Sports-Related Brain Injury and Neurodegeneration in Athletes

Article ID: e100921196366 Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.

Keywords: Traumatic brain injuries, Concussion, Parkinson's disease, Alzheimer's disease, Demntia, Nutraceuticals, Dietary supplements.

Graphical Abstract

[1]
Pearce, N.; Gallo, V.; McElvenny, D. Head trauma in sport and neurodegenerative disease: an issue whose time has come? Neurobiol Aging., 2015, 36(3), 1383-1389.
[2]
Sheu, Y.; Chen, L.H.; Hedegaard, H. Sports- and recreation-related injury episodes in the United States, 2011-2014. Natl. Health Stat. Rep., 2016, (99), 1-12.
[PMID: 27906643]
[3]
Brown, D.A.; Elsass, J.A.; Miller, A.J.; Reed, L.E.; Reneker, J.C. Differences in symptom reporting between males and females at baseline and after a sports-related concussion: a systematic review and meta-analysis. Sports Med., 2015, 45(7), 1027-1040.
[http://dx.doi.org/10.1007/s40279-015-0335-6] [PMID: 25971368]
[4]
Goldman, S.M.; Tanner, C.M.; Oakes, D.; Bhudhikanok, G.S.; Gupta, A.; Langston, J.W. Head injury and Parkinson’s disease risk in twins. Ann. Neurol., 2006, 60(1), 65-72.
[http://dx.doi.org/10.1002/ana.20882] [PMID: 16718702]
[5]
Gardner, R. C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci, 2015, 66(Pt B), 75-80.
[http://dx.doi.org/10.1016/j.mcn.2015.03.001]
[6]
Kenborg, L.; Rugbjerg, K.; Lee, P.C.; Ravnskjær, L.; Christensen, J.; Ritz, B.; Lassen, C.F. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology, 2015, 84(11), 1098-1103.
[http://dx.doi.org/10.1212/WNL.0000000000001362] [PMID: 25681453]
[7]
Crane, P.K.; Gibbons, L.E.; Dams-O’Connor, K.; Trittschuh, E.; Leverenz, J.B.; Keene, C.D.; Sonnen, J.; Montine, T.J.; Bennett, D.A.; Leurgans, S.; Schneider, J.A.; Larson, E.B. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol., 2016, 73(9), 1062-1069.
[http://dx.doi.org/10.1001/jamaneurol.2016.1948] [PMID: 27400367]
[8]
Levin, H.S.; Eisenberg, H.M. Neuropsychological outcome of closed head injury in children and adolescents. Childs Brain, 1979, 5(3), 281-292.
[http://dx.doi.org/10.1159/000119825] [PMID: 456104]
[9]
Giza, C.C.; Hovda, D.A. The neurometabolic cascade of concussion. J. Athl. Train., 2001, 36(3), 228-235.
[PMID: 12937489]
[10]
Zetterberg, H.; Hietala, M.A.; Jonsson, M.; Andreasen, N.; Styrud, E.; Karlsson, I.; Edman, A.; Popa, C.; Rasulzada, A.; Wahlund, L.O.; Mehta, P.D.; Rosengren, L.; Blennow, K.; Wallin, A. Neurochemical aftermath of amateur boxing. Arch. Neurol., 2006, 63(9), 1277-1280.
[http://dx.doi.org/10.1001/archneur.63.9.1277] [PMID: 16966505]
[11]
Faul, M.; Xu, L.; Wlad, M.M. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths 2002-2006. Centre for Disease Control and Prevention, 2010. Available from: https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf
[12]
Gardner, A.J.; Zafonte, R. Neuroepidemiology of traumatic brain injury. Handb. Clin. Neurol., 2016, 138, 207-223.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00012-4] [PMID: 27637960]
[13]
Thurman, D.J.; Branche, C.M.; Sniezek, J.E. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J. Head Trauma Rehabil., 1998, 13(2), 1-8.
[http://dx.doi.org/10.1097/00001199-199804000-00003] [PMID: 9575252]
[14]
Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil., 2006, 21(5), 375-378.
[http://dx.doi.org/10.1097/00001199-200609000-00001] [PMID: 16983222]
[15]
Nonfatal traumatic brain injuries related to sports and recreation activities among persons aged ≤19 years- United States, 2001-2009. MMWR Morb. Mortal. Wkly. Rep., 2011, 60(39), 1337-1342.
[PMID: 21976115]
[16]
Choi, D.H.; Song, K.J.; Shin, S.D.; Ro, Y.S.; Hong, K.J.; Park, J.H. Epidemiology and outcomes of sports-related traumatic brain injury in children. J. Korean Med. Sci., 2019, 34(44), e290.
[http://dx.doi.org/10.3346/jkms.2019.34.e290] [PMID: 31726495]
[17]
Harmon, K.G.; Drezner, J.A.; Gammons, M.; Guskiewicz, K.M.; Halstead, M.; Herring, S.A.; Kutcher, J.S.; Pana, A.; Putukian, M.; Roberts, W.O. American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med., 2013, 47(1), 15-26.
[http://dx.doi.org/10.1136/bjsports-2012-091941] [PMID: 23243113]
[18]
Nichols, E.H.S. H.B, The physical aspect of 1455 American football. Boston Med. Surg. J., 1906, 154, 1-8.
[http://dx.doi.org/10.1056/NEJM190601041540101]
[19]
Martland, H. S. Punch drunk. J. Am. Med. Assoc., 1927, (91: 1473), 1103-1107.
[20]
Bowman, K.B.A. Psychotic States Following Head and Brain Injury in Adults and Children. In S. Brock (Ed.), Injuries of the skull, brain and spinal cord: Neuro-psychiatric, surgical, and medico-legal aspects, , (pp. 309–360). Williams & Wilkins Co.
[http://dx.doi.org/10.1037/11479-013]
[21]
Roberts, A.H. Brain damage in boxers: A study of the prevalence of traumatic encephalopathy among ex-professional boxers; Pitman Medical & Scientific Pub. Co.: London, 1969. Available from: https://www.worldcat.org/title/brain-damage-in-boxers-a-study-of-the-prevalence-of-traumatic-encephalopathy-among-ex-professional-boxers/oclc/77702
[22]
Roberts, G.W.; Allsop, D.; Bruton, C. The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry, 1990, 53(5), 373-378.
[http://dx.doi.org/10.1136/jnnp.53.5.373] [PMID: 2191084]
[23]
Ommaya, A.K.; Gennarelli, T.A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain, 1974, 97(4), 633-654.
[http://dx.doi.org/10.1093/brain/97.1.633] [PMID: 4215541]
[24]
Giza, C. C.; Hovda, D. A. The new neurometabolic cascade of concussion. Neurosurgery, 2014, 75(0 4), S24-S33.
[http://dx.doi.org/10.1227/NEU.0000000000000505]
[25]
Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol., 2011, 70(11), 960-969.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[26]
Chesselet, M.F.; Richter, F.; Zhu, C.; Magen, I.; Watson, M.B.; Subramaniam, S.R. A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics, 2012, 9(2), 297-314.
