Advances in Biocatalytic Synthesis, Pharmacological Activities, Pharmaceutical Preparation and Metabolism of Ginsenoside Rh2

Page: [437 - 448] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Ginsenoside Rh2 (3β-O-Glc-protopanaxadiol), a trace but characteristic pharmacological component of red ginseng, exhibited versatile pharmacological activities, such as antitumor effects, improved cardiac function and fibrosis, anti-inflammatory effects, antibiosis and excellent medicinal potential. In recent years, increased research has been performed on the biocatalytic synthesis of ginsenoside Rh2. In this paper, advances in the biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2 are reviewed.

Keywords: Ginsenoside Rh2, biocatalytic synthesis, pharmacological activity, pharmaceutical preparation, metabolism, Panax notoginseng waste.

Graphical Abstract

[1]
Park, J.; Song, H.; Kim, S.K.; Lee, M.S.; Rhee, D.K.; Lee, Y. Effects of ginseng on two main sex steroid hormone receptors: Estrogen and androgen receptors. J. Ginseng Res., 2017, 41(2), 215-221.
[http://dx.doi.org/10.1016/j.jgr.2016.08.005] [PMID: 28413327]
[2]
Liu, J.; Xu, Y.; Yang, J.; Wang, W.; Zhang, J.; Zhang, R.; Meng, Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res., 2017, 41(3), 373-378.
[http://dx.doi.org/10.1016/j.jgr.2017.01.001] [PMID: 28701880]
[3]
Li, G.; Cui, Y.; Wang, H.; Kwon, W.S.; Yang, D.C. Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region. J. Ginseng Res., 2017, 41(3), 326-329.
[http://dx.doi.org/10.1016/j.jgr.2016.06.003] [PMID: 28701873]
[4]
Wang, J.; Wang, H.; Mou, X.; Luan, M.; Zhang, X.; He, X.; Zhao, F.; Meng, Q. The Advances on the protective effects of ginsenosides on myocardial ischemia and ischemia-reperfusion injury. Mini Rev. Med. Chem., 2020, 20(16), 1610-1618.
[http://dx.doi.org/10.2174/1389557520666200619115444] [PMID: 32560603]
[5]
Bi, Y.; Wang, T.; Meng, Q.G.; Zhang, J.F.; Wang, L.; Li, Q.; Zhao, F.L.; Sun, H.J. Synthesis and myocardial ischemia protective effect of ocotillol-type derivatives. Rec. Nat. Prod., 2012, 6(3), 242-254.
[6]
Bi, Y.; Ma, C.; Zhou, Z.W.; Zhang, T.T.; Zhang, H.Y.; Zhang, X.C.; Lu, J.; Meng, Q.G.; Lewis, P.J.; Xu, J.Y. Synthesis and antibacterial evaluation of novel hydrophilic ocotillol-type triterpenoid derivatives from 20(S)-. Protopanaxadiol. Rec. Nat. Prod., 2015, 9(3), 356-368.
[7]
Wang, C.; Liu, J.; Deng, J.; Wang, J.; Weng, W.; Chu, H.; Meng, Q. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res., 2020, 44(1), 14-23.
[http://dx.doi.org/10.1016/j.jgr.2019.01.005] [PMID: 32095093]
[8]
Zheng, M.; Xin, Y.; Li, Y.; Xu, F.; Xi, X.; Guo, H.; Cui, X.; Cao, H.; Zhang, X.; Han, C. Ginsenosides: A potential neuroprotective agent. BioMed Res. Int., 2018, 20188174345
[http://dx.doi.org/10.1155/2018/8174345] [PMID: 29854792]
[9]
Fernández-Moriano, C.; González-Burgos, E.; Iglesias, I.; Lozano, R.; Gómez-Serranillos, M.P. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS One, 2017, 12(8)e0182933
[http://dx.doi.org/10.1371/journal.pone.0182933] [PMID: 28813475]
[10]
Qi, L.W.; Wang, C.Z.; Yuan, C.S. Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry, 2011, 72(8), 689-699.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.012] [PMID: 21396670]
[11]
Nakamura, S.; Sugimoto, S.; Matsuda, H.; Yoshikawa, M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquefolium L. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1342-1348.
