Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents

Page: [2504 - 2529] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Background: Parasitic diseases caused by protozoa, such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amoebiasis, trichomoniasis, and giardiasis, are considered serious public health problems in developing countries. Drug resistance among parasites justifies the search for new therapeutic drugs, and the identification of new targets becomes a valuable approach. In this scenario, the glycolysis pathway, which converts glucose into pyruvate, plays an important role in the protozoa energy supply, and it is therefore considered a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM shows structural differences with human enzyme counterparts, suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite.

Objective: In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica.

Results: TIM inhibitors have mainly shown aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region, the main pathways that disable the catalytic activity of the enzyme.

Conclusion: Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies have demonstrated that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.

Keywords: Antiprotozoal, drugs, inhibitors, molecular docking, parasitic diseases, triose phosphate isomerase.

[1]
Kumar, S.; Ali, M.R.; Bawa, S. Mini review on tricyclic compounds as an inhibitor of trypanothione reductase. J. Pharm. Bioallied Sci., 2014, 6(4), 222-228.
[http://dx.doi.org/10.4103/0975-7406.142943] [PMID: 25400403]
[2]
Frías, L.; Leles, D.; Araújo, A. Studies on protozoa in ancient remains--a review. Mem. Inst. Oswaldo Cruz, 2013, 108(1), 1-12.
[http://dx.doi.org/10.1590/S0074-02762013000100001] [PMID: 23440107]
[3]
WHO. Health topics: Infectious diseases. Available from:. https://www.who.int/topics/infectious_diseases/en/(Accessed February, 2020)
[4]
WHO.Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases a Roadmap for Implementation; World Health Organization: 20 Avenue Appia, 1211 Geneva 27, Switzerland. , 2012.
[5]
CDC. Centers of Disease Control and Prevention.Parasites- American Trypanosomiasis (also known as Chagas Disease) Available from:, https://www.cdc.gov/parasites/chagas/epi. html(Accessed February, 2020)
[7]
WHO. WHO model prescribing information: drugs used in parasitic diseases, World Health Organization, 1995 , 2nd ed. Available from:. https://apps.who.int/iris/handle/10665/41765
[8]
Liu, L.X.; Weller, P.F.; Peter, F.; Weller, M.D. Antiparasitic drugs. N. Engl. J. Med., 1996, 334(18), 1178-1184.
[http://dx.doi.org/10.1056/NEJM199605023341808] [PMID: 8602186]
[9]
Chatelain, E.; Ioset, J.R. Drug discovery and development for neglected diseases: the DNDi model. Drug Des. Devel. Ther., 2011, 5, 175-181.
[PMID: 21552487]
[10]
Lakhdar-Ghazal, F.; Blonski, C.; Willson, M.; Michels, P.; Perie, J. Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr. Top. Med. Chem., 2002, 2(5), 439-456.
[http://dx.doi.org/10.2174/1568026024607472] [PMID: 11966466]
[11]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[12]
Smirlis, D.; Soares, M.B. Selection of molecular targets for drug development against trypanosomatids. Subcell. Biochem., 2014, 74, 43-76.
[http://dx.doi.org/10.1007/978-94-007-7305-9_2] [PMID: 24264240]
[13]
Ortiz, C.; Moraca, F.; Medeiros, A.; Botta, M.; Hamilton, N.; Comini, M.A. Binding mode and selectivity of steroids towards glucose-6-phosphate dehydrogenase from the pathogen Trypanosoma cruzi. Molecules, 2016, 21(3), 368.
[http://dx.doi.org/10.3390/molecules21030368] [PMID: 26999093]
[14]
Aguilera, E.; Varela, J.; Serna, E.; Torres, S.; Yaluff, G.; Bilbao, N.V.; Cerecetto, H.; Álvarez, G.; González, M. Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment. Mem. Inst. Oswaldo Cruz, 2018, 113(3), 153-160.
[http://dx.doi.org/10.1590/0074-02760170267] [PMID: 29412353]
[15]
Cortez-Maya, S.; Moreno-Herrera, A.; Palos, I.; Rivera, G. Old antiprotozoal drugs: are they still viable options for parasitic infections or new options for other diseases? Curr. Med. Chem., 2020, 27(32), 5403-5428.
[http://dx.doi.org/10.2174/0929867326666190628163633] [PMID: 31264538]
[16]
Carapina da Silva, C.; Pacheco, B.S. das Neves, R.N.; Dié Alves, M.S.; Sena-Lopes, Â.; Moura, S.; Borsuk, S.; de Pereira, C.M.P. Antiparasitic activity of synthetic curcumin monocarbonyl analogues against Trichomonas vaginalis. Biomed. Pharmacother., 2019, 111, 367-377.
[http://dx.doi.org/10.1016/j.biopha.2018.12.058] [PMID: 30594049]
[17]
Opperdoes, F.R.; Michels, P.A. Enzymes of carbohydrate metabolism as potential drug targets. Int. J. Parasitol., 2001, 31(5-6), 482-490.
[http://dx.doi.org/10.1016/S0020-7519(01)00155-2] [PMID: 11334933]
[18]
Mantilla, B.S.; Paes, L.S.; Pral, E.M.F.; Martil, D.E.; Thiemann, O.H.; Fernández-Silva, P.; Bastos, E.L.; Silber, A.M. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J. Biol. Chem., 2015, 290(12), 7767-7790.
[http://dx.doi.org/10.1074/jbc.M114.574525] [PMID: 25623067]
[19]
Setzer, M.S.; Byler, K.G.; Ogungbe, I.V.; Setzer, W.N. Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation. Sci. Pharm., 2017, 85(1)E5.