[http://dx.doi.org/10.1007/s13311-012-0104-2] [PMID: 22350713]
[27]
Guskiewicz, K.M.; Marshall, S.W.; Bailes, J.; McCrea, M.; Cantu, R.C.; Randolph, C.; Jordan, B.D. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery, 2005, 57(4), 719-726.
[http://dx.doi.org/10.1227/01.NEU.0000175725.75780.DD] [PMID: 16239884]
[28]
Yang, S.H.; Gustafson, J.; Gangidine, M.; Stepien, D.; Schuster, R.; Pritts, T.A.; Goodman, M.D.; Remick, D.G.; Lentsch, A.B. A murine model of mild traumatic brain injury exhibiting cognitive and motor deficits. J. Surg. Res., 2013, 184(2), 981-988.
[http://dx.doi.org/10.1016/j.jss.2013.03.075] [PMID: 23622728]
[29]
McCrea, M.; Guskiewicz, K.M.; Marshall, S.W.; Barr, W.; Randolph, C.; Cantu, R.C.; Onate, J.A.; Yang, J.; Kelly, J.P. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA, 2003, 290(19), 2556-2563.
[http://dx.doi.org/10.1001/jama.290.19.2556] [PMID: 14625332]
[30]
Bleiberg, J.; Cernich, A.N.; Cameron, K.; Sun, W.; Peck, K.; Ecklund, P.J.; Reeves, D.; Uhorchak, J.; Sparling, M.B.; Warden, D.L. Duration of cognitive impairment after sports concussion. Neurosurgery, 2004, 54(5), 1073-1078.
[http://dx.doi.org/10.1227/01.NEU.0000118820.33396.6A] [PMID: 15113460]
[31]
McCrory, P.; Meeuwisse, W.H.; Aubry, M.; Cantu, B.; Dvořák, J.; Echemendia, R.J.; Engebretsen, L.; Johnston, K.; Kutcher, J.S.; Raftery, M.; Sills, A.; Benson, B.W.; Davis, G.A.; Ellenbogan, R.; Guskiewicz, K.; Herring, S.A.; Iverson, G.L.; Jordan, B.D.; Kissick, J.; McCrea, M.; McIntosh, A.S.; Maddocks, D.; Makdissi, M.; Purcell, L.; Putukian, M.; Schneider, K.; Tator, C.H.; Turner, M. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. J. Am. Coll. Surg., 2013, 216(5), e55-e71.
[http://dx.doi.org/10.1016/j.jamcollsurg.2013.02.020] [PMID: 23582174]
[32]
McCrory, P.; Meeuwisse, W.; Johnston, K.; Dvorak, J.; Aubry, M.; Molloy, M.; Cantu, R. Consensus Statement on Concussion in Sport: the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Br. J. Sports Med., 2009, 43(Suppl. 1), i76-i90.
[http://dx.doi.org/10.1136/bjsm.2009.058248] [PMID: 19433429]
[33]
Levin, H.S.; Diaz-Arrastia, R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol., 2015, 14(5), 506-517.
[http://dx.doi.org/10.1016/S1474-4422(15)00002-2] [PMID: 25801547]
[34]
Carroll, L.J.; Cassidy, J.D.; Holm, L.; Kraus, J.; Coronado, V.G. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med., 2004, (Suppl. 43), 113-125.
[http://dx.doi.org/10.1080/16501960410023877] [PMID: 15083875]
[35]
Jordan, B.D. Neurologic aspects of boxing. Arch. Neurol., 1987, 44(4), 453-459.
[http://dx.doi.org/10.1001/archneur.1987.00520160083020] [PMID: 3827699]
[36]
McCrea, M.; Kelly, J.P.; Randolph, C.; Cisler, R.; Berger, L. Immediate neurocognitive effects of concussion. Neurosurgery, 2002, 50(5), 1032-1040.
[PMID: 11950406]
[37]
Pirruccio, K.; Parisien, R.L.; Olsen, C.; Kelly, J.D. Wrestling-related concussions and closed head injuries predominantly occur in high school age athletes. J. Sports Med. Phys. Fitness, 2020.
[PMID: 32880134]
[38]
Barkhoudarian, G.; Hovda, D.A.; Giza, C.C. The molecular pathophysiology of concussive brain injury. Clin. Sports Med., 2011, 30(1), 33-48, vii-iii.
[http://dx.doi.org/10.1016/j.csm.2010.09.001] [PMID: 21074080]
[39]
Mawdsley, C.; Ferguson, F.R. Neurological disease in boxers. Lancet, 1963, 2(7312), 795-801.
[http://dx.doi.org/10.1016/S0140-6736(63)90498-7] [PMID: 14052038]
[40]
Miller, H. Mental after-effects of head injury. Proc. R. Soc. Med., 1966, 59(3), 257-261.
[http://dx.doi.org/10.1177/003591576605900327] [PMID: 5909768]
[41]
Omalu, B.I.; DeKosky, S.T.; Minster, R.L.; Kamboh, M.I.; Hamilton, R.L.; Wecht, C.H. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 2005, 57(1), 128-134.
[http://dx.doi.org/10.1227/01.NEU.0000163407.92769.ED] [PMID: 15987548]
[42]
Critchley, M. Medical aspects of boxing, particularly from a neurological standpoint. BMJ, 1957, 1(5015), 357-362.
[http://dx.doi.org/10.1136/bmj.1.5015.357] [PMID: 13396257]
[43]
DeKosky, S.T.; Blennow, K.; Ikonomovic, M.D.; Gandy, S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol., 2013, 9(4), 192-200.
[http://dx.doi.org/10.1038/nrneurol.2013.36] [PMID: 23558985]
[44]
McKee, A.C.; Stern, R.A.; Nowinski, C.J.; Stein, T.D.; Alvarez, V.E.; Daneshvar, D.H.; Lee, H.S.; Wojtowicz, S.M.; Hall, G.; Baugh, C.M.; Riley, D.O.; Kubilus, C.A.; Cormier, K.A.; Jacobs, M.A.; Martin, B.R.; Abraham, C.R.; Ikezu, T.; Reichard, R.R.; Wolozin, B.L.; Budson, A.E.; Goldstein, L.E.; Kowall, N.W.; Cantu, R.C. The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013, 136(Pt 1), 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[45]
Longhi, L.; Saatman, K.E.; Fujimoto, S.; Raghupathi, R.; Meaney, D.F.; Davis, J.; McMillan B S, A.; Conte, V.; Laurer, H.L.; Stein, S.; Stocchetti, N.; McIntosh, T.K. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery, 2005, 56(2), 364-374.
[http://dx.doi.org/10.1227/01.NEU.0000149008.73513.44] [PMID: 15670384]
[46]
Gavett, B.E.; Stern, R.A.; McKee, A.C. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med., 2011, 30(1), 179-188, xi.
[http://dx.doi.org/10.1016/j.csm.2010.09.007] [PMID: 21074091]
[47]
McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.S.; Kubilus, C.A.; Stern, R.A. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol., 2009, 68(7), 709-735.