[http://dx.doi.org/10.1248/cpb.55.1342] [PMID: 17827759]
[12]
Lü, J.M.; Yao, Q.; Chen, C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol., 2009, 7(3), 293-302.
[http://dx.doi.org/10.2174/157016109788340767] [PMID: 19601854]
[13]
Qi, X.D.; Hou, J.C.; Yu, H.T.; Zhang, C.J. 20(S)-Ginsenoside-Rh2 and 20(R)-ginsenoside-Rh2 activate ikappab phosphorylation expression in human lung adenocarcinoma A549 cells. Adv. Mat. Res., 2011, 268-270, 1205-1210.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.268-270.1205]
[14]
Liu, J.; Shiono, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg. Med. Chem. Lett., 2009, 19(12), 3320-3323.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.054] [PMID: 19428246]
[15]
Oh, S.J.; Lee, S.; Choi, W.Y.; Lim, C.J. Skin anti-photoaging properties of ginsenoside Rh2 epimers in UV-B-irradiated human keratinocyte cells. J. Biosci., 2014, 39(4), 673-682.
[http://dx.doi.org/10.1007/s12038-014-9460-x] [PMID: 25116621]
[16]
Liu, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia, 2010, 81(7), 902-905.
[http://dx.doi.org/10.1016/j.fitote.2010.05.020] [PMID: 20554003]
[17]
Zhang, J.; Zhang, Q.; Xu, Y.; Li, H.; Zhao, F.; Wang, C.; Liu, Z.; Liu, P.; Liu, Y.; Meng, Q.; Zhao, F. Synthesis and in vitro anti-inflammatory activity of c20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med., 2019, 85(4), 292-301.
[http://dx.doi.org/10.1055/a-0770-0994] [PMID: 30380571]
[18]
Yang, Q.; Wang, N.; Zhang, J.; Chen, G.; Xu, H.; Meng, Q.; Du, Y.; Yang, X.; Fan, H. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor. Phytomedicine, 2019, 64152899
[http://dx.doi.org/10.1016/j.phymed.2019.152899] [PMID: 31454649]
[19]
Zare-Zardini, H.; Taheri-Kafrani, A.; Amiri, A.; Bordbar, A.K. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci. Rep., 2018, 8(1), 586.
[http://dx.doi.org/10.1038/s41598-017-18938-y] [PMID: 29330486]
[20]
Xin, W.F.; Cai, Q.H.; Liu, S.L.; Zhang, W.S.; Hu, H.Z.; Yuan, M.H; Wang, F.; Zhang, F.S.; Guo, X.; Yu, B.; Meng, W. A preparation method for ginsenoside Rh2. C.N. Patent 109232702A,, 2019.
[21]
Liao, J.; Sun, J.; Niu, Y.; Yu, B. Synthesis of ginsenoside Rh2 and chikusetsusaponin-LT8 via gold(I)-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate as donor. Tetrahedron Lett., 2011, 52, 3075-3078.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.003]
[22]
Yu, J.; Sun, J.; Niu, Y.; Li, R.; Liao, J.; Zhang, F.; Yu, B. Synthetic access toward the diverse ginsenosides. Chem. Sci. (Camb.), 2013, 4, 3899-3905.
[http://dx.doi.org/10.1039/c3sc51479j]
[23]
Lee, M.H.; Jeong, J.H.; Seo, J.W.; Shin, C.G.; Kim, Y.S.; In, J.G.; Yang, D.C.; Yi, J.S.; Choi, Y.E. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol., 2004, 45(8), 976-984.