[http://dx.doi.org/10.3390/scipharm85010005] [PMID: 28134827]
[20]
Verlinde, C.L.; Hannaert, V.; Blonski, C.; Willson, M.; Périé, J.J.; Fothergill-Gilmore, L.A.; Opperdoes, F.R.; Gelb, M.H.; Hol, W.G.; Michels, P.A. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat., 2001, 4(1), 50-65.
[http://dx.doi.org/10.1054/drup.2000.0177] [PMID: 11512153]
[21]
D’Antonio, E.L.; Deinema, M.S.; Kearns, S.P.; Frey, T.A.; Tanghe, S.; Perry, K.; Roy, T.A.; Gracz, H.S.; Rodriguez, A.; D’Antonio, J. Structure-based approach to the identification of a novel group of selective glucosamine analogue inhibitors of Trypanosoma cruzi glucokinase. Mol. Biochem. Parasitol., 2015, 204(2), 64-76.
[http://dx.doi.org/10.1016/j.molbiopara.2015.12.004] [PMID: 26778112]
[22]
De Monte, C.; Bizzarri, B.; Gidaro, M.C.; Carradori, S.; Mollica, A.; Luisi, G.; Granese, A.; Alcaro, S.; Costa, G.; Basilico, N.; Parapini, S.; Scaltrito, M.M.; Masia, C.; Sisto, F. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1027-1033.
[http://dx.doi.org/10.3109/14756366.2014.1001755] [PMID: 25766747]
[23]
Álvarez, G.; Aguirre-López, B.; Varela, J.; Cabrera, M.; Merlino, A.; López, G.V.; Lavaggi, M.L.; Porcal, W.; Di Maio, R.; González, M.; Cerecetto, H.; Cabrera, N.; Pérez-Montfort, R.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur. J. Med. Chem., 2010, 45(12), 5767-5772.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.034] [PMID: 20889239]
[24]
Pérez-Montfort, R.; Garza-Ramos, G.; Alcántara, G.H.; Reyes-Vivas, H.; Gao, X.G.; Maldonado, E.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Derivatization of the interface cysteine of triosephosphate isomerase from Trypanosoma brucei and Trypanosoma cruzi as probe of the interrelationship between the catalytic sites and the dimer interface. Biochemistry, 1999, 38(13), 4114-4120.
[http://dx.doi.org/10.1021/bi982425s] [PMID: 10194326]
[25]
Gómez-Puyou, A.; Saavedra-Lira, E.; Becker, I.; Zubillaga, R.A.; Rojo-Domínguez, A.; Pérez-Montfort, R. Using evolutionary changes to achieve species-specific inhibition of enzyme action--studies with triosephosphate isomerase. Chem. Biol., 1995, 2(12), 847-855.
[http://dx.doi.org/10.1016/1074-5521(95)90091-8] [PMID: 8807818]
[26]
Zomosa-Signoret, V.; Hernández-Alcántara, G.; Reyes-Vivas, H.; Martínez-Martínez, E.; Garza-Ramos, G.; Pérez-Montfort, R.; Tuena De Gómez-Puyou, M.; Gómez-Puyou, A. Control of the reactivation kinetics of homodimeric triosephosphate isomerase from unfolded monomers. Biochemistry, 2003, 42(11), 3311-3318.
[http://dx.doi.org/10.1021/bi0206560] [PMID: 12641463]
[27]
Liao, Q.; Kulkarni, Y.; Sengupta, U.; Petrović, D.; Mulholland, A.J.; van der Kamp, M.W.; Strodel, B.; Kamerlin, S.C.L. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. J. Am. Chem. Soc., 2018, 140(46), 15889-15903.
[http://dx.doi.org/10.1021/jacs.8b09378] [PMID: 30362343]
[28]
Couto, M.; Sánchez, C.; Dávila, B.; Machín, V.; Varela, J.; Álvarez, G.; Cabrera, M.; Celano, L.; Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M.T.; Gómez-Puyou, A.; Pérez-Montfort, R.; Cerecetto, H.; González, M. 3-H-[1,2]Dithiole as a new anti-Trypanosoma cruzi chemotype: biological and mechanism of action studies. Molecules, 2015, 20(8), 14595-14610.
[http://dx.doi.org/10.3390/molecules200814595] [PMID: 26274947]
[29]
Olivares-Illana, V.; Riveros-Rosas, H.; Cabrera, N.; Tuena de Gómez-Puyou, M.; Pérez-Montfort, R.; Costas, M.; Gómez-Puyou, A. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease. Proteins, 2017, 85(7), 1190-1211.
[http://dx.doi.org/10.1002/prot.25299] [PMID: 28378917]
[30]
Michels, P.A. Evolutionary aspects of trypanosomes: analysis of genes. J. Mol. Evol., 1986, 24(1-2), 45-52.
[http://dx.doi.org/10.1007/BF02099950] [PMID: 3104618]
[31]
Blum, J.J. Intermediary metabolism of Leishmania. Parasitol. Today, 1993, 9(4), 118-122.
[http://dx.doi.org/10.1016/0169-4758(93)90168-F] [PMID: 15463727]
[32]
Wierenga, R.K.; Kapetaniou, E.G.; Venkatesan, R. Triosephosphate isomerase: a highly evolved biocatalyst. Cell. Mol. Life Sci., 2010, 67(23), 3961-3982.