[http://dx.doi.org/10.1097/NEN.0b013e3181a9d503] [PMID: 19535999]
[48]
McKee, A.C.; Cairns, N.J.; Dickson, D.W.; Folkerth, R.D.; Keene, C.D.; Litvan, I.; Perl, D.P.; Stein, T.D.; Vonsattel, J.P.; Stewart, W.; Tripodis, Y.; Crary, J.F.; Bieniek, K.F.; Dams-O’Connor, K.; Alvarez, V.E.; Gordon, W.A. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol., 2016, 131(1), 75-86.
[http://dx.doi.org/10.1007/s00401-015-1515-z] [PMID: 26667418]
[49]
McKee, A.C.; Gavett, B.E.; Stern, R.A.; Nowinski, C.J.; Cantu, R.C.; Kowall, N.W.; Perl, D.P.; Hedley-Whyte, E.T.; Price, B.; Sullivan, C.; Morin, P.; Lee, H.S.; Kubilus, C.A.; Daneshvar, D.H.; Wulff, M.; Budson, A.E. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol., 2010, 69(9), 918-929.
[http://dx.doi.org/10.1097/NEN.0b013e3181ee7d85] [PMID: 20720505]
[50]
Schmidt, M.L.; Zhukareva, V.; Newell, K.L.; Lee, V.M.; Trojanowski, J.Q. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol., 2001, 101(5), 518-524.
[http://dx.doi.org/10.1007/s004010000330] [PMID: 11484824]
[51]
Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg., 1990, 73(6), 889-900.
[http://dx.doi.org/10.3171/jns.1990.73.6.0889] [PMID: 1977896]
[52]
Hablitz, J.J.; Langmoen, I.A. Excitation of hippocampal pyramidal cells by glutamate in the guinea-pig and rat. J. Physiol., 1982, 325, 317-331.
[http://dx.doi.org/10.1113/jphysiol.1982.sp014152] [PMID: 7108779]
[53]
Azad, T.D. L. A., Pendharkar AV, Veeravagu A, Grant GA: Junior Seau: an illustrative case of chronic traumatic encephalopathy and update on chronic sports-related head injury. World Neurosurg., 2016, 86, 515.e11-515.e16.
[http://dx.doi.org/10.1016/j.wneu.2015.10.032]
[54]
Omalu, B.; Bailes, J.; Hamilton, R.L.; Kamboh, M.I.; Hammers, J.; Case, M.; Fitzsimmons, R. Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery, 2011, 69(1), 173-183.
[http://dx.doi.org/10.1227/NEU.0b013e318212bc7b] [PMID: 21358359]
[55]
Jordan, B.D. The clinical spectrum of sport-related traumatic brain injury. Nat. Rev. Neurol., 2013, 9(4), 222-230.
[http://dx.doi.org/10.1038/nrneurol.2013.33] [PMID: 23478462]
[56]
Montenigro, P.H.; Baugh, C.M.; Daneshvar, D.H.; Mez, J.; Budson, A.E.; Au, R.; Katz, D.I.; Cantu, R.C.; Stern, R.A. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res. Ther., 2014, 6(5), 68.
[http://dx.doi.org/10.1186/s13195-014-0068-z] [PMID: 25580160]
[57]
McPherson, A.L.; Nagai, T.; Webster, K.E.; Hewett, T.E. Musculoskeletal injury risk after sport-related concussion: A systematic review and meta-analysis. Am. J. Sports Med., 2019, 47(7), 1754-1762.
[http://dx.doi.org/10.1177/0363546518785901] [PMID: 30074832]
[58]
Mendez, M.F. The neuropsychiatric aspects of boxing. Int. J. Psychiatry Med., 1995, 25(3), 249-262.
[http://dx.doi.org/10.2190/CUMK-THT1-X98M-WB4C] [PMID: 8567192]
[59]
Corsellis, J.A.; Bruton, C.J.; Freeman-Browne, D. The aftermath of boxing. Psychol. Med., 1973, 3(3), 270-303.
[http://dx.doi.org/10.1017/S0033291700049588] [PMID: 4729191]
[60]
Israelsson, C.; Bengtsson, H.; Kylberg, A.; Kullander, K.; Lewén, A.; Hillered, L.; Ebendal, T. Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J. Neurotrauma, 2008, 25(8), 959-974.
[http://dx.doi.org/10.1089/neu.2008.0562] [PMID: 18665806]
[61]
Kelley, B.J.; Lifshitz, J.; Povlishock, J.T. Neuroinflammatory responses after experimental diffuse traumatic brain injury. J. Neuropathol. Exp. Neurol., 2007, 66(11), 989-1001.
[http://dx.doi.org/10.1097/NEN.0b013e3181588245] [PMID: 17984681]
[62]
Henry, L.C.; Tremblay, J.; Tremblay, S.; Lee, A.; Brun, C.; Lepore, N.; Theoret, H.; Ellemberg, D.; Lassonde, M. Acute and chronic changes in diffusivity measures after sports concussion. J. Neurotrauma, 2011, 28(10), 2049-2059.
[http://dx.doi.org/10.1089/neu.2011.1836] [PMID: 21864134]
[63]
Prins, M.L.; Alexander, D.; Giza, C.C.; Hovda, D.A. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J. Neurotrauma, 2013, 30(1), 30-38.
[http://dx.doi.org/10.1089/neu.2012.2399] [PMID: 23025820]
[64]
Rogatsky, G.; Mayevsky, A.; Zarchin, N.; Doron, A. Continuous multiparametric monitoring of brain activities following fluid-percussion injury in rats: preliminary results. J. Basic Clin. Physiol. Pharmacol., 1996, 7(1), 23-43.
[65]
Babikian, T. M. Metabolic levels in the corpus callosum and their structural and behavioral correlates following moderate to severe pediatric TBI. J. Neurotrauma, 2009, 1557-9042.
[66]
Shenton, M. E.; Hamoda, H. M.; Schneiderman, J. S.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M. A.; Purohit, M. P.; Helmer, K.; Koerte, I.; Lin, A. P.; Westin, C. F.; Kikinis, R.; Kubicki, M.; Stern, R. A.; Zafonte, R. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav., 2012, 6(2), 137-192.
[http://dx.doi.org/10.1007/s11682-012-9156-5] [PMID: 22438191]
[67]
Bonvento, G.; Sibson, N.; Pellerin, L. Does glutamate image your thoughts? Trends Neurosci., 2002, 25(7), 359-364.
[http://dx.doi.org/10.1016/S0166-2236(02)02168-9] [PMID: 12079764]
[68]
Van Kampen, D.A.; Lovell, M.R.; Pardini, J.E.; Collins, M.W.; Fu, F.H. The “value added” of neurocognitive testing after sports-related concussion. Am. J. Sports Med., 2006, 34(10), 1630-1635.
[http://dx.doi.org/10.1177/0363546506288677] [PMID: 16816151]
[69]
Eckner, J.T.; Kutcher, J.S.; Broglio, S.P.; Richardson, J.K. Effect of sport-related concussion on clinically measured simple reaction time. Br. J. Sports Med., 2014, 48(2), 112-118.
[http://dx.doi.org/10.1136/bjsports-2012-091579] [PMID: 23314889]
[70]
Vagnozzi, R.; Signoretti, S.; Tavazzi, B.; Floris, R.; Ludovici, A.; Marziali, S.; Tarascio, G.; Amorini, A.M.; Di Pietro, V.; Delfini, R.; Lazzarino, G. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes- part III. Neurosurgery, 2008, 62(6), 1286-1295.
