Cytokine Storm and Immunomodulation in COVID-19: A Review

Article ID: e221221196401 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has taken over the world, and more than 38 lakh deaths had been reported till now due to this infectious disease. It has been declared a global pandemic by the world health organization. SARS-CoV-2 causes coronavirus disease of 2019 (COVID-19), and the major problem called “Cytokine storm” is reported, which may lead to death among the COVID-19 patients. This study aimed to review the Cytokine storm and its mechanism along with few immunomodulatory therapies for SARSCoV- 2 infection suppression effectively.

Methods: The recently published works of literature were selected and reviewed based on the subject of this study. The databases, including Pubmed, ScienceDirect, Scopus, and Google Scholar, were searched extensively.

Results: The review of the literature showed that an uncontrolled immune response causes excess inflammation. Evidence from recent trials has demonstrated that cytokine storms can be an important factor in the COVID-19 severity, leading to multiple organ failure and death.

Conclusion: This study reviewed immunomodulatory therapies and strategies for SARS-CoV-2 infected patients to suppress the immune response. Ultimately, the cytokine storm can prove to be a boon and reduce the significant death tolls to SARS-CoV-2 infection.

Keywords: SARS-CoV-2, COVID-19, immunomodulators, inflammation, cytokine storm, therapeutics.

Graphical Abstract

[1]
Teotônio IMSN, de Carvalho JL, Castro LC, et al. Clinical and biochemical parameters of COVID-19 patients with prior or active dengue fever. Acta Trop 2021; 214: 105782.
[http://dx.doi.org/10.1016/j.actatropica.2020.105782] [PMID: 33259817]
[2]
Dalskov L, Møhlenberg M, Thyrsted J, et al. SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep 2020; 21(12): e51252.
[http://dx.doi.org/10.15252/embr.202051252] [PMID: 33112036]
[3]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[4]
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372(6538)
[5]
Horby P, Huntley C, Davies N, Edmunds J, Ferguson N, Medley G. NERVTAG: Update note on B.1.1.7 severity, 11 February 2021. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/982640/Feb_NERVTAG_update_note_on_B.1.1.7_severity.pdf
[6]
Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021; 593(7857): 130-5.
[http://dx.doi.org/10.1038/s41586-021-03398-2] [PMID: 33684923]
[7]
Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021. (pre-print).
[8]
Pearson CA, Russell TW, Davies NG, Kucharski AJ. Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y.V2. Available from: https://cmmid.github.io/topics/covid19/reports/sa-novel-variant/2021_01_11_Transmissibility_and_severity_of_501Y_V2_in_SA.pdf .
[9]
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L. Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351 variant in South Africa. medRxiv 2021. 02.10.21251247 (pre-print).
[10]
Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv 2021. 2021.03.07.21252647 (pre-print).
[11]
Kumar P, Sobhanan J, Takano Y, Biju V. Molecular recognition in the infection, replication, and transmission of COVID-19-causing SARS-CoV-2: an emerging interface of infectious disease, biological chemistry, and nanoscience. NPG Asia Mater 2021; 13: 14.
[http://dx.doi.org/10.1038/s41427-020-00275-8]
[12]
Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 2021; 29(5): 747-751.e4.
[http://dx.doi.org/10.1016/j.chom.2021.04.007] [PMID: 33887205]
[13]
Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[14]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[15]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[16]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[17]
Huang Y, Yang C. Xu X feng, Xu W, Liu S wen. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41: 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4]
[18]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[19]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33): 11876-81.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[20]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[21]
Broad A, Kirby JA, Jones DEJ. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-β production. Immunology 2007; 120(1): 103-11.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02485.x] [PMID: 17034424]
[22]
Bitker L, Burrell LM. Classic and nonclassic renin-angiotensin systems in the critically ill. Crit Care Clin 2019; 35(2): 213-27.