[http://dx.doi.org/10.1007/s00018-010-0473-9] [PMID: 20694739]
[33]
Olivares-Illana, V.; Pérez-Montfort, R.; López-Calahorra, F.; Costas, M.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; Gómez Puyou, A. Structural differences in triosephosphate isomerase from different species and discovery of a multitrypanosomatid inhibitor. Biochemistry, 2006, 45(8), 2556-2560.
[http://dx.doi.org/10.1021/bi0522293] [PMID: 16489748]
[34]
Maldonado, E.; Soriano-García, M.; Moreno, A.; Cabrera, N.; Garza-Ramos, G.; de Gómez-Puyou, M.; Gómez-Puyou, A.; Perez-Montfort, R. Differences in the intersubunit contacts in triosephosphate isomerase from two closely related pathogenic trypanosomes. J. Mol. Biol., 1998, 283(1), 193-203.
[http://dx.doi.org/10.1006/jmbi.1998.2094] [PMID: 9761683]
[35]
Álvarez, G.; Martínez, J.; Varela, J.; Birriel, E.; Cruces, E.; Gabay, M.; Leal, S.M.; Escobar, P.; Aguirre-López, B.; Cabrera, N.; Tuena de Gómez-Puyou, M.; Gómez Puyou, A.; Pérez-Montfort, R.; Yaluff, G.; Torres, S.; Serna, E.; Vera de Bilbao, N.; González, M.; Cerecetto, H. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new non-mutagenic agents that are active in vivo. Eur. J. Med. Chem., 2015, 100, 246-256.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.018] [PMID: 26094151]
[36]
Vique-Sánchez, J.L.; Caro-Gómez, L.A.; Brieba, L.G.; Benítez-Cardoza, C.G. Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase. Parasitol. Int., 2020, 76 ,102086.
[http://dx.doi.org/10.1016/j.parint.2020.102086] [PMID: 32112829]
[37]
Orosz, F.; Oláh, J.; Ovádi, J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim. Biophys. Acta, 2009, 1792(12), 1168-1174.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.012] [PMID: 19786097]
[38]
Harris, T.K.; Cole, R.N.; Comer, F.I.; Mildvan, A.S. Proton transfer in the mechanism of triosephosphate isomerase. Biochemistry, 1998, 37(47), 16828-16838.
[http://dx.doi.org/10.1021/bi982089f] [PMID: 9843453]
[39]
Richard, J.P. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Biochemistry, 2012, 51(13), 2652-2661.
[http://dx.doi.org/10.1021/bi300195b] [PMID: 22409228]
[40]
Waley, S.G. Refolding of triose phosphate isomerase. Biochem. J., 1973, 135(1), 165-172.
[http://dx.doi.org/10.1042/bj1350165] [PMID: 4776867]
[41]
Zabori, S.; Rudolph, R.; Jaenicke, R. Folding and association of triose phosphate isomerase from rabbit muscle. Z. Naturforsch. C, 1980, 35(11-12), 999-1004.
[http://dx.doi.org/10.1515/znc-1980-11-1224] [PMID: 7210812]
[42]
Kursula, I.; Partanen, S.; Lambeir, A.M.; Antonov, D.M.; Augustyns, K.; Wierenga, R.K. Structural determinants for ligand binding and catalysis of triosephosphate isomerase. Eur. J. Biochem., 2001, 268(19), 5189-5196.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02452.x] [PMID: 11589711]
[43]
Maes, D.; Zeelen, J.P.; Thanki, N.; Beaucamp, N.; Álvarez, M.; Thi, M.H.; Backmann, J.; Martial, J.A.; Wyns, L.; Jaenicke, R.; Wierenga, R.K. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins, 1999, 37(3), 441-453.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991115)37:3<441:AID-PROT11>3.0.CO;2-7] [PMID: 10591103]
[44]
Kelpšas, V.; Lafumat, B.; Blakeley, M.P.; Coquelle, N.; Oksanen, E.; von Wachenfeldt, C. Perdeuteration, large crystal growth and neutron data collection of Leishmania mexicana triose-phosphate isomerase E65Q variant. Acta Crystallogr. F Struct. Biol. Commun., 2019, 75(Pt 4), 260-269.
[http://dx.doi.org/10.1107/S2053230X19001882] [PMID: 30950827]
[45]
Gao, X.G.; Maldonado, E.; Pérez-Montfort, R.; Garza-Ramos, G.; de Gómez-Puyou, M.T.; Gómez-Puyou, A.; Rodríguez-Romero, A. Crystal structure of triosephosphate isomerase in hexane. Proc. Natl. Acad. Sci. USA, 1999, 96, 100062-100067.
[http://dx.doi.org/10.1073/pnas.96.18.10062] [PMID: 10468562]
[46]
Mainfroid, V.; Terpstra, P.; Beauregard, M.; Frère, J.M.; Mande, S.C.; Hol, W.G.; Martial, J.A.; Goraj, K. Three hTIM mutants that provide new insights on why TIM is a dimer. J. Mol. Biol., 1996, 257(2), 441-456.
[http://dx.doi.org/10.1006/jmbi.1996.0174] [PMID: 8609635]
[47]
Álvarez, G.; Martínez, J.; Aguirre-López, B.; Cabrera, N.; Pérez-Díaz, L.; de Gómez-Puyou, M.T.; Gómez-Puyou, A.; Pérez-Montfort, R.; Garat, B.; Merlino, A.; González, M.; Cerecetto, H. New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 198-204.