[http://dx.doi.org/10.1227/01.NEU.0000316421.58568.AD] [PMID: 18824995]
[71]
Lowenstein, D.H.; Thomas, M.J.; Smith, D.H.; McIntosh, T.K. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J. Neurosci., 1992, 12(12), 4846-4853.
[http://dx.doi.org/10.1523/JNEUROSCI.12-12-04846.1992] [PMID: 1464770]
[72]
Shultz, S.R.; MacFabe, D.F.; Foley, K.A.; Taylor, R.; Cain, D.P. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behav. Brain Res., 2012, 229(1), 145-152.
[http://dx.doi.org/10.1016/j.bbr.2011.12.015] [PMID: 22245525]
[73]
Mihalik, J.P.; Stump, J.E.; Collins, M.W.; Lovell, M.R.; Field, M.; Maroon, J.C. Posttraumatic migraine characteristics in athletes following sports-related concussion. J. Neurosurg., 2005, 102(5), 850-855.
[http://dx.doi.org/10.3171/jns.2005.102.5.0850] [PMID: 15926709]
[74]
Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol., 2013, 246, 35-43.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.013] [PMID: 22285252]
[75]
Adams, J.H.; Jennett, B.; Murray, L.S.; Teasdale, G.M.; Gennarelli, T.A.; Graham, D.I. Neuropathological findings in disabled survivors of a head injury. J. Neurotrauma, 2011, 28(5), 701-709.
[http://dx.doi.org/10.1089/neu.2010.1733] [PMID: 21401319]
[76]
Kraus, M.F.; Susmaras, T.; Caughlin, B.P.; Walker, C.J.; Sweeney, J.A.; Little, D.M. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 2007, 130(Pt 10), 2508-2519.
[http://dx.doi.org/10.1093/brain/awm216] [PMID: 17872928]
[77]
Büki, A.; Povlishock, J.T. All roads lead to disconnection?- Traumatic axonal injury revisited. Acta Neurochir. (Wien), 2006, 148(2), 181-193.
[http://dx.doi.org/10.1007/s00701-005-0674-4] [PMID: 16362181]
[78]
Strong, A.J.; Fabricius, M.; Boutelle, M.G.; Hibbins, S.J.; Hopwood, S.E.; Jones, R.; Parkin, M.C.; Lauritzen, M. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke, 2002, 33(12), 2738-2743.
[http://dx.doi.org/10.1161/01.STR.0000043073.69602.09] [PMID: 12468763]
[79]
Len, T.K.; Neary, J.P. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin. Physiol. Funct. Imaging, 2011, 31(2), 85-93.
[80]
Vagnozzi, R.; Tavazzi, B.; Signoretti, S.; Amorini, A.M.; Belli, A.; Cimatti, M.; Delfini, R.; Di Pietro, V.; Finocchiaro, A.; Lazzarino, G. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment- part I. Neurosurgery, 2007, 61(2), 379-388.
[http://dx.doi.org/10.1227/01.NEU.0000280002.41696.D8] [PMID: 17762751]
[81]
Leao, A.A. Further observations on the spreading depression of activity in the cerebral cortex. J. Neurophysiol., 1947, 10(6), 409-414.
[http://dx.doi.org/10.1152/jn.1947.10.6.409] [PMID: 20268874]
[82]
Kubota, M.; Nakamura, T.; Sunami, K.; Ozawa, Y.; Namba, H.; Yamaura, A.; Makino, H. Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity. Neurosurg. Rev., 1989, 12(Suppl. 1), 393-399.
[http://dx.doi.org/10.1007/BF01790681] [PMID: 2812405]
[83]
Yoshino, A.; Hovda, D.A.; Kawamata, T.; Katayama, Y.; Becker, D.P. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res., 1991, 561(1), 106-119.
[http://dx.doi.org/10.1016/0006-8993(91)90755-K] [PMID: 1797338]
[84]
Kors, E.E.; Terwindt, G.M.; Vermeulen, F.L.; Fitzsimons, R.B.; Jardine, P.E.; Heywood, P.; Love, S.; van den Maagdenberg, A.M.; Haan, J.; Frants, R.R.; Ferrari, M.D. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol., 2001, 49(6), 753-760.
[http://dx.doi.org/10.1002/ana.1031] [PMID: 11409427]
[85]
Guskiewicz, K.M.; McCrea, M.; Marshall, S.W.; Cantu, R.C.; Randolph, C.; Barr, W.; Onate, J.A.; Kelly, J.P. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA, 2003, 290(19), 2549-2555.
[http://dx.doi.org/10.1001/jama.290.19.2549] [PMID: 14625331]
[86]
Appelberg, K.S.; Hovda, D.A.; Prins, M.L. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J. Neurotrauma, 2009, 26(4), 497-506.
[http://dx.doi.org/10.1089/neu.2008.0664] [PMID: 19231995]
[87]
Prins, M.L.; Giza, C.C. Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev. Neurosci., 2006, 28(4-5), 447-456.
[http://dx.doi.org/10.1159/000094170] [PMID: 16943667]
[88]
Martin, N.A.; Patwardhan, R.V.; Alexander, M.J.; Africk, C.Z.; Lee, J.H.; Shalmon, E.; Hovda, D.A.; Becker, D.P. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J. Neurosurg., 1997, 87(1), 9-19.
[http://dx.doi.org/10.3171/jns.1997.87.1.0009] [PMID: 9202259]
[89]
Coles, J. P.; Fryer, T. D.; Smielewski, P.; Chatfield, D. A.; Steiner, L. A.; Johnston, A. J.; Downey, S. P.; Williams, G. B.; Aigbirhio, F.; Hutchinson, P. J.; Rice, K.; Carpenter, T. A.; Clark, J. C.; Pickard, J. D.; Menon, D. K. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J. Cereb. Blood Flow Metab., 2004, 24(2), 202-211.
[90]
Prins, M.L.; Hales, A.; Reger, M.; Giza, C.C.; Hovda, D.A. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev. Neurosci., 2010, 32(5-6), 510-518.
[http://dx.doi.org/10.1159/000316800] [PMID: 20829578]
[91]
Zhang, L.; Yang, K.H.; King, A.I. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng., 2004, 126(2), 226-236.
[http://dx.doi.org/10.1115/1.1691446] [PMID: 15179853]
[92]
Meehan, W., III; Mannix, R.; Zafonte, R.; Pascual-Leone, A. Chronic traumatic encephalopathy and athletes. Neurology, 2015, 85(17), 1504-1511.
[http://dx.doi.org/10.1212/WNL.0000000000001893] [PMID: 26253448]
[93]
Xiong, Y.; Gu, Q.; Peterson, P.L.; Muizelaar, J.P.; Lee, C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma, 1997, 14(1), 23-34.
[http://dx.doi.org/10.1089/neu.1997.14.23] [PMID: 9048308]
[94]
Kawamata, T.; Katayama, Y.; Hovda, D.A.; Yoshino, A.; Becker, D.P. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res., 1995, 674(2), 196-204.