[http://dx.doi.org/10.1093/pcp/pch126] [PMID: 15356323]
[24]
Han, J.Y.; In, J.G.; Kwon, Y.S.; Choi, Y.E. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry, 2010, 71(1), 36-46.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.031] [PMID: 19857882]
[25]
Lee, M.H.; Han, J.Y.; Kim, H.J.; Kim, Y.S.; Huh, G.H.; Choi, Y.E. Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase. Plant Cell Physiol., 2012, 53(1), 173-182.
[http://dx.doi.org/10.1093/pcp/pcr160] [PMID: 22102695]
[26]
Han, J.Y.; Kim, H.J.; Kwon, Y.S.; Choi, Y.E. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol., 2011, 52(12), 2062-2073.
[http://dx.doi.org/10.1093/pcp/pcr150] [PMID: 22039120]
[27]
Han, J.Y.; Hwang, H.S.; Choi, S.W.; Kim, H.J.; Choi, Y.E. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol., 2012, 53(9), 1535-1545.
[http://dx.doi.org/10.1093/pcp/pcs106] [PMID: 22875608]
[28]
Yang, J.L.; Hu, Z.F.; Zhang, T.T.; Gu, A.D.; Gong, T.; Zhu, P. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules, 2018, 23(3), 589.
[http://dx.doi.org/10.3390/molecules23030589] [PMID: 29509695]
[29]
Seki, H.; Tamura, K.; Muranaka, T. P450s and UGTs: Key players in the structural diversity of triterpenoid saponins. Plant Cell Physiol., 2015, 56(8), 1463-1471.
[http://dx.doi.org/10.1093/pcp/pcv062] [PMID: 25951908]
[30]
Hu, Y.; Xue, J.; Min, J.; Qin, L.; Zhang, J.; Dai, L. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. J. Biotechnol., 2020, 309, 107-112.
[http://dx.doi.org/10.1016/j.jbiotec.2020.01.003] [PMID: 31926981]
[31]
Wang, P.; Wei, W.; Ye, W.; Li, X.; Zhao, W.; Yang, C.; Li, C.; Yan, X.; Zhou, Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov., 2019, 5(1), 5.
[http://dx.doi.org/10.1038/s41421-018-0075-5] [PMID: 30652026]
[32]
Ma, W.; Zhao, L.; Ma, Y.; Li, Y.; Qin, S.; He, B. Oriented efficient biosynthesis of rare ginsenoside Rh2 from PPD by compiling UGT-Yjic mutant with sucrose synthase. Int. J. Biol. Macromol., 2020, 146, 853-859.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.208] [PMID: 31726169]
[33]
Biswas, T.; Mathur, A.K.; Mathur, A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl. Microbiol. Biotechnol., 2017, 101(10), 4009-4032.
[http://dx.doi.org/10.1007/s00253-017-8279-4] [PMID: 28411325]
[34]
Xia, T.; Zhang, J.; Zhou, C.; Li, Y.; Duan, W.; Zhang, B.; Wang, M.; Fang, J. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J. Ginseng Res., 2020, 44(5), 725-737.
[http://dx.doi.org/10.1016/j.jgr.2019.07.003] [PMID: 32913402]
[35]
Lee, H.; Lee, S.; Jeong, D.; Kim, S.J. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J. Ginseng Res., 2018, 42(4), 455-462.
[http://dx.doi.org/10.1016/j.jgr.2017.05.003] [PMID: 30337805]
[36]
Jeong, D.; Ham, J.; Park, S.; Kim, H.W.; Kim, H.; Ji, H.W.; Kim, S.J. Ginsenoside Rh2 suppresses breast cancer cell proliferation by epigenetically regulating the long noncoding RNA C3orf67-AS1. Am. J. Chin. Med., 2019, 47(7), 1643-1658.