[http://dx.doi.org/10.3109/14756366.2013.765415] [PMID: 23406473]
[48]
Kuntz, D.A.; Osowski, R.; Schudok, M.; Wierenga, R.K.; Müller, K.; Kessler, H.; Opperdoes, F.R. Inhibition of triosephosphate isomerase from Trypanosoma brucei with cyclic hexapeptides. Eur. J. Biochem., 1992, 207(2), 441-447.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17069.x] [PMID: 1633802]
[49]
Enríquez-Flores, S.; Flores-López, L.A.; García-Torres, I.; de la Mora-de la Mora, I.; Cabrera, N.; Gutiérrez-Castrellón, P.; Martínez-Pérez, Y.; López-Velázquez, G. Deamidated human triosephosphate isomerase is a promising druggable target. Biomolecules, 2020, 10(7), 1050.
[http://dx.doi.org/10.3390/biom10071050] [PMID: 32679775]
[50]
Landa, A.; Rojo-Domínguez, A.; Jiménez, L.; Fernández-Velasco, D.A. Sequencing, expression and properties of triosephosphate isomerase from Entamoeba histolytica. Eur. J. Biochem., 1997, 247(1), 348-355.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00348.x] [PMID: 9249046]
[51]
Maithal, K.; Ravindra, G.; Balaram, H.; Balaram, P. Inhibition of plasmodium falciparum triose-phosphate isomerase by chemical modification of an interface cysteine. Electrospray ionization mass spectrometric analysis of differential cysteine reactivities. J. Biol. Chem., 2002, 277(28), 25106-25114.
[http://dx.doi.org/10.1074/jbc.M202419200] [PMID: 12006590]
[52]
García-Torres, I.; Pérez-Montfort, R. Avances en la identificación de blancos terapéuticos y el diseño racional de fármacos contra la enfermedad de chagas. REB, 2011, 30(2), 68-81.
[53]
Borchert, T.V.; Abagyan, R.; Jaenicke, R.; Wierenga, R.K. Design, creation, and characterization of a stable, monomeric triosephosphate isomerase. Proc. Natl. Acad. Sci. USA, 1994, 91(4), 1515-1518.
[http://dx.doi.org/10.1073/pnas.91.4.1515] [PMID: 8108439]
[54]
Saab-Rincón, G.; Juárez, V.R.; Osuna, J.; Sánchez, F.; Soberón, X. Different strategies to recover the activity of monomeric triosephosphate isomerase by directed evolution. Protein Eng., 2001, 14(3), 149-155.
[http://dx.doi.org/10.1093/protein/14.3.149] [PMID: 11342710]
[55]
Garza-Ramos, G.; Cabrera, N.; Saavedra-Lira, E.; Tuena de Gómez-Puyou, M.; Ostoa-Saloma, P.; Pérez-Montfort, R.; Gómez-Puyou, A. Sulfhydryl reagent susceptibility in proteins with high sequence similarity--triosephosphate isomerase from Trypanosoma brucei, Trypanosoma cruzi and Leishmania mexicana. Eur. J. Biochem., 1998, 253(3), 684-691.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2530684.x] [PMID: 9654066]
[56]
Williams, J.C.; Zeelen, J.P.; Neubauer, G.; Vriend, G.; Backmann, J.; Michels, P.A.; Lambeir, A.M.; Wierenga, R.K. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng., 1999, 12(3), 243-250.
[http://dx.doi.org/10.1093/protein/12.3.243] [PMID: 10235625]
[57]
Wierenga, R.K.; Noble, M.E.; Vriend, G.; Nauche, S.; Hol, W.G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J. Mol. Biol., 1991, 220(4), 995-1015.
[http://dx.doi.org/10.1016/0022-2836(91)90368-G] [PMID: 1880808]
[58]
Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; Tuena De Gómez-Puyou, M.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol., 2004, 341(5), 1355-1365.
[http://dx.doi.org/10.1016/j.jmb.2004.06.056] [PMID: 15321726]
[59]
Velanker, S.S.; Ray, S.S.; Gokhale, R.S.; Suma, S.; Balaram, H.; Balaram, P.; Murthy, M.R.N. Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure, 1997, 5(6), 751-761.
[http://dx.doi.org/10.1016/S0969-2126(97)00230-X] [PMID: 9261072]
[60]
Perez-Montfort, R.; de Gomez-Puyou, M.T.; Gomez-Puyou, A. The interfaces of oligomeric proteins as targets for drug design against enzymes from parasites. Curr. Top. Med. Chem., 2002, 2(5), 457-470.
[http://dx.doi.org/10.2174/1568026024607454] [PMID: 11966467]
[61]
Olivares-Illana, V.; Rodríguez-Romero, A.; Becker, I.; Berzunza, M.; García, J.; Pérez-Montfort, R.; Cabrera, N.; López-Calahorra, F.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2007, 1(1) , ,e1..
[http://dx.doi.org/10.1371/journal.pntd.0000001] [PMID: 17989778]
[62]
Espinoza-Fonseca, L.M.; Trujillo-Ferrara, J.G. Exploring the possible binding sites at the interface of triosephosphate isomerase dimer as a potential target for anti-tripanosomal drug design. Bioorg. Med. Chem. Lett., 2004, 14(12), 3151-3154.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.013] [PMID: 15149664]
[63]
Espinoza-Fonseca, L.M.; Trujillo-Ferrara, J.G. Structural considerations for the rational design of selective anti-trypanosomal agents: the role of the aromatic clusters at the interface of triosephosphate isomerase dimer. Biochem. Biophys. Res. Commun., 2005, 328(4), 922-928.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.043] [PMID: 15707966]
[64]
Espinoza-Fonseca, L.M.; Trujillo-Ferrara, J.G. Toward a rational design of selective multi-trypanosomatid inhibitors: a computational docking study. Bioorg. Med. Chem. Lett., 2006, 16(24), 6288-6292.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.029] [PMID: 16997551]
[65]
Cortés-Figueroa, A.A.; Pérez-Torres, A.; Salaiza, N.; Cabrera, N.; Escalona-Montaño, A.; Rondán, A.; Aguirre-García, M.; Gómez-Puyou, A.; Pérez-Montfort, R.; Becker, I. A monoclonal antibody that inhibits Trypanosoma cruzi growth in vitro and its reaction with intracellular triosephosphate isomerase. Parasitol. Res., 2008, 102(4), 635-643.