[http://dx.doi.org/10.1016/0006-8993(94)01444-M] [PMID: 7540925]
[95]
Holmin, S.; Söderlund, J.; Biberfeld, P.; Mathiesen, T. Intracerebral inflammation after human brain contusion. Neurosurgery, 1998, 42(2), 291-298.
[http://dx.doi.org/10.1097/00006123-199802000-00047] [PMID: 9482179]
[96]
Maxwell, W.L.; Povlishock, J.T.; Graham, D.L. A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma, 1997, 14(7), 419-440.
[http://dx.doi.org/10.1089/neu.1997.14.419] [PMID: 9257661]
[97]
Mata, M.; Staple, J.; Fink, D.J. Changes in intra-axonal calcium distribution following nerve crush. J. Neurobiol., 1986, 17(5), 449-467.
[http://dx.doi.org/10.1002/neu.480170508] [PMID: 3772363]
[98]
Maxwell, W.L.; McCreath, B.J.; Graham, D.I.; Gennarelli, T.A. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J. Neurocytol., 1995, 24(12), 925-942.
[http://dx.doi.org/10.1007/BF01215643] [PMID: 8719820]
[99]
Johnson, G.V.; Greenwood, J.A.; Costello, A.C.; Troncoso, J.C. The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochem. Res., 1991, 16(8), 869-873.
[http://dx.doi.org/10.1007/BF00965535] [PMID: 1787875]
[100]
Sternberger, N.H.; Sternberger, L.A. Neurotypy: the heterogeneity of brain proteins. Ann. N. Y. Acad. Sci., 1983, 420, 90-99.
[http://dx.doi.org/10.1111/j.1749-6632.1983.tb22192.x] [PMID: 6586099]
[101]
Pettus, E.H.; Povlishock, J.T. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res., 1996, 722(1-2), 1-11.
[http://dx.doi.org/10.1016/0006-8993(96)00113-8] [PMID: 8813344]
[102]
Saatman, K.E.; Abai, B.; Grosvenor, A.; Vorwerk, C.K.; Smith, D.H.; Meaney, D.F. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J. Cereb. Blood Flow Metab., 2003, 23(1), 34-42.
[http://dx.doi.org/10.1097/01.WCB.0000035040.10031.B0] [PMID: 12500089]
[103]
Singleton, R.H.; Zhu, J.; Stone, J.R.; Povlishock, J.T. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J. Neurosci., 2002, 22(3), 791-802.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00791.2002] [PMID: 11826109]
[104]
Smith, D.H.; Johnson, V.E.; Stewart, W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat. Rev. Neurol., 2013, 9(4), 211-221.
[http://dx.doi.org/10.1038/nrneurol.2013.29] [PMID: 23458973]
[105]
Lipton, M.L.; Gellella, E.; Lo, C.; Gold, T.; Ardekani, B.A.; Shifteh, K.; Bello, J.A.; Branch, C.A. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J. Neurotrauma, 2008, 25(11), 1335-1342.
[http://dx.doi.org/10.1089/neu.2008.0547] [PMID: 19061376]
[106]
Niogi, S.N.; Mukherjee, P.; Ghajar, J.; Johnson, C.; Kolster, R.A.; Sarkar, R.; Lee, H.; Meeker, M.; Zimmerman, R.D.; Manley, G.T.; McCandliss, B.D. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am. J. Neuroradiol., 2008, 29(5), 967-973.
[http://dx.doi.org/10.3174/ajnr.A0970] [PMID: 18272556]
[107]
Tang-Schomer, M.D.; Johnson, V.E.; Baas, P.W.; Stewart, W.; Smith, D.H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol., 2012, 233(1), 364-372.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.030] [PMID: 22079153]
[108]
Blaylock, R.L.; Maroon, J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg. Neurol. Int., 2011, 2, 107.
[http://dx.doi.org/10.4103/2152-7806.83391] [PMID: 21886880]
[109]
Min, S.W.; Chen, X.; Tracy, T.E.; Li, Y.; Zhou, Y.; Wang, C.; Shirakawa, K.; Minami, S.S.; Defensor, E.; Mok, S.A.; Sohn, P.D.; Schilling, B.; Cong, X.; Ellerby, L.; Gibson, B.W.; Johnson, J.; Krogan, N.; Shamloo, M.; Gestwicki, J.; Masliah, E.; Verdin, E.; Gan, L. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med., 2015, 21(10), 1154-1162.
[http://dx.doi.org/10.1038/nm.3951] [PMID: 26390242]
[110]
Nakamura, K.; Greenwood, A.; Binder, L.; Bigio, E.H.; Denial, S.; Nicholson, L.; Zhou, X.Z.; Lu, K.P. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell, 2012, 149(1), 232-244.
[http://dx.doi.org/10.1016/j.cell.2012.02.016] [PMID: 22464332]
[111]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[112]
Myer, D.J.; Gurkoff, G.G.; Lee, S.M.; Hovda, D.A.; Sofroniew, M.V. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain, 2006, 129(Pt 10), 2761-2772.
[http://dx.doi.org/10.1093/brain/awl165] [PMID: 16825202]
[113]
Cortez, S.C.; McIntosh, T.K.; Noble, L.J. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res., 1989, 482(2), 271-282.
[http://dx.doi.org/10.1016/0006-8993(89)91190-6] [PMID: 2706487]
[114]
Torrente, D.; Cabezas, R.; Avila, M.F.; García-Segura, L.M.; Barreto, G.E.; Guedes, R.C.A. Cortical spreading depression in traumatic brain injuries: is there a role for astrocytes? Neurosci. Lett., 2014, 565, 2-6.
[http://dx.doi.org/10.1016/j.neulet.2013.12.058] [PMID: 24394907]
[115]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W-B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[116]
Nakagawa, Y.; Chiba, K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel), 2014, 7(12), 1028-1048.
[http://dx.doi.org/10.3390/ph7121028] [PMID: 25429645]
[117]
Ziebell, J.M.; Morganti-Kossmann, M.C. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 2010, 7(1), 22-30.
[http://dx.doi.org/10.1016/j.nurt.2009.10.016] [PMID: 20129494]
[118]
Morganti-Kossmann, M.C.; Rancan, M.; Stahel, P.F.; Kossmann, T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care, 2002, 8(2), 101-105.
[http://dx.doi.org/10.1097/00075198-200204000-00002] [PMID: 12386508]
[119]
Brody, D.L.; Benetatos, J.; Bennett, R.E.; Klemenhagen, K.C.; Mac Donald, C.L. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions. Mol Cell Neurosci, 2015, 66(B), 91-98.
[120]
Povlishock, J.T.; Pettus, E.H. Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochir. Suppl. (Wien), 1996, 66, 81-86.
[http://dx.doi.org/10.1007/978-3-7091-9465-2_15] [PMID: 8780803]
[121]
Giza, C.C.; Maria, N.S.; Hovda, D.A. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J. Neurotrauma, 2006, 23(6), 950-961.
[http://dx.doi.org/10.1089/neu.2006.23.950] [PMID: 16774479]
[122]
Atkins, C.M.; Falo, M.C.; Alonso, O.F.; Bramlett, H.M.; Dietrich, W.D. Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neurosci. Lett., 2009, 459(2), 52-56.
