Green Synthesis, Characterization and Antimicrobial Activities of Copper Nanoparticles from the Rhizomes Extract of Picrorhiza kurroa

Page: [298 - 306] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Green synthesized nanoparticles from the solvent extract of various plant parts show better biological activities as compared to parent solvent plant extract. Traditionally rhizomes of Picrorhiza kurroa are used to cure various diseases like diarrhea, fever, jaundice, eye infection, skin problems, asthma, arthritis, cancer, diabetes, gastrointestinal problems.

Objective: The present study describes the synthesis of copper nanoparticles from a hydroethanolic extract of P. kurroa rhizomes (CuNPs-Pk) and their evaluation for antimicrobial activities against gram-negative, gram-positive bacterial, and fungal strains.

Methods: The solution of copper sulfate and hydroethanolic extract of rhizomes of P. kurroa was mixed with help of a magnetic stirrer at 60°C temperature for 1 h. The blue color of CuSO4.5H2O changed to brownish-black colored copper nanoparticles within 10 minutes. These nanoparticles were centrifuged at 4000 rpm for 20 min, washed with ethanol, followed by deionized water, dried, and were characterized by Ultra violet-visible (UV-Vis) absorption spectra, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM). Different concentrations of hydroethanolic extract of Picrorhiza kurroa rhizomes (HEEPk), CuNPs-Pk and copper oxide nanoparticles (bare CuO) ranging from 100-400 ppm had been studied against selected bacterial and fungal strains by using the well plate diffusion method. Ciprofloxin and fluconazole were used as standard and Dimethyl sulfoxide (DMSO) as a control for selected strains.

Results: The UV-Vis spectral studies confirmed the surface plasmon resonance of green-synthesized CuNPs-Pk. The particle size was found to be 275-285 nm. FTIR analysis of biosynthesis nanoparticles conformed the presence of various functional groups (flavonoids, glycosides, tannins, phenols). SEM and TEM of biosynthesized nanoparticles have predicted their spherical shape and their size (20-40 nm) and these particles have shown effective antimicrobial activities against selected pathogenic organisms viz. Escherichia coli, Staphylococcus aureus, and Aspergillus niger than that of HEEPk and bare CuO.

Conclusion: The CuNPs-Pk shows effective antimicrobial activities against bacterial and fungal pathogens as compared to HEEPk and bare CuO.

Keywords: Green synthesis, Picrorhiza kurroa rhizomes extract, TEM, SEM, antibacterial activity, antimicrobiol activity.