[http://dx.doi.org/10.1007/s00436-007-0803-5] [PMID: 18046577]
[66]
Singh, S.K.; Maithal, K.; Balaram, H.; Balaram, P. Synthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides. FEBS Lett., 2001, 501(1), 19-23.
[http://dx.doi.org/10.1016/S0014-5793(01)02606-0] [PMID: 11457449]
[67]
Bahia, M.T. Diniz, Lde.F.; Mosqueira, V.C. Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opin. Investig. Drugs, 2014, 23(9), 1225-1237.
[http://dx.doi.org/10.1517/13543784.2014.922952] [PMID: 24855989]
[68]
Gayosso-De-Lucio, J.; Torres-Valencia, M.; Rojo-Domínguez, A.; Nájera-Peña, H.; Aguirre-López, B.; Salas-Pacheco, J.; Avitia-Domínguez, C.; Téllez-Valencia, A. Selective inactivation of triosephosphate isomerase from Trypanosoma cruzi by brevifolin carboxylate derivatives isolated from Geranium bellum Rose. Bioorg. Med. Chem. Lett., 2009, 19(20), 5936-5939.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.055] [PMID: 19733070]
[69]
Cerecetto, H.; González, M. Synthetic medicinal chemistry in Chagas’ disease: Compounds at the final stage of “Hit-to-Lead” phase. Pharmaceuticals (Basel), 2010, 3(4), 810-838.
[http://dx.doi.org/10.3390/ph3040810] [PMID: 27713281]
[70]
González, M.; Cerecetto, H. Novel compounds to combat trypanosomatid infections: a medicinal chemical perspective. Expert Opin. Ther. Pat., 2011, 21(5), 699-715.
[http://dx.doi.org/10.1517/13543776.2011.565334] [PMID: 21428846]
[71]
Álvarez, G.; Aguirre-López, B.; Cabrera, N.; Marins, E.B.; Tinoco, L.; Batthyány, C.I.; de Gómez-Puyou, M.T.; Puyou, A.G.; Pérez-Montfort, R.; Cerecetto, H.; González, M. 1,2,4-thiadiazol-5(4H)-ones: a new class of selective inhibitors of Trypanosoma cruzi triosephosphate isomerase. Study of the mechanism of inhibition. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 981-989.
[http://dx.doi.org/10.3109/14756366.2012.700928] [PMID: 22803666]
[72]
Minini, L.; Álvarez, G.; González, M.; Cerecetto, H.; Merlino, A. Molecular docking and molecular dynamics simulation studies of Trypanosoma cruzi triosephosphate isomerase inhibitors. Insights into the inhibition mechanism and selectivity. J. Mol. Graph. Model., 2015, 58, 40-49.
[http://dx.doi.org/10.1016/j.jmgm.2015.02.002] [PMID: 25829097]
[73]
Téllez-Valencia, A.; Avila-Ríos, S.; Pérez-Montfort, R.; Rodríguez-Romero, A.; Tuena de Gómez-Puyou, M.; López-Calahorra, F.; Gómez-Puyou, A. Highly specific inactivation of triosephosphate isomerase from Trypanosoma cruzi. Biochem. Biophys. Res. Commun., 2002, 295(4), 958-963.
[http://dx.doi.org/10.1016/S0006-291X(02)00796-9] [PMID: 12127988]
[74]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[75]
Aguilera, E.; Varela, J.; Birriel, E.; Serna, E.; Torres, S.; Yaluff, G.; de Bilbao, N.V.; Aguirre-López, B.; Cabrera, N.; Díaz Mazariegos, S.; de Gómez-Puyou, M.T.; Gómez-Puyou, A.; Pérez-Montfort, R.; Minini, L.; Merlino, A.; Cerecetto, H.; González, M.; Alvarez, G. Potent and selective inhibitors of Trypanosoma cruzi triosephosphate isomerase with concomitant inhibition of cruzipain: inhibition of parasite growth through multitarget activity. ChemMedChem, 2016, 11(12), 1328-1338.
[http://dx.doi.org/10.1002/cmdc.201500385] [PMID: 26492824]
[76]
Luo, B.; Li, D.; Zhang, A.L.; Gao, J.M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives. Molecules, 2018, 23(10), 2457.
[http://dx.doi.org/10.3390/molecules23102457] [PMID: 30257495]
[77]
Cho, K.A.; Park, M.; Kim, Y.H.; Choo, H.P.; Lee, K.H. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation. Mol. Med. Rep., 2018, 17(5), 6723-6730.
[http://dx.doi.org/10.3892/mmr.2018.8719] [PMID: 29532895]
[78]
Kapil, S.; Singh, P.K.; Kashyap, A.; Silakari, O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR QSAR Environ. Res., 2019, 30(12), 919-933.