[http://dx.doi.org/10.1016/j.neulet.2009.04.064] [PMID: 19416748]
[123]
Kumar, A.; Zou, L.; Yuan, X.; Long, Y.; Yang, K. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J. Neurosci. Res., 2002, 67(6), 781-786.
[http://dx.doi.org/10.1002/jnr.10181] [PMID: 11891792]
[124]
Ns, S.; Harris, N.G.; R, M.L.; Buen, F. Glutamatergic mechanisms underlie a deficit in hippocampal activation and neural plasticity following developmental traumatic brain injury. Prep, 2014.
[125]
Osteen, C.L.; Giza, C.C.; Hovda, D.A Injury-induced changes in NMDA receptor subunit composition contribute to prolonged calcium-45 accumulation in intact cortex. J Neurotrauma, 2002, 19(10), 1384.
[126]
Griesbach, G.S.; Gómez-Pinilla, F.; Hovda, D.A. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J. Neurotrauma, 2007, 24(7), 1161-1171.
[http://dx.doi.org/10.1089/neu.2006.0255] [PMID: 17610355]
[127]
Zanier, E.R.; Lee, S.M.; Vespa, P.M.; Giza, C.C.; Hovda, D.A. Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. J. Neurotrauma, 2003, 20(5), 409-420.
[http://dx.doi.org/10.1089/089771503765355496] [PMID: 12803974]
[128]
Reger, M.L.; Poulos, A.M.; Buen, F.; Giza, C.C.; Hovda, D.A.; Fanselow, M.S. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol. Psychiatry, 2012, 71(4), 335-343.
[http://dx.doi.org/10.1016/j.biopsych.2011.11.007] [PMID: 22169439]
[129]
Jantzen, K.J.; Anderson, B.; Steinberg, F.L.; Kelso, J.A. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am. J. Neuroradiol., 2004, 25(5), 738-745.
[PMID: 15140712]
[130]
Pardini, J.E.; Pardini, D.A.; Becker, J.T.; Dunfee, K.L.; Eddy, W.F.; Lovell, M.R.; Welling, J.S. Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery, 2010, 67(4), 1020-1027.
[http://dx.doi.org/10.1227/NEU.0b013e3181ee33e2] [PMID: 20881565]
[131]
Lovell, M.R.; Pardini, J.E.; Welling, J.; Collins, M.W.; Bakal, J.; Lazar, N.; Roush, R.; Eddy, W.F.; Becker, J.T. Functional brain abnormalities are related to clinical recovery and time to return-to- play in athletes. Neurosurgery, 2007, 61(2), 352-359.
[http://dx.doi.org/10.1227/01.NEU.0000279985.94168.7F] [PMID: 17762748]
[132]
McAllister, T.W.; Sparling, M.B.; Flashman, L.A.; Saykin, A.J. Neuroimaging findings in mild traumatic brain injury. J. Clin. Exp. Neuropsychol., 2001, 23(6), 775-791.
[http://dx.doi.org/10.1076/jcen.23.6.775.1026] [PMID: 11910544]
[133]
Smith, C.; Graham, D.I.; Murray, L.S.; Nicoll, J.A. Tau immunohistochemistry in acute brain injury. Neuropathol. Appl. Neurobiol., 2003, 29(5), 496-502.
[http://dx.doi.org/10.1046/j.1365-2990.2003.00488.x] [PMID: 14507341]
[134]
Deshpande, S.K.; Hasegawa, R.B.; Rabinowitz, A.R.; Whyte, J.; Roan, C.L.; Tabatabaei, A.; Baiocchi, M.; Karlawish, J.H.; Master, C.L.; Small, D.S. Association of playing high school football with cognition and mental health later in life. JAMA Neurol., 2017, 74(8), 909-918.
[http://dx.doi.org/10.1001/jamaneurol.2017.1317] [PMID: 28672325]
[135]
Lyeth, B.G.; Jenkins, L.W.; Hamm, R.J.; Dixon, C.E.; Phillips, L.L.; Clifton, G.L.; Young, H.F.; Hayes, R.L. Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res., 1990, 526(2), 249-258.
[http://dx.doi.org/10.1016/0006-8993(90)91229-A] [PMID: 2257484]
[136]
Hutson, C.B.; Lazo, C.R.; Mortazavi, F.; Giza, C.C.; Hovda, D.; Chesselet, M.F. Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat. J. Neurotrauma, 2011, 28(9), 1783-1801.
[http://dx.doi.org/10.1089/neu.2010.1723] [PMID: 21644813]
[137]
Gurkoff, G.G.; Giza, C.C.; Hovda, D.A. Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. Brain Res., 2006, 1077(1), 24-36.
[http://dx.doi.org/10.1016/j.brainres.2006.01.011] [PMID: 16490184]
[138]
Smith, D.H.; Chen, X.H.; Pierce, J.E.; Wolf, J.A.; Trojanowski, J.Q.; Graham, D.I.; McIntosh, T.K. Progressive atrophy and neuron death for one year following brain trauma in the rat. J. Neurotrauma, 1997, 14(10), 715-727.
[http://dx.doi.org/10.1089/neu.1997.14.715] [PMID: 9383090]
[139]
Pullela, R.; Raber, J.; Pfankuch, T.; Ferriero, D.M.; Claus, C.P.; Koh, S.E.; Yamauchi, T.; Rola, R.; Fike, J.R.; Noble-Haeusslein, L.J. Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Dev. Neurosci., 2006, 28(4-5), 396-409.
[http://dx.doi.org/10.1159/000094166] [PMID: 16943663]
[140]
McAllister, T.W.; Sparling, M.B.; Flashman, L.A.; Guerin, S.J.; Mamourian, A.C.; Saykin, A.J. Differential working memory load effects after mild traumatic brain injury. Neuroimage, 2001, 14(5), 1004-1012.
[http://dx.doi.org/10.1006/nimg.2001.0899] [PMID: 11697932]
[141]
Stern, R.A.; Riley, D.O.; Daneshvar, D.H.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R, 2011, 3(10 Suppl. 2), S460-S467.
[http://dx.doi.org/10.1016/j.pmrj.2011.08.008] [PMID: 22035690]
[142]
Vagnozzi, R.; Signoretti, S.; Tavazzi, B.; Cimatti, M.; Amorini, A.M.; Donzelli, S.; Delfini, R.; Lazzarino, G. Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence. Neurosurgery, 2005, 57(1), 164-171.
[http://dx.doi.org/10.1227/01.NEU.0000163413.90259.85] [PMID: 15987552]
[143]
Sheline, C.T.; Wei, L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience, 2006, 140(1), 235-246.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.019] [PMID: 16563643]
[144]
Signoretti, S.; Marmarou, A.; Tavazzi, B.; Dunbar, J.; Amorini, A.M.; Lazzarino, G.; Vagnozzi, R. The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J. Neurotrauma, 2004, 21(9), 1154-1167.
[http://dx.doi.org/10.1089/neu.2004.21.1154] [PMID: 15453986]
[145]
McKee, A.C.; Daneshvar, D.H.; Alvarez, V.E.; Stein, T.D. The neuropathology of sport. Acta Neuropathol., 2014, 127(1), 29-51.
