, N.; Smolders, I.J.; Fogel, W.A.; De Deurwaerdere, P.; Di Giovanni, G. Monoaminergic mechanisms in epilepsy may offer innovative therapeutic opportunity for monoaminergic multi-target drugs. Front. Neurosci., 2016, 10, 492.
[http://dx.doi.org/10.3389/fnins.2016.00492] [PMID: 27891070]
[73]
Zhu, H.L.; Wan, J.B.; Wang, Y.T.; Li, B.C.; Xiang, C.; He, J. Medicinal compounds with antiepileptic/anticonvulsant activities; , 2014, pp. 3-16.
[74]
Campo-Soria, C.; Chang, Y.; Weiss, D.S. Mechanism of action of benzodiazepines on GABAA receptors. Br. J. Pharmacol., 2006, 148(7), 984-990.
[http://dx.doi.org/10.1038/sj.bjp.0706796] [PMID: 16783415]
[75]
Muralidharan, P.; Srikanth, J. Anti epileptic activity of Morinda citrifolia linn fruit extract. E-J. Chem., 2010, 7(2), 612-616.
[http://dx.doi.org/10.1155/2010/795804]
[76]
Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1527-1533.
[http://dx.doi.org/10.1016/j.addr.2008.06.002] [PMID: 18652859]
[77]
Mehrzadi, S.; Shojaii, A.; Pur, S.A.; Motevalian, M. Anticonvulsant activity of hydroalcoholic extract of Citrullus colocynthis Fruit: Involvement of benzodiazepine and opioid receptors. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP31-NP35.
[http://dx.doi.org/10.1177/2156587215615455] [PMID: 26634927]
[78]
Souza-Monteiro, J.R.; Hamoy, M.; Santana-Coelho, D.; Arrifano, G.P.F.; Paraense, R.S.O.; Costa-Malaquias, A.; Mendonça, J.R.; da Silva, R.F.; Monteiro, W.S.; Rogez, H.; de Oliveira, D.L.; do Nascimento, J.L.; Crespo-López, M.E. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem. Int., 2015, 90, 20-27.
[http://dx.doi.org/10.1016/j.neuint.2015.06.014] [PMID: 26142570]
[79]
Arrifano, G.; Lichtenstein, M.; Farina, M.; Rogez, H.; Tavares Carvalho, J.; Suñol, C. Clarified Açaí (Euterpe oleracea) juice as an anticonvulsant agent: In vitro mechanistic study of GABAergic targets. Oxid. Med. Cell. Longev., 2018, Article ID: 2678089.
[80]
Garcia-Cairasco, N.; Moyses-Neto, M.; Del Vecchio, F.; Oliveira, J.A.C.; dos Santos, F.L.; Castro, O.W.; Arisi, G.M.; Dantas, M.; Carolino, R.O.; Coutinho-Netto, J.; Dagostin, A.L.; Rodrigues, M.C.; Leão, R.M.; Quintiliano, S.A.; Silva, L.F., Jr; Gobbo-Neto, L.; Lopes, N.P. Elucidating the neurotoxicity of the star fruit. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13067-13070.
[http://dx.doi.org/10.1002/anie.201305382] [PMID: 24281890]
[81]
Fang, H-C.; Chen, C-L.; Lee, P-T.; Hsu, C-Y.; Tseng, C-J.; Lu, P-J.; Lai, S.L.; Chung, H.M.; Chou, K.J. The role of oxalate in star fruit neurotoxicity of five-sixths nephrectomized rats. Food Chem. Toxicol., 2007, 45(9), 1764-1769.
[http://dx.doi.org/10.1016/j.fct.2007.03.011] [PMID: 17475388]
[82]
Safavynia, S.A.; Keating, G.; Speigel, I.; Fidler, J.A.; Kreuzer, M.; Rye, D.B.; Jenkins, A.; García, P.S. Effects of γ-aminobutyric acid type a receptor modulation by flumazenil on emergence from general anesthesia. Anesthesiology, 2016, 125(1), 147-158.
[http://dx.doi.org/10.1097/ALN.0000000000001134] [PMID: 27111534]
[83]
Greenfield, L.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600.
[http://dx.doi.org/10.1016/j.seizure.2013.04.015] [PMID: 23683707]
[84]
Neto, M.M.; Silva, G.E.B.; Costa, R.S.; Vieira, N.O.M.; Garcia-Cairasco, N.; Lopes, N.P.; Haendchen, P.F.; Silveira, C.; Mendes, A.R.; Filho, R.R.; Dantas, M. Star fruit: Simultaneous neurotoxic and nephrotoxic effects in people with previously normal renal function. NDT Plus, 2009, 2(6), 485-488.
[PMID: 25949386]
[85]
Tsai, M-H.; Chang, W-N.; Lui, C-C.; Chung, K-J.; Hsu, K-T.; Huang, C-R.; Lu, C.H.; Chuang, Y.C. Status epilepticus induced by star fruit intoxication in patients with chronic renal disease. Seizure, 2005, 14(7), 521-525.
[http://dx.doi.org/10.1016/j.seizure.2005.08.004] [PMID: 16169255]
[86]
Wang, Y-C.L.; Liu, B-M.; Supernaw, R.B.; Lu, Y-H.; Lee, P-Y. Management of star fruit-induced neurotoxicity and seizures in a patient with chronic renal failure. Pharmacotherapy, 2006, 26(1), 143-146.
[http://dx.doi.org/10.1592/phco.2006.26.1.143] [PMID: 16506356]
[87]
Yasawardene, P.; Jayarajah, U.; De Zoysa, I.; Seneviratne, S.L. Mechanisms of star fruit ( Averrhoa carambola ) toxicity: A mini-review. Toxicon (Oxford), 2020, 187, 198-202.
[http://dx.doi.org/10.1016/j.toxicon.2020.09.010] [PMID: 32966829]