Graphical Abstract

[1]
Banerjee P, Satapathy M, Mukhopahayay A. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 2014; 1(3): 1-10.
[http://dx.doi.org/10.1186/s40643-014-0003-y]
[2]
Nartop P. Use of biosynthetic silver nanoparticles in the surface sterilization of Pyracantha coccinea stem explants. Pamukkale University J Engineering Sci 2016; 23(6): 759-61.
[http://dx.doi.org/10.5505/pajes.2016.04809]
[3]
Majeed A, Ullah W, Anwar AW. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: a review. Mater Technol 2018; 33(5): 313-20.
[http://dx.doi.org/10.1080/10667857.2015.1108065]
[4]
Khan AU, Yuan Q, Khan ZUH, et al. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J Photochem Photobiol B 2018; 183: 367-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.007] [PMID: 29763759]
[5]
Nakkala JR, Bhagat E, Suchiang K. Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J Mater Sci Technol 2015; 31: 986-94.
[http://dx.doi.org/10.1016/j.jmst.2015.07.002]
[6]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[7]
Geetha TS, Geetha N. Phytocjemical screening, qualitative analysis from Kodaikanal hills, Tamilnadu. Int J Pharm Tech Res 2014; 6(2): 187-04.
[8]
Prakash V, Kaur H, Kumari A. Phytochemicals and biological studies on Cycas revoluta Thunb.: a review. Adv Tradit Med 2020.
[http://dx.doi.org/10.1007/s13596-020-00520-z]
[9]
Prakash V, Kumari A, Kaur H. Chemical constituents and biological activities of genus picrorhiza: an update. Indian J Pharm Sci 2020; 82(4): 562-77.
[10]
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010; 156(1-2): 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[11]
Aswathy Aromal S, Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 2012; 97: 1-5.
[http://dx.doi.org/10.1016/j.saa.2012.05.083] [PMID: 22743607]
[12]
Rajan R, Chandran K, Harper SL. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 2015; 70: 356-73.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.015]
[13]
Chahar V, Sharma B, Shukla G. Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach. Colloids Surf A Physicochem Eng Asp 2018; 554: 149-55.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.012]
[14]
AlSalhi MSA, Elangovan K, Ranjitsingh AJA, Murali P, Devanesan S. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J Biol Sci 2019; 26(5): 970-8.
[http://dx.doi.org/10.1016/j.sjbs.2019.04.001] [PMID: 31303827]
[15]
Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules 2020; 25(3): 555.
[http://dx.doi.org/10.3390/molecules25030555] [PMID: 32012912]
[16]
Zayed MF, Mahfoze RA, El-kousy SM. In vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surf A Physicochem Eng Asp 2020; 585: 124167.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124167]
[17]
Nagar N, Jain S, Kachhawah P. Synthesis and characterization of silver nanoparticles via green route. Korean J Chem Eng 2016; 33(10): 2990-7.
[http://dx.doi.org/10.1007/s11814-016-0156-9]
[18]
Philip D, Unni C, Aromal SA. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochem Acta A Mol Biomol Spectrosc 2011; 78(2): 899-904.
[http://dx.doi.org/10.1016/j.saa.2010.12.060]
[19]
Umer A, Naveed S, Ramzan N. Selection of a suitable method for the synthesis of Copper nanoparticles. Nano 2012; 7(5): 1-18.
[http://dx.doi.org/10.1142/S1793292012300058]
[20]
Jain S, Jain A, Kachhawah P. Synthesis and size control of copper nanoparticles and their catalytic application. Trans Nonferrous Met Soc China 2015; 25: 3995-4000.
[http://dx.doi.org/10.1016/S1003-6326(15)64048-1]
[21]
Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 2007; 11: 512-23.
[http://dx.doi.org/10.1016/j.rser.2005.01.010]
[22]
Athanassiou EK, Grass RN, Stark WJ. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology 2006; 17(6): 1668-73.
[http://dx.doi.org/10.1088/0957-4484/17/6/022] [PMID: 26558576]
[23]
Kulkarni VD, Kulkarni PS. Green synthesis of copper nanoparticles using Ocimum Sanctum leaf extract. Int J Chem Stud 2013; 1(3): 1-4.
[24]
Angrasan JKVM, Subbaiya R. Biosynthesis of Copper Nanoparticles by Vitis vinifera Leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014; 3(9): 768-74.
[25]
Rajeshkumar S, Menon S, Venkat Kumar S, et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B 2019; 197: 111531.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111531] [PMID: 31212244]
[26]
Amer WM, Awwad MA. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int 2021; 7(1): 1-8.
[27]
Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 2020; 6: 1-27.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[28]
Rathee D, Rathee P, Rathee S. Phytochemical screening and antimicrobial activity of Picrorrhiza kurroa, an Indian traditional plant used to treat chronic diarrhea. Arab J Chem 2016; 9: 1307-13.
[http://dx.doi.org/10.1016/j.arabjc.2012.02.009]
[29]
Kaur H, Kumari A, Kumar M. Phytochemicals analysis of sarcotesta layer of Cycas revoluta Thunb. fruit through GC-MS. Int J Adv Sci Technol 2020; 29(8): 5111-8.
[30]
Lewu FB, Grierson DS, Afolayan AJ. The leaves of Pelargonium sidoides_ may substitute for its roots in the treatment of bacterial infections. Biol Conserv 2006; 128(4): 582-4.
[http://dx.doi.org/10.1016/j.biocon.2005.10.018]
[31]
Saraswathi J, Venkatesh K, Baburao N. Phytopharmacological importance of Pelargonium species. J Med Plants Res 2011; 5: 2587-98.
[32]
Sharma R, Deb K, Ambwani TK. Preliminary phytochemical screening and antioxidative potential of Picrorhiza kurroa royale ex. Benth Bull Env Pharmacol Life Sci 2018; 7: 134-9.
[33]
Kgatshe M, Aremu OS, Katata-Seru L. Characterization and antibacterial activity of biosynthesized silver nanoparticles using the ethanolic extract of pelargonium sidoides DC. J Nanomater 2019; 2019: 3501234.
[34]
Zia R, Riaz M, Farooq N. Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: a comparative analysis. Mater Res Express 2018; 5(7): 075012.
[http://dx.doi.org/10.1088/2053-1591/aacf70]
[35]
Arya A, Gupta K, Chundawat TS, Vaya D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018; 2018: 7879403.
[http://dx.doi.org/10.1155/2018/7879403] [PMID: 30420873]
[36]
Murthy HC, Desalegn T, Kassa M. Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: antimicrobial properties. J Nanomat 2020; 2020: 3924081.
[37]
Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 2012; 201-202: 244-9.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.077] [PMID: 22178277]
[38]
Marslin G, Siram K, Maqbool Q, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel) 2018; 11(6): 940.
[http://dx.doi.org/10.3390/ma11060940] [PMID: 29865278]
[39]
Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 129: 255-8.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[40]
Padil VV, Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. J Nanomedicine 2013; 8: 889-98.
[41]
Jillani S, Jelani M, Hassan NU, Ahmad S, Hafeez M. Synthesis, characterization and biological studies of copper oxide nanostructures. Mater Res Express 2018; 5(4): 045006.
[http://dx.doi.org/10.1088/2053-1591/aab864]
[42]
Muhammad M, Gobianand K, Manohar M. Anti-eskape activity of green synthesized silver nanoparticles from Picrorhiza kurroa royle ex benth. IJPSR 2020; 11(10): 5004-9.
[43]
Murthy HC, Desalegn T, Kassa M. Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: antimicrobial properties. J Nanomate 2020; 2000
[44]
Khani R, Roostaei B, Bagherzade G. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq 2018; 255: 541-9.
[http://dx.doi.org/10.1016/j.molliq.2018.02.010]
[45]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[46]
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 2008; 4(3): 707-16.
[http://dx.doi.org/10.1016/j.actbio.2007.11.006] [PMID: 18248860]
[47]
Abboud Y. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 2014; 4: 571-6.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[48]
Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 326-32.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[49]
Mai-Prochnow A, Clauson M, Hong J. New developments in macrolides: structures and antibacterial and prokinetic activities. J Appl Pharma 2016; 3: 10-4.
[50]
Ahamed M, Alhadlaq HA, Khan M. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomat 2014; 2014: 637858.
[http://dx.doi.org/10.1155/2014/637858]
[51]
Fatma S, Kalainila P, Ravindran E. Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian J Pharm Clin Res 2017; 10(4): 79-83.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i4.15744]