The Chinese Journal of Artificial Intelligence

Author(s): Xiaopei Zhu, Li Yan, Boyang Qu*, Pengwei Wen and Zhao Li

DOI: 10.2174/2666782701666210910170504

A Differential Evolution Algorithm for Multi-objective Sparse Reconstruction

Article ID: e100921196393 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aims: This paper proposes a differential evolution algorithm to solve the multi-objective sparse reconstruction problem (DEMOSR).

Background: The traditional method is to introduce the regularization coefficient and solve this problem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded as a multi-objective optimization problem about sparsity and measurement error (two contradictory objectives).

Objective: A differential evolution algorithm to solve multi-objective sparse reconstruction problem (DEMOSR) in sparse signal reconstruction and the practical application.

Methods: First of all, new individuals are generated through tournament selection mechanism and differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strategy is introduced.

Results: In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse reconstruction of magnetic resonance images.

Conclusion: According to the experimental results of DEMOSR in sparse signal reconstruction and the practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is effective in sparse signal and image reconstruction.

Keywords: Multi-objective sparse reconstruction, differential evolution, compressed sensing, multi-objective optimization, iterative half thresholding algorithm, evolutionary algorithm.

Graphical Abstract

[1]
Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory, 2006, 52(4), 1289-1306.
[http://dx.doi.org/10.1109/TIT.2006.871582]
[2]
Stanković, L.; Sejdić, E.; Stanković, S.; Daković, M.; Orović, I. A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process., 2019, 38, 1206-1263.
[3]
Lai, Z.; Mo, D.; Wen, J.; Shen, L.; Wong, W.K. Generalized robust regression for jointly sparse subspace learning. IEEE Trans. Circ. Syst. Video Tech., 2019, 29(3), 756-772.
[http://dx.doi.org/10.1109/TCSVT.2018.2812802]
[4]
Seo, J.W.; Kim, S.D. Dynamic background subtraction via sparse representation of dynamic textures in a low-dimensional subspace. Signal Image Video Process., 2016, 10(1), 29-36.
[http://dx.doi.org/10.1007/s11760-014-0697-5]
[5]
Shah, P.; Moghaddam, M. A fast level set method for multimaterial recovery in microwave imaging. IEEE Trans. Antenn. Propag., 2018, 66(6), 3017-3026.
[6]
Irmak, E.; Ertas, A.H. A review of robust image enhancement algorithms and their applications.In 2016 IEEE Smart Energy Grid Engineering (SEGE); IEEE, 2016, pp. 371-375.
[http://dx.doi.org/10.1109/SEGE.2016.7589554]
[7]
Irmak, E.; Erçelebi, E.; Ertaş, A.H. Brain tumor detection using monomodal intensity based medical image registration and MATLAB. Turk. J. Electr. Eng. Comput. Sci., 2016, 4(24), 2730-2746.
[http://dx.doi.org/10.3906/elk-1403-75]
[8]
Davis, G. Adaptive nonlinear approximations, Ph.D. dissertation, New York University, Graduate School of Arts and Science: New York, NY, USA. 1994.
[9]
Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev., 2001, 43(1), 129-159.
[http://dx.doi.org/10.1137/S003614450037906X]
[10]
Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 1993, 41(12), 3397-3415.
[http://dx.doi.org/10.1109/78.258082]
[11]
Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition Proceedings of 27th Asilomar conference on signals, systems and computers, 1993, pp. 40-44.
[http://dx.doi.org/10.1109/ACSSC.1993.342465]
[12]
Blumensath, T. Accelerated iterative hard thresholding. Signal Processing, 2012, 92(3), 752-756.
[http://dx.doi.org/10.1016/j.sigpro.2011.09.017]
[13]
Hyberts, S.G.; Milbradt, A.G.; Wagner, A.B.; Arthanari, H.; Wagner, G. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J. Biomol. NMR, 2012, 52(4), 315-327.
[http://dx.doi.org/10.1007/s10858-012-9611-z] [PMID: 22331404]
[14]
Xu, Z.; Chang, X.; Xu, F.; Zhang, H. L1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst., 2012, 23(7), 1013-1027.
[http://dx.doi.org/10.1109/TNNLS.2012.2197412] [PMID: 24807129]