[http://dx.doi.org/10.1016/j.ccc.2018.11.002] [PMID: 30784605]
[23]
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Vol. 26. Trends Cell Biol 2016; 26: P249-61.
[http://dx.doi.org/10.1016/j.tcb.2015.12.002]
[24]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10): a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[25]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[26]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[27]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[28]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[29]
Haga S, Nagata N, Okamura T, et al. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res 2010; 85(3): 551-5.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.001] [PMID: 19995578]
[30]
Haga S, Yamamoto N, Nakai-Murakami C, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci USA 2008; 105(22): 7809-14.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[31]
Bartee E, McFadden G. Cytokine synergy: an underappreciated contributor to innate anti-viral immunity. Cytokine 2013; 63(3): 237-40.
[http://dx.doi.org/10.1016/j.cyto.2013.04.036] [PMID: 23693158]
[32]
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM Consortium Position Paper. Front Immunol 2020; 11: 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648] [PMID: 32754159]
[33]
D́’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol 2013; 20(3): 319-27.
[http://dx.doi.org/10.1128/CVI.00636-12] [PMID: 23283640]
[34]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[35]
Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta 2020; 509: 280-7.
[http://dx.doi.org/10.1016/j.cca.2020.06.017] [PMID: 32531256]
[36]
Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003; 200(3): 282-9.
[http://dx.doi.org/10.1002/path.1440] [PMID: 12845623]
[37]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[38]
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 2019; 40(7): 648-64.
[http://dx.doi.org/10.1016/j.it.2019.05.003] [PMID: 31155315]
[39]
Fung TS, Liu DX. Similarities and dissimilarities of COVID-19 and other coronavirus diseases. Annu Rev Microbiol 2021; 75: 1.
[http://dx.doi.org/10.1146/annurev-micro-110520-023212] [PMID: 33492978]
[40]
Tang Z, Wang Y, Wan Y, et al. Apurinic/apyrimidinic endonuclease 1/reduction-oxidation effector factor-1 (APE1) regulates the expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome through modulating transcription factor NF-κB and promoting the secretion of inflammatory mediators in macrophages. Ann Transl Med 2021; 9(2): 145.
[http://dx.doi.org/10.21037/atm-20-7752] [PMID: 33569447]
[41]
Iannaccone G, Scacciavillani R, Del Buono MG, et al. Weathering the cytokine storm in COVID-19: Therapeutic implications. Cardiorenal Med 2020; 10(5): 277-87.
[http://dx.doi.org/10.1159/000509483] [PMID: 32599589]
[42]
Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Vol. 21. Int J Mol Sci 2020; 21(2): E379.
[http://dx.doi.org/10.3390/ijms21020379] [PMID: 31936182]
[43]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[44]
Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The Pyrin Inflammasome in Health and Disease. Vol. 10. Front Immunol 2019; 10: 1745.
[http://dx.doi.org/10.3389/fimmu.2019.01745]
[45]
Skinner J, Yankey B, Shelton BK. Hemophagocytic lymphohistiocytosis. AACN Adv Crit Care 2019; 30(2): 151-64.
[http://dx.doi.org/10.4037/aacnacc2019463] [PMID: 31151946]
[46]
Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol 2019; 10: 119.
[http://dx.doi.org/10.3389/fimmu.2019.00119] [PMID: 30774631]
[47]
Theoharides TC, Conti P. Dexamethasone for COVID-19? Not so fast. Vol. 34. J Biol Regul Homeost Agents 2020; 34(3): 1241-3.
[http://dx.doi.org/10.23812/20-EDITORIAL_1-5]
[48]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): P473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2]
[49]
Sargin G, Yavaşoğlu Sİ, Yavasoglu I. Is Coronavirus Disease 2019 (COVID-19) seen less in countries more exposed to Malaria? Med Hypotheses 2020; 140: 109756.
[http://dx.doi.org/10.1016/j.mehy.2020.109756] [PMID: 32344306]
[50]
Thabah M, Ravindran V. Antimalarials in rheumatology: Expanding therapeutic armamentarium. Indian J Rheumatol 2015; 10: 51-2.
[http://dx.doi.org/10.1016/j.injr.2015.04.001]
[51]
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A Mini-Review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[52]
Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Vol. 19. Autoimmun Rev 2020; 19: 102523.