[http://dx.doi.org/10.1080/1062936X.2019.1684357] [PMID: 31702401]
[79]
Flores-Sandoval, C.A.; Cuevas-Hernández, R.I.; Correa-Basurto, J.; Beltrán-Conde, H.I.; Padilla-Martínez, I.I.; Farfán-García, J.N.; Nogueda-Torres, B.; Trujillo-Ferrara, J.G. Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med. Chem. Res., 2013, 22, 2768-2777.
[http://dx.doi.org/10.1007/s00044-012-0264-y]
[80]
Velázquez-López, J.M.; Hernández-Campos, A.; Yépez-Mulia, L.; Téllez-Valencia, A.; Flores-Carrillo, P.; Nieto-Meneses, R.; Castillo, R. Synthesis and trypanocidal activity of novel benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4377-4381.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.018] [PMID: 27503677]
[81]
Romo-Mancillas, A.; Téllez-Valencia, A.; Yépez-Mulia, L.; Hernández-Luis, F.; Hernández-Campos, A.; Castillo, R. The design and inhibitory profile of new benzimidazole derivatives against triosephosphate isomerase from Trypanosoma cruzi: a problem of residue motility. J. Mol. Graph. Model., 2011, 30, 90-99.
[http://dx.doi.org/10.1016/j.jmgm.2011.06.009] [PMID: 21798779]
[82]
Kurkcuoglu, Z.; Ural, G.; Demet Akten, E.; Doruker, P. Blind dockings of benzothiazoles to multiple receptor conformations of triosephosphate isomerase from Trypanosoma cruzi and Human. Mol. Inform., 2011, 30(11-12), 986-995.
[http://dx.doi.org/10.1002/minf.201100109] [PMID: 27468153]
[83]
Kurkcuoglu, Z.; Findik, D.; Akten, E.D.; Doruker, P. How an inhibitor bound to subunit interface alters triosephosphate isomerase dynamics. Biophys. J., 2015, 109(6), 1169-1178.
[http://dx.doi.org/10.1016/j.bpj.2015.06.031] [PMID: 26190635]
[84]
Cuevas-Hernández, R.I.; Correa-Basurto, J.; Flores-Sandoval, C.A.; Padilla-Martínez, I.I.; Nogueda-Torres, B.; Villa-Tanaca, M.L.; Tamay-Cach, F.; Nolasco-Fidencio, J.J.; Trujillo-Ferrara, J.G. Fluorine-containing benzothiazole as a novel trypanocidal agent: Design, in silico study, synthesis and activity evaluation. Med. Chem. Res., 2016, 25, 211-224.
[http://dx.doi.org/10.1007/s00044-015-1475-9]
[85]
Kawase, M.; Tanaka, T.; Sohara, Y.; Tani, S.; Sakagami, H.; Hauer, H.; Chatterjee, S.S. Structural requirements of hydroxylated coumarins for in vitro anti-Helicobacter pylori activity. In Vivo, 2003, 17(5), 509-512.
[PMID: 14598616]
[86]
Khomenko, T.M.; Zarubaev, V.V.; Orshanskaya, I.R.; Kadyrova, R.A.; Sannikova, V.A.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg. Med. Chem. Lett., 2017, 27(13), 2920-2925.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.091] [PMID: 28501512]
[87]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel), 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[88]
Coelho, G.S.; Andrade, J.S.; Xavier, V.F.; Sales, Junior P.A.; Rodrigues de Araujo, B.C.; Fonseca, K.D.S.; Caetano, M.S.; Murta, S.M.F.; Vieira, P.M.; Carneiro, C.M.; Taylor, J.G. Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi. Chem. Biol. Drug Des., 2019, 93(3), 337-350.
[http://dx.doi.org/10.1111/cbdd.13420] [PMID: 30362274]
[89]
Ogungbe, I.V.; Setzer, W.N. Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules, 2009, 14(4), 1513-1536.
[http://dx.doi.org/10.3390/molecules14041513] [PMID: 19384282]
[90]
Setzer, W.N.; Ogungbe, I.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl. Trop. Dis., 2012, 6(7) ,e1727.
[http://dx.doi.org/10.1371/journal.pntd.0001727] [PMID: 22848767]
[91]
Vázquez-Raygoza, A.; Cano-González, L.; Velázquez-Martínez, I.; Trejo-Soto, P.J.; Castillo, R.; Hernández-Campos, A.; Hernández-Luis, F.; Oria-Hernández, J.; Castillo-Villanueva, A.; Avitia-Domínguez, C.; Sierra-Campos, E.; Valdez-Solana, M.; Téllez-Valencia, A. Species-specific inactivation of triosephosphate isomerase from Trypanosoma brucei: kinetic and molecular dynamics studies. Molecules, 2017, 22(12) ,E2055.
[http://dx.doi.org/10.3390/molecules22122055] [PMID: 29186784]
[92]
Sahin, D.; Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S.A. Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial agents. Turk. J. Chem., 2012, 36, 411-426.
[93]
Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Candeias, N.R.; Kandhavelu, M. Synthesis and biological screening for cytotoxic activity of N-substituted indolines and morpholines. Eur. J. Med. Chem., 2016, 120, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.024] [PMID: 27214140]
[94]
Degorce, S.L.; Bodnarchuk, M.S.; Cumming, I.A.; Scott, J.S. Lowering lipophilicity by adding carbon: one-carbon bridges of morpholines and piperazines. J. Med. Chem., 2018, 61(19), 8934-8943.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01148] [PMID: 30189136]
[95]
Kuettel, S.; Zambon, A.; Kaiser, M.; Brun, R.; Scapozza, L.; Perozzo, R. Synthesis and evaluation of antiparasitic activities of new 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine derivatives. J. Med. Chem., 2007, 50(23), 5833-5839.