[15]
Li, H.; Su, X.; Xu, Z.; Zhang, Q. MOEA/D with iterative thresholding algorithm for sparse optimization problems International Conference on Parallel Problem Solving from Nature, 2012, pp. 93-101.
[http://dx.doi.org/10.1007/978-3-642-32964-7_10]
[16]
Li, L.; Yao, X.; Stolkin, R.; Gong, M.G.; He, S. An evolutionary multi-objective approach to sparse reconstruction. IEEE Trans. Evol. Comput., 2014, 18(6), 827-845.
[http://dx.doi.org/10.1109/TEVC.2013.2287153]
[17]
Herrity, K.K.; Gilbert, A.C.; Tropp, J.A. Sparse approximation via iterative thresholding IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, vol. 3, pp. IIIIII.
[18]
Li, H.; Fan, Y.; Zhang, Q.; Xu, Z.; Deng, J. A multi-phase multi-objective approach based on decomposition for sparse reconstruction Proc. IEEE Congress on Evolutionary Computation, 2016, 601-608.
[19]
Li, H.; Zhang, Q.; Deng, J.; Xu, Z-B. A preference-based multiobjective evolutionary approach for sparse optimization. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29(5), 1716-1731.
[http://dx.doi.org/10.1109/TNNLS.2017.2677973] [PMID: 28368832]
[20]
Yan, B.; Zhao, Q.; Wang, Z.; Zhao, X.Y. A hybrid evolutionary algorithm for multi-objective sparse reconstruction. Signal Image Video Process., 2017, 11(6), 993-1000.
[http://dx.doi.org/10.1007/s11760-016-1049-4]
[21]
Yan, B.; Zhao, Q.; Zhang, J.A.; Wang, Z. Multi-objective sparse reconstruction with transfer learning and localized regularization. IEEE Access, 2020, 8, 184920-184933.
[http://dx.doi.org/10.1109/ACCESS.2020.3029968]
[22]
Yue, C.T.; Liang, J.; Qu, B.Y.; Han, Y.H.; Zhu, Y.S.; Crisalle, O.D. A novel multiobjective optimization algorithm for sparse signal reconstruction. Signal Processing, 2020, 167, 107292.
[http://dx.doi.org/10.1016/j.sigpro.2019.107292]
[23]
Liu, H.L.; Chi, J.L.; Deng, Q.Y.; Peng, X.; Pei, T.R. Multi-Objective Evolutionary Sparse Recovery Approach Based on Adaptive Local Search. J. Compu. Res. Develop., 2019, 56(7), 1420.
[24]
Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput., 2010, 15(1), 4-31.
[http://dx.doi.org/10.1109/TEVC.2010.2059031]
[25]
Babu, B.V.; Anbarasu, B. Multi-objective differential evolution (MODE): An evolutionary for multi-objective optimization problems. (MOOPs Proceedings of the Third International Conference on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-2005), , Singapore, 2005.
[26]
Ali, M.; Siarry, P.; Pant, M. An efficient differential evolution-based algorithm for solving multi-objective optimization problems. Eur. J. Oper. Res., 2012, 217(2), 404-416.
[27]
Fan, R.; Wei, L.; Li, X.; Zhang, J.; Fan, Z. Self-adaptive weight vector adjustment strategy for decomposition-based multi-objective differential evolution algorithm. Soft Comput., 2020, 24(17), 13179-13195.
[http://dx.doi.org/10.1007/s00500-020-04732-y]
[28]
Ren, W.; Wang, Y.; Han, M. Time series prediction based on echo state network tuned by divided adaptive multi-objective differential evolution algorithm. Soft Comput., 2021, 25(6), 4489-4502.
[http://dx.doi.org/10.1007/s00500-020-05457-8]
[29]
Qiao, B.; Liu, J.; Hao, X. A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems. Appl. Soft Comput., 2021, 108, 107419.
[http://dx.doi.org/10.1016/j.asoc.2021.107419]
[30]
Liang, J.J.; Zhu, X.P.; Yue, C.T.; Li, Z.H.; Qu, B.Y. Performance analysis on knee point selection methods for multi-objective sparse optimization problems. IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1-8.
[http://dx.doi.org/10.1109/CEC.2018.8477915]
[31]
Zille, H.; Ishibuchi, H.; Mostaghim, S.; Nojima, Y. Mutation operators based on variable grouping for multi-objective largescale optimization IEEE Symposium Series on Computational Intelligence, 2016, pp. 1-8.
[http://dx.doi.org/10.1109/SSCI.2016.7850214]
[32]
Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002, 6(2), 182-197.
[http://dx.doi.org/10.1109/4235.996017]
[33]
Liu, C.; Liang, Y.; Luan, X.Z.; Leung, K.S.; Chan, T.M.; Xu, Z.B.; Zhang, H. The L1/2 regularization method for variable selection in the Cox model. Appl. Soft Comput., 2014, 14, 498-503.
[http://dx.doi.org/10.1016/j.asoc.2013.09.006]