[http://dx.doi.org/10.1142/S0192415X19500848] [PMID: 31645124]
[37]
Ren, G.; Shi, Z.; Teng, C.; Yao, Y. Antiproliferative Activity of Combined Biochanin A and Ginsenoside Rh2 on MDA-MB-231 and MCF-7 Human Breast Cancer Cells. Molecules, 2018, 23(11), 2908.
[http://dx.doi.org/10.3390/molecules23112908] [PMID: 30413008]
[38]
Han, S.; Jeong, A.J.; Yang, H.; Bin Kang, K.; Lee, H.; Yi, E.H.; Kim, B.H.; Cho, C.H.; Chung, J.W.; Sung, S.H.; Ye, S.K. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J. Ethnopharmacol., 2016, 194, 83-90.
[http://dx.doi.org/10.1016/j.jep.2016.08.039] [PMID: 27566200]
[39]
Abad, A.; Massutí, B.; Gallego, J.; Yuste, A.L.; Manzano, J.L.; Carrato, A.; Antón, A.; Marfa, X.; Diaz-Rubio, E. Spanish Cooperative group for gastrointestinal tumor therapy: phase i study of the combination of oxaliplatin, irinotecan and continuous infu-sion 5-fluorouracil in digestive tumors. Anticancer Drugs, 2004, 15, 469-471.
[http://dx.doi.org/10.1097/01.cad.0000127146.50172.8a] [PMID: 15166620]
[40]
Ma, J.; Gao, G.; Lu, H.; Fang, D.; Li, L.; Wei, G.; Chen, A.; Yang, Y.; Zhang, H.; Huo, J. Reversal effect of ginsenoside Rh2 on oxaliplatin-resistant colon cancer cells and its mechanism. Exp. Ther. Med., 2019, 18(1), 630-636.
[http://dx.doi.org/10.3892/etm.2019.7604] [PMID: 31258699]
[41]
Bremner, R.; Chen, D.; Livne-Bar, I.; Agochiya, M. Re: Update on retinoblastoma. Retina, 2005, 25(7), 950-951.
[http://dx.doi.org/10.1097/00006982-200510000-00029] [PMID: 16205585]
[42]
Bertoli, C.; Skotheim, J.M.; de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528.
[http://dx.doi.org/10.1038/nrm3629] [PMID: 23877564]
[43]
Li, M.; Zhang, D.; Cheng, J.; Liang, J.; Yu, F. Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and autophagy by down-regulating microRNA-638 in human retinoblastoma cells. Exp. Mol. Pathol., 2019, 108, 17-23.
[http://dx.doi.org/10.1016/j.yexmp.2019.03.004] [PMID: 30853612]
[44]
Chen, W.W.; Huang, Y.F.; Hu, Z.B.; Liu, Y.M.; Xiao, H.X.; Liu, D.B.; Zhuang, Y.Z. Microarray analysis of altered long non-coding RNA expression profile in liver cancer cells treated by ginsenoside Rh2. J. Asian Nat. Prod. Res., 2019, 21(8), 742-753.
[http://dx.doi.org/10.1080/10286020.2018.1490273] [PMID: 30394104]
[45]
Wang, Y.S.; Lin, Y.; Li, H.; Li, Y.; Song, Z.G.; Jin, Y.H. The identification of molecular target of 20(S)-ginsenoside Rh2 for its anti-cancer activity. Sci. Rep., 2017, 7(1), 1-12.
[http://dx.doi.org/10.1038/s41598-017-12572-4] [PMID: 28127051]
[46]
Gao, Q.; Zheng, J. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Prolif., 2018, 51(3)e12438
[http://dx.doi.org/10.1111/cpr.12438] [PMID: 29457293]
[47]
Huang, Y.; Huang, H.; Han, Z.; Li, W.; Mai, Z.; Yuan, R. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1. J. Nanosci. Nanotechnol., 2019, 19(4), 1942-1950.