[http://dx.doi.org/10.1021/jm700938n] [PMID: 17949068]
[96]
Ibezim, A.; Nwodo, N.J.; Nnaji, N.J.N.; Ujam, O.T.; Olubiyi, O.O.; Mba, C.J. In silico investigation of morpholines as novel class of trypanosomal triosephosphate isomerase inhibitors. Med. Chem. Res., 2016, 26, 180-189.
[http://dx.doi.org/10.1007/s00044-016-1739-z]
[97]
Joubert, F.; Neitz, A.W.; Louw, A.I. Structure-based inhibitor screening: a family of sulfonated dye inhibitors for malaria parasite triosephosphate isomerase. Proteins, 2001, 45(2), 136-143.
[http://dx.doi.org/10.1002/prot.1133] [PMID: 11562943]
[98]
Swain, S.S.; Sahu, M.C.; Padhy, R.N. In silico attempt for adduct agent(s) against malaria: Combination of chloroquine with alkaloids of Adhatoda vasica. Comput. Methods Programs Biomed., 2015, 122(1), 16-25.
[http://dx.doi.org/10.1016/j.cmpb.2015.06.005] [PMID: 26142781]
[99]
Enríquez-Flores, S.; Rodriguez-Romero, A.; Hernandez-Alcantara, G.; De la Mora-De la Mora, I.; Gutierrez-Castrellon, P.; Carvajal, K.; Lopez-Velazquez, G.; Reyes-Vivas, H. Species-specific inhibition of Giardia lamblia triosephosphate isomerase by localized perturbation of the homodimer. Mol. Biochem. Parasitol., 2008, 157(2), 179-186.
[http://dx.doi.org/10.1016/j.molbiopara.2007.10.013] [PMID: 18077010]
[100]
Enríquez-Flores, S.; Rodríguez-Romero, A.; Hernández-Alcántara, G.; Oria-Hernández, J.; Gutiérrez-Castrellón, P.; Pérez-Hernández, G.; de la Mora-de la Mora, I.; Castillo-Villanueva, A.; García-Torres, I.; Méndez, S.T.; Gómez-Manzo, S.; Torres-Arroyo, A.; López-Velázquez, G.; Reyes-Vivas, H. Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: a study for antiparasitic drug design. Proteins, 2011, 79(9), 2711-2724.
[http://dx.doi.org/10.1002/prot.23100] [PMID: 21786322]
[101]
Hernández-Alcántara, G.; Torres-Larios, A.; Enríquez-Flores, S.; García-Torres, I.; Castillo-Villanueva, A.; Méndez, S.T.; de la Mora-de la Mora, I.; Gómez-Manzo, S.; Torres-Arroyo, A.; López-Velázquez, G.; Reyes-Vivas, H.; Oria-Hernández, J. Structural and functional perturbation of Giardia lamblia triosephosphate isomerase by modification of a non-catalytic, non-conserved region. PLoS One, 2013, 8(7) ,e69031.
[http://dx.doi.org/10.1371/journal.pone.0069031] [PMID: 23894402]
[102]
Sbaraglini, M.L.; Vanrell, M.C.; Bellera, C.L.; Benaim, G.; Carrillo, C.; Talevi, A.; Romano, P.S. Neglected tropical Protozoan diseases: drug repositioning as a rational option. Curr. Top. Med. Chem., 2016, 16(19), 2201-2222.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[103]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[104]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA Drugs as Potential Cruzain Inhibitors from Trypanosoma cruzi: Virtual Screening, In Vitro and In Vivo Studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[105]
Adasme, M.F.; Bolz, S.N.; Adelmann, L.; Salentin, S.; Haupt, V.J.; Moreno-Rodríguez, A.; Nogueda-Torres, B.; Castillo-Campos, V.; Yepez-Mulia, L.; De Fuentes-Vicente, J.A.; Rivera, G.; Schroeder, M. Repositioned drugs for chagas disease unveiled via structure-based drug repositioning. Int. J. Mol. Sci., 2020, 21(22), 8809.
[http://dx.doi.org/10.3390/ijms21228809] [PMID: 33233837]
[106]
Juárez-Saldivar, A.; Schroeder, M.; Salentin, S.; Haupt, V.J.; Saavedra, E.; Vázquez, C.; Reyes-Espinosa, F.; Herrera-Mayorga, V.; Villalobos-Rocha, J.C.; García-Pérez, C.A.; Campillo, N.E.; Rivera, G. Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. Int. J. Mol. Sci., 2020, 21(12), 4270.
[http://dx.doi.org/10.3390/ijms21124270] [PMID: 32560043]
[107]
Reyes-Vivas, H.; de la Mora-de la Mora, I.; Castillo-Villanueva, A.; Yépez-Mulia, L.; Hernández-Alcántara, G.; Figueroa-Salazar, R.; García-Torres, I.; Gómez-Manzo, S.; Méndez, S.T.; Vanoye-Carlo, A.; Marcial-Quino, J.; Torres-Arroyo, A.; Oria-Hernández, J.; Gutiérrez-Castrellón, P.; Enríquez-Flores, S.; López-Velázquez, G. Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia. Antimicrob. Agents Chemother., 2014, 58(12), 7072-7082.