[http://dx.doi.org/10.1016/j.autrev.2020.102523]
[53]
Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 1993; 23(2)(Suppl. 1): 82-91.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5] [PMID: 8278823]
[54]
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro Cell Discov 2020; 16: 6.
[http://dx.doi.org/10.1038/s41421-020-0156-0]
[55]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[56]
Praveen T, Desai D, Soneja M, Wig N. Immune dysregulation in COVID-19 and its therapeutic implications. J Clin Sci Res 2020; 9(1): 37.
[57]
Capra R, De Rossi N, Mattioli F, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med 2020; 76: 31-5.
[http://dx.doi.org/10.1016/j.ejim.2020.05.009] [PMID: 32405160]
[58]
Colaneri M, Bogliolo L, Valsecchi P, et al. Tocilizumab for treatment of severe covid-19 patients: Preliminary results from smatteo covid19 registry (smacore). Microorganisms 2020; 8(5): E695.
[http://dx.doi.org/10.3390/microorganisms8050695] [PMID: 32397399]
[59]
Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect 2020; 50(5): 397-400.
[http://dx.doi.org/10.1016/j.medmal.2020.05.001] [PMID: 32387320]
[60]
Quartuccio L, Sonaglia A, McGonagle D, et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: Results from a single Italian Centre study on tocilizumab versus standard of care. J Clin Virol 2020; 129: 104444.
[http://dx.doi.org/10.1016/j.jcv.2020.104444] [PMID: 32570043]
[61]
Ramaswamy M, Mannam P, Comer R, Sinclair E, McQuaid DB, Schmidt ML. Off-label real world experience using tocilizumab for patients hospitalized with COVID-19 disease in a regional community health system: A case-control study. medRxiv 2020.05.14.20099234 (pre-print).
[62]
Guillén L, Padilla S, Fernández M, et al. Preemptive interleukin-6 blockade in patients with COVID-19. Sci Rep 2020; 10(1): 16826.
[http://dx.doi.org/10.1038/s41598-020-74001-3] [PMID: 33033405]
[63]
Wadud N, Ahmed N, Shergill M, Khan M, Krishna M, Gilani A. Improved survival outcome in patients with SARS-COV-2 (COVID-19) ards with tocilizumab administration. Chest 2020; 158(4): A696-7.
[http://dx.doi.org/10.1016/j.chest.2020.08.654]
[64]
Lan SH, Lai CC, Huang HT, Chang SP, Lu LC, Hsueh PR. Tocilizumab for severe COVID-19: a systematic review and meta-analysis. Int J Antimicrob Agents 2020; 56(3): 106103.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106103] [PMID: 32712333]
[65]
Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology 2008; 213(9-10): 859-70.
[http://dx.doi.org/10.1016/j.imbio.2008.07.017] [PMID: 18926300]
[66]
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M. Cytokine release syndrome. Vol. 6. J Immunother Cancer 2018; 6: 56.
[http://dx.doi.org/10.1186/s40425-018-0343-9]
[67]
Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III Trial. Crit Care Med 2016; 44(2): 275-81.
[http://dx.doi.org/10.1097/CCM.0000000000001402] [PMID: 26584195]
[68]
Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020; 2(8): e457-ee458.
[http://dx.doi.org/10.1016/S2665-9913(20)30167-3] [PMID: 32835251]
[69]
NCT04452799. Hesperidin and diosmin for treatment of COVID-19. 2020. Available from: https://clinicaltrials.gov/show/NCT04452799
[70]
Dholaria BR, Bachmeier CA, Locke F. Mechanisms and management of chimeric antigen receptor t-cell therapy-related toxicities. BioDrugs 2019; 33(1): 45-60.
[http://dx.doi.org/10.1007/s40259-018-0324-z] [PMID: 30560413]
[71]
Gopalakrishnan A, Mossaid A, Lo KB, Vasudevan V, McCullough PA, Rangaswami J. Fulminant acute kidney injury in a young patient with novel coronavirus 2019. Cardiorenal Med 2020; 10(4): 217-22.
[http://dx.doi.org/10.1159/000508179] [PMID: 32375150]
[72]
Sise ME, Baggett MV, Shepard JO, Stevens JS, Rhee EP. Case 17-2020: A 68-year-old man with Covid-19 and acute kidney injury. N Engl J Med 2020; 382(22): 2147-56.
[http://dx.doi.org/10.1056/NEJMcpc2002418] [PMID: 32402156]
[73]
Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK. Use of therapeutic plasma exchange as a rescue therapy in 2009 pH1N1 influenza A-an associated respiratory failure and hemodynamic shock. Pediatr Crit Care Med 2011; 12(2): e87-9.
[http://dx.doi.org/10.1097/PCC.0b013e3181e2a569] [PMID: 20453703]
[74]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
[75]
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal stem cells: a new piece in the puzzle of COVID-19 treatment. Front Immunol 2020; 11: 1563.
[http://dx.doi.org/10.3389/fimmu.2020.01563] [PMID: 32719683]