[http://dx.doi.org/10.1007/s00401-013-1230-6] [PMID: 24366527]
[146]
Olsson, K.A.; Lloyd, O.T.; Lebrocque, R.M.; McKinlay, L.; Anderson, V.A.; Kenardy, J.A. Predictors of child post-concussion symptoms at 6 and 18 months following mild traumatic brain injury. Brain Inj., 2013, 27(2), 145-157.
[http://dx.doi.org/10.3109/02699052.2012.729286] [PMID: 23384213]
[147]
Barkhoudarian, G.; Hovda, D.A.; Giza, C.C. The molecular pathophysiology of concussive brain injury - an update. Phys. Med. Rehabil. Clin. N. Am., 2016, 27(2), 373-393.
[http://dx.doi.org/10.1016/j.pmr.2016.01.003] [PMID: 27154851]
[148]
McCrea, M.; Barr, W.B.; Guskiewicz, K.; Randolph, C.; Marshall, S.W.; Cantu, R.; Onate, J.A.; Kelly, J.P. Standard regression-based methods for measuring recovery after sport-related concussion. J. Int. Neuropsychol. Soc., 2005, 11(1), 58-69.
[http://dx.doi.org/10.1017/S1355617705050083] [PMID: 15686609]
[149]
McCrea, M.; Guskiewicz, K.; Randolph, C.; Barr, W.B.; Hammeke, T.A.; Marshall, S.W.; Kelly, J.P. Effects of a symptom-free waiting period on clinical outcome and risk of reinjury after sport-related concussion. Neurosurgery, 2009, 65(5), 876-882.
[http://dx.doi.org/10.1227/01.NEU.0000350155.89800.00] [PMID: 19834399]
[150]
Giza, C.C.; Kutcher, J.S.; Ashwal, S.; Barth, J.; Getchius, T.S.; Gioia, G.A.; Gronseth, G.S.; Guskiewicz, K.; Mandel, S.; Manley, G.; McKeag, D.B.; Thurman, D.J.; Zafonte, R. Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the guideline development subcommittee of the American academy of neurology. Neurology, 2013, 80(24), 2250-2257.
[http://dx.doi.org/10.1212/WNL.0b013e31828d57dd] [PMID: 23508730]
[151]
Vagnozzi, R.; Marmarou, A.; Tavazzi, B.; Signoretti, S.; Di Pierro, D.; del Bolgia, F.; Amorini, A.M.; Fazzina, G.; Sherkat, S.; Lazzarino, G. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J. Neurotrauma, 1999, 16(10), 903-913.
[http://dx.doi.org/10.1089/neu.1999.16.903] [PMID: 10547099]
[152]
Hovda, D.A.B.H.; Karimi, S.; Thomas, S.; Yoshino, A.; Kawamata, T.; Becker, D.P Concussive brain injury produces a state of vulnerability for intracranial pressure perturbation in the absence of morphological damage. In: Intracranial Pressure VIII; Avezaat, C.J.; van Eijndhoven, J.H.; Maas, A.I.; Tans, J.T., Eds.; Springer-Verlag: New York, 1983; pp. 469-472.
[153]
Hovda, D.A.P., M.; Becker, D.P.; Lee, S.; Bergsneider, M.; Martin, N.A. Neurobiology of Concussion. In: Sports Related Concussion; Bailes, J.E.; Lovell, M.R.; Maroon, J.C., Eds.; Quality Medical Publishing, Inc.: St. Louis, 1999; pp. 12-51.
[154]
Fineman, I.; Giza, C.C.; Nahed, B.V.; Lee, S.M.; Hovda, D.A. Inhibition of neocortical plasticity during development by a moderate concussive brain injury. J. Neurotrauma, 2000, 17(9), 739-749.
[http://dx.doi.org/10.1089/neu.2000.17.739] [PMID: 11011814]
[155]
Ip, E.Y-Y.; Giza, C.C.; Griesbach, G.S.; Hovda, D.A. Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J. Neurotrauma, 2002, 19(5), 573-585.
[http://dx.doi.org/10.1089/089771502753754055] [PMID: 12042093]
[156]
Iverson, G.L.; Gardner, A.J.; McCrory, P.; Zafonte, R.; Castellani, R.J. A critical review of chronic traumatic encephalopathy. Neurosci. Biobehav. Rev., 2015, 56, 276-293.
[http://dx.doi.org/10.1016/j.neubiorev.2015.05.008] [PMID: 26183075]
[157]
Ling, H.; Morris, H.R.; Neal, J.W.; Lees, A.J.; Hardy, J.; Holton, J.L.; Revesz, T.; Williams, D.D. Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol., 2017, 133(3), 337-352.
[http://dx.doi.org/10.1007/s00401-017-1680-3] [PMID: 28205009]
[158]
Omalu, B.I.; Hamilton, R.L.; Kamboh, M.I.; DeKosky, S.T.; Bailes, J. Chronic traumatic encephalopathy (CTE) in a National Football League Player: Case report and emerging medicolegal practice questions. J. Forensic Nurs., 2010, 6(1), 40-46.
[http://dx.doi.org/10.1111/j.1939-3938.2009.01064.x] [PMID: 20201914]
[159]
Hergenroeder, G.W.; Redell, J.B.; Moore, A.N.; Dash, P.K. Biomarkers in the clinical diagnosis and management of traumatic brain injury. Mol. Diagn. Ther., 2008, 12(6), 345-358.
[http://dx.doi.org/10.1007/BF03256301] [PMID: 19035622]
[160]
Di Battista, A.P.; Rhind, S.G.; Baker, A.J. Application of blood-based biomarkers in human mild traumatic brain injury. Front. Neurol., 2013, 4, 44.
[http://dx.doi.org/10.3389/fneur.2013.00044] [PMID: 23641234]
[161]
Campion, S.; Aubrecht, J.; Boekelheide, K.; Brewster, D.W.; Vaidya, V.S.; Anderson, L.; Burt, D.; Dere, E.; Hwang, K.; Pacheco, S.; Saikumar, J.; Schomaker, S.; Sigman, M.; Goodsaid, F. The current status of biomarkers for predicting toxicity. Expert Opin. Drug Metab. Toxicol., 2013, 9(11), 1391-1408.
[http://dx.doi.org/10.1517/17425255.2013.827170] [PMID: 23961847]
[162]
Echemendia, R.J.; Giza, C.C.; Kutcher, J.S. Developing guidelines for return to play: consensus and evidence-based approaches. Brain Inj., 2015, 29(2), 185-194.
[http://dx.doi.org/10.3109/02699052.2014.965212] [PMID: 25587745]
[163]
Practice parameter: the management of concussion in sports (summary statement). Report of the Quality Standards Subcommittee. Neurology, 1997, 48(3), 581-585.
[http://dx.doi.org/10.1212/WNL.48.3.581] [PMID: 9065530]
[164]
McCrory, P.; Meeuwisse, W.; Aubry, M.; Cantu, B.; Dvořák, J.; Echemendia, R.; Engebretsen, L.; Johnston, K.; Kutcher, J.; Raftery, M.; Sills, A.; Benson, B.; Davis, G.; Ellenbogen, R.; Guskiewicz, K.; Herring, S.A.; Iverson, G.; Jordan, B.; Kissick, J.; McCrea, M.; McIntosh, A.; Maddocks, D.; Makdissi, M.; Purcell, L.; Putukian, M.; Schneider, K.; Tator, C.; Turner, M. Consensus statement on Concussion in Sport - The 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br. J. Sports Med., 2013, 47(5), pp. 250-258.