[http://dx.doi.org/10.1166/jnn.2019.16404] [PMID: 30486934]
[48]
Gu, Y.; Wang, G.J.; Sun, J.G.; Jia, Y.W.; Wang, W.; Xu, M.J.; Lv, T.; Zheng, Y.T.; Sai, Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem. Toxicol., 2009, 47(9), 2257-2268.
[http://dx.doi.org/10.1016/j.fct.2009.06.013] [PMID: 19524010]
[49]
Li, K.F.; Kang, C.M.; Yin, X.F.; Li, H.X.; Chen, Z.Y.; Li, Y.; Zhang, Q.; Qiu, Y.R. Ginsenoside Rh2 inhibits human A172 glioma cell proliferation and induces cell cycle arrest status via modulating Akt signaling pathway. Mol. Med. Rep., 2018, 17(2), 3062-3068.
[PMID: 29207171]
[50]
Ge, G.; Yan, Y.; Cai, H. Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated er stress dependent apoptosis in lung cancer cells. Biol. Pharm. Bull., 2017, 40(12), 2117-2124.
[http://dx.doi.org/10.1248/bpb.b17-00463] [PMID: 28966297]
[51]
Wang, Y.; Xu, H.; Lu, Z.; Yu, X.; Lv, C.; Tian, Y.; Sui, D. Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp. Ther. Med., 2018, 15(6), 4916-4924.
[http://dx.doi.org/10.3892/etm.2018.6067] [PMID: 29805515]
[52]
Trinh, H.T.; Han, S.J.; Kim, S.W.; Lee, Y.C.; Kim, D.H. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechnol., 2007, 17(7), 1127-1133.
[PMID: 18051323]
[53]
Fatmawati, S.; Ersam, T.; Yu, H.; Zhang, C.; Jin, F.; Shimizu, K. 20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng. Bioorg. Med. Chem. Lett., 2014, 24(18), 4407-4409.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.009] [PMID: 25152999]
[54]
Lo, S.H.; Hsu, C.T.; Niu, H.S.; Niu, C.S.; Cheng, J.T.; Chen, Z.C. Ginsenoside Rh2 Improves Cardiac Fibrosis via PPARδ-STAT3 Signaling in Type 1-Like Diabetic Rats. Int. J. Mol. Sci., 2017, 18(7), 1364.
[http://dx.doi.org/10.3390/ijms18071364] [PMID: 28672855]
[55]
Huang, R.R.; Qian, Y.; Xiang, M. Research progress of ginsenoside rh2 immunomodulation. Chin. J. Immunol., 2019, 35(23), 2936-2941.
[56]
Vinoth Kumar, R.; Oh, T.W.; Park, Y.K. Anti-Inflammatory Effects of Ginsenoside-Rh2 Inhibits LPS-Induced activation of microglia and overproduction of inflammatory mediators via Modulation of TGF-β1/Smad Pathway. Neurochem. Res., 2016, 41(5), 951-957.
[http://dx.doi.org/10.1007/s11064-015-1804-x] [PMID: 26738987]
[57]
Bi, Y.; Yang, J.; Ma, C.; Liu, Z.Y.; Zhang, T.T.; Zhang, X.C.; Lu, J.; Meng, Q.G. Design, synthesis and in vitro NO-releasing activities of ocotillol-type furoxans. Pharmazie, 2015, 70(4), 213-218.
[PMID: 26012249]
[58]
Cao, X.; Ye, Q.; Fan, M.; Liu, C. Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms. J. Appl. Microbiol., 2019, 126(3), 740-751.
[http://dx.doi.org/10.1111/jam.14178] [PMID: 30556937]
[59]
Xu, L.; Yu, H.; Yin, S.; Zhang, R.; Zhou, Y.; Li, J. Liposome-based delivery systems for ginsenoside Rh2: In vitro and in vivo comparisons. J. Nanopart. Res., 2015, 17(10), 415.