[http://dx.doi.org/10.1128/AAC.02900-14] [PMID: 25223993]
[108]
López-Velázquez, G.; Fernández-Lainez, C.; de la Mora-de la Mora, J.I.; Caudillo de la Portilla, D.; Reynoso-Robles, R.; González-Maciel, A.; Ridaura, C.; García-Torres, I.; Gutiérrez-Castrellón, P.; Olivos-García, A.; Flores-López, L.A.; Enríquez-Flores, S. On the molecular and cellular effects of omeprazole to further support its effectiveness as an antigiardial drug. Sci. Rep., 2019, 9(1), 8922.
[http://dx.doi.org/10.1038/s41598-019-45529-w] [PMID: 31222100]
[109]
García-Torres, I.; de la Mora-de la Mora, I.; Marcial-Quino, J.; Gómez-Manzo, S.; Vanoye-Carlo, A.; Navarrete-Vázquez, G.; Colín-Lozano, B.; Gutiérrez-Castrellón, P.; Sierra-Palacios, E.; López-Velázquez, G.; Enríquez-Flores, S. Proton pump inhibitors drastically modify triosephosphate isomerase from Giardia lamblia at functional and structural levels, providing molecular leads in the design of new antigiardiasic drugs. Biochim. Biophys. Acta, 2016, 1860(1 Pt A), 97-107.
[http://dx.doi.org/10.1016/j.bbagen.2015.10.021] [PMID: 26518348]
[110]
Hernández-Ochoa, B.; Navarrete-Vázquez, G.; Nava-Zuazo, C.; Castillo-Villanueva, A.; Méndez, S.T.; Torres-Arroyo, A.; Gómez-Manzo, S.; Marcial-Quino, J.; Ponce-Macotela, M.; Rufino-González, Y.; Martínez-Gordillo, M.; Palencia-Hernández, G.; Esturau-Escofet, N.; Calderon-Jaimes, E.; Oria-Hernández, J.; Reyes-Vivas, H. Novel giardicidal compounds bearing proton pump inhibitor scaffold proceeding through triosephosphate isomerase inactivation. Sci. Rep., 2017, 7(1), 7810.
[http://dx.doi.org/10.1038/s41598-017-07612-y] [PMID: 28798383]
[111]
Hernández-Ochoa, B.; Gómez-Manzo, S.; Sánchez-Carrillo, A.; Marcial-Quino, J.; Rocha-Ramírez, L.M.; Santos-Segura, A.; Ramírez-Nava, E.J.; Arreguin-Espinosa, R.; Cuevas-Cruz, M.; Méndez-Tenorio, A.; Calderón-Jaimes, E. Enhanced Antigiardial Effect of Omeprazole Analog Benzimidazole Compounds. Molecules, 2020, 25(17), 3979.
[http://dx.doi.org/10.3390/molecules25173979] [PMID: 32882836]
[112]
Crowley, P. Long-term drug treatment of patients with alcohol dependence. Aust. Prescr., 2015, 38(2), 41-43.
[http://dx.doi.org/10.18773/austprescr.2015.015] [PMID: 26648614]
[113]
Nash, T.; Rice, W.G. Efficacies of zinc-finger-active drugs against Giardia lamblia. Antimicrob. Agents Chemother., 1998, 42(6), 1488-1492.
[http://dx.doi.org/10.1128/AAC.42.6.1488] [PMID: 9624499]
[114]
Galkin, A.; Kulakova, L.; Lim, K.; Chen, C.Z.; Zheng, W.; Turko, I.V.; Herzberg, O. Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. J. Biol. Chem., 2014, 289(15), 10502-10509.
[http://dx.doi.org/10.1074/jbc.M114.553123] [PMID: 24558036]
[115]
Castillo-Villanueva, A.; Rufino-González, Y.; Méndez, S.T.; Torres-Arroyo, A.; Ponce-Macotela, M.; Martínez-Gordillo, M.N.; Reyes-Vivas, H.; Oria-Hernández, J. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(3), 425-432.
[http://dx.doi.org/10.1016/j.ijpddr.2017.11.003] [PMID: 29197728]
[116]
Juárez-Saldivar, A.; Barbosa-Cabrera, E.; Lara-Ramírez, E.E.; Paz-González, A.D.; Martínez-Vázquez, A.V.; Bocanegra-García, V.; Palos, I.; Campillo, N.E.; Rivera, G. Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. Int. J. Mol. Sci., 2021, 22(11), 5943.
[http://dx.doi.org/10.3390/ijms22115943] [PMID: 34073021]
[117]
Rodríguez-Romero, A.; Hernández-Santoyo, A.; del Pozo Yauner, L.; Kornhauser, A.; Fernández-Velasco, D.A. Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica. J. Mol. Biol., 2002, 322(4), 669-675.
[http://dx.doi.org/10.1016/S0022-2836(02)00809-4] [PMID: 12270704]
[118]
Olivares, J.L.; Fernández, R.; Fleta, J.; Ruiz, M.Y.; Clavel, A. Vitamin B12 and folic acid in children with intestinal parasitic infection. J. Am. Coll. Nutr., 2002, 21(2), 109-113.
[http://dx.doi.org/10.1080/07315724.2002.10719202] [PMID: 11999537]
[119]
Mulenga, M.; Malunga, P.; Bennett, S.; Thuma, P.; Shulman, C.; Fielding, K.; Greenwood, B. Folic acid treatment of Zambian children with moderate to severe malaria anemia. Am. J. Trop. Med. Hyg., 2006, 74(6), 986-990.
[http://dx.doi.org/10.4269/ajtmh.2006.74.986] [PMID: 16760508]