[http://dx.doi.org/10.1136/bjsports-2013-092313] [PMID: 23479479]
[165]
McCrory, P.; Johnston, K.; Meeuwisse, W.; Aubry, M.; Cantu, R.; Dvorak, J.; Graf-Baumann, T.; Kelly, J.; Lovell, M.; Schamasch, P. Summary and agreement statement of the second international conference on concussion in sport, prague 2004. Phys. Sportsmed., 2005, 33(4), 29-44.
[http://dx.doi.org/10.3810/psm.2005.04.76] [PMID: 20086357]
[166]
May, K.H.; Marshall, D.L.; Burns, T.G.; Popoli, D.M.; Polikandriotis, J.A. Pediatric sports specific return to play guidelines following concussion. Int. J. Sports Phys. Ther., 2014, 9(2), 242-255.
[PMID: 24790785]
[167]
McClain, R. Concussion and trauma in young athletes: prevention, treatment, and return-to-play. Prim. Care, 2015, 42(1), 77-83.
[http://dx.doi.org/10.1016/j.pop.2014.09.005] [PMID: 25634706]
[168]
Zaloshnja, E.; Miller, T.; Langlois, J.A.; Selassie, A.W. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil., 2008, 23(6), 394-400.
[http://dx.doi.org/10.1097/01.HTR.0000341435.52004.ac] [PMID: 19033832]
[169]
Thurman, D.A.C.; Browne, D. Traumatic Brain Injury in the United States, Centers for disease Control and Prevention, National Center for Injury Prevention and Control. A Report to Congress, 1999.
[170]
Silver, J.M.; Kramer, R.; Greenwald, S.; Weissman, M. The association between head injuries and psychiatric disorders: findings from the New Haven NIMH Epidemiologic Catchment Area Study. Brain Inj., 2001, 15(11), 935-945.
[http://dx.doi.org/10.1080/02699050110065295] [PMID: 11689092]
[171]
Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol., 2017, 16(10), 813-825.
[http://dx.doi.org/10.1016/S1474-4422(17)30279-X] [PMID: 28920887]
[172]
Eime, R.M.; Young, J.A.; Harvey, J.T.; Charity, M.J.; Payne, W.R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act., 2013, 10, 98.
[http://dx.doi.org/10.1186/1479-5868-10-98] [PMID: 23945179]
[173]
Valois, R.F.; Zullig, K.J.; Huebner, E.S.; Drane, J.W. Physical activity behaviors and perceived life satisfaction among public high school adolescents. J. Sch. Health, 2004, 74(2), 59-65.
[http://dx.doi.org/10.1111/j.1746-1561.2004.tb04201.x] [PMID: 15077500]
[174]
Ferron, C.; Narring, F.; Cauderay, M.; Michaud, P.A. Sport activity in adolescence: associations with health perceptions and experimental behaviours. Health Educ. Res., 1999, 14(2), 225-233.
[http://dx.doi.org/10.1093/her/14.2.225] [PMID: 10387502]
[175]
Snyder, A.R.; Martinez, J.C.; Bay, R.C.; Parsons, J.T.; Sauers, E.L.; Valovich McLeod, T.C. Health-related quality of life differs between adolescent athletes and adolescent nonathletes. J. Sport Rehabil., 2010, 19(3), 237-248.
[http://dx.doi.org/10.1123/jsr.19.3.237] [PMID: 20811075]
[176]
Hrysomallis, C. Injury incidence, risk factors and prevention in Australian rules football. Sports Med., 2013, 43(5), 339-354.
[http://dx.doi.org/10.1007/s40279-013-0034-0] [PMID: 23529288]
[177]
Echemendia, R.J.; Putukian, M.; Mackin, R.S.; Julian, L.; Shoss, N. Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clin. J. Sport. Med., 2001, 11(1), 23-31.
[http://dx.doi.org/10.1097/00042752-200101000-00005] [PMID: 11176142]
[178]
Iverson, G.L. Suicide and chronic traumatic encephalopathy. J. Neuropsychiatry Clin. Neurosci., 2016, 28(1), 9-16.
[http://dx.doi.org/10.1176/appi.neuropsych.15070172] [PMID: 26449269]
[179]
Webner, D.; Iverson, G.L. Suicide in professional American football players in the past 95 years. Brain Inj., 2016, 30(13-14), 1718-1721.
[http://dx.doi.org/10.1080/02699052.2016.1202451] [PMID: 27996330]
[180]
McCrory, P. Traumatic brain injury: revisiting the AAN guidelines on sport-related concussion. Nat. Rev. Neurol., 2013, 9(7), 361-362.
[http://dx.doi.org/10.1038/nrneurol.2013.88] [PMID: 23670105]
[181]
Needle, A.R.; Lepley, A.S.; Grooms, D.R. Central nervous system adaptation After ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med., 2017, 47(7), 1271-1288.
[http://dx.doi.org/10.1007/s40279-016-0666-y] [PMID: 28005191]
[182]
Ma, V.Y.; Chan, L.; Carruthers, K.J. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch. Phys. Med. Rehabil., 2014, 95(5), 986-995.e1.
[http://dx.doi.org/10.1016/j.apmr.2013.10.032] [PMID: 24462839]
[183]
McPherson, A.L.; Nagai, T.; Webster, K.E.; Hewett, T.E. Musculoskeletal injury risk after sport-related concussion: response. Am. J. Sports Med., 2020, 48(2), NP17-NP18.
[http://dx.doi.org/10.1177/0363546519894290] [PMID: 32003643]
[184]
Pfister, T.; Pfister, K.; Hagel, B.; Ghali, W.A.; Ronksley, P.E. The incidence of concussion in youth sports: a systematic review and meta-analysis. Br. J. Sports Med., 2016, 50(5), 292-297.
[http://dx.doi.org/10.1136/bjsports-2015-094978] [PMID: 26626271]
[185]
Sawyer, Q.; Vesci, B.; McLeod, T.C. Physical activity and intermittent postconcussion symptoms after a period of symptom-limited physical and cognitive rest. J. Athl. Train., 2016, 51(9), 739-742.
[http://dx.doi.org/10.4085/1062-6050-51.12.01] [PMID: 27813685]
[186]
Rutland-Brown, W.; Langlois, J.A.; Thomas, K.E.; Xi, Y.L. Incidence of traumatic brain injury in the United States, 2003. J. Head Trauma Rehabil., 2006, 21(6), 544-548.
[http://dx.doi.org/10.1097/00001199-200611000-00009] [PMID: 17122685]
[187]
Guskiewicz, K.M.; Valovich McLeod, T.C. Pediatric sports-related concussion. PM R, 2011, 3(4), 353-364.
[http://dx.doi.org/10.1016/j.pmrj.2010.12.006] [PMID: 21497322]
[188]
Nguyen, J.