[http://dx.doi.org/10.1007/s11051-015-3214-z]
[60]
Jin, X.; Yang, Q.; Cai, N.; Zhang, Z. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (Lond.), 2020, 15(1), 41-54.
[http://dx.doi.org/10.2217/nnm-2018-0479] [PMID: 31868113]
[61]
Singh, P.; Kim, Y.J.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Yang, D.C. .In situ preparation of water-soluble ginsenoside Rh2- entrapped bovine serum albumin nanoparticles: In vitro cytocompatibility studies. Int. J. Nanomed., 2017, 4073-4084.,
[62]
Markus, J.; Mathiyalagan, R.; Kim, Y.J.; Han, Y.; Jiménez-Pérez, Z.E.; Veronika, S.; Yang, D.C. Synthesis of hyaluronic acid or O-carboxymethyl chitosan-stabilized ZnO-ginsenoside Rh2 nanocomposites incorporated with aqueous leaf extract of Dendropanax morbifera Léveille: In vitro studies as potential sunscreen agents. New J. Chem., 2019, 43(23), 9188-9200.
[http://dx.doi.org/10.1039/C8NJ06044D]
[63]
Fang, L.; Cheng, Q.; Bai, J.; Qi, Y.D.; Liu, J.J.; Li, L.T.; Zheng, J.N. An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Mol. Med. Rep., 2013, 8(5), 1416-1424.
[http://dx.doi.org/10.3892/mmr.2013.1680] [PMID: 24042845]
[64]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H. LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[65]
Kim, Y.J.; Perumalsamy, H.; Castro-Aceituno, V.; Kim, D.; Markus, J.; Lee, S.; Kim, S.; Liu, Y.; Yang, D.C. Photoluminescent and Self-assembled hyaluronic acid-zinc oxide-ginsenoside rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer Cell Lines. Int. J. Nanomed, 2019, 14, 8195-8208.
[http://dx.doi.org/10.2147/IJN.S221328] [PMID: 31632027]
[66]
Zhang, H.; Chen, B.; Jiang, H.; Wang, C.; Wang, H.; Wang, X. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials, 2011, 32(7), 1906-1914.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.027] [PMID: 21145104]
[67]
Chen, D.; Yu, H.; Mu, H.; Li, G.; Shen, Y. Novel multicore niosomes based on double pH-sensitive mixed micelles for Ginsenoside Rh2 delivery. Artif. Cells Nanomed. Biotechnol., 2014, 42(3), 205-209.
[http://dx.doi.org/10.3109/21691401.2013.794358] [PMID: 24823243]
[68]
Li, P.; Zhou, X.; Qu, D.; Guo, M.; Fan, C.; Zhou, T.; Ling, Y. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv., 2017, 24(1), 834-845.
[http://dx.doi.org/10.1080/10717544.2017.1326540] [PMID: 28532223]
[69]
Wang, W.; Ni, Y.; Wang, L.; Che, X.; Liu, W.; Meng, Q. Stereoselective oxidation metabolism of 20(S)-protopanaxatriol in human liver microsomes and in rats. Xenobiotica, 2015, 45(5), 385-395.
[http://dx.doi.org/10.3109/00498254.2014.986562] [PMID: 25430797]
[70]
Li, L.; Chen, X.; Zhou, J.; Zhong, D. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9. Drug Metab. Dispos., 2012, 40(10), 2041-2053.
[http://dx.doi.org/10.1124/dmd.112.046995] [PMID: 22829543]
[71]
Qian, Y.; Huang, R.; Li, S.; Xie, R.; Qian, B.; Zhang, Z.; Li, L.; Wang, B.; Tian, C.; Yang, J.; Xiang, M. Ginsenoside Rh2 reverses cyclophosphamide-induced immune deficiency by regulating fatty acid metabolism. J. Leukoc. Biol., 2019, 106(5), 1089-1100.
[http://dx.doi.org/10.1002/JLB.2A0419-117R] [PMID: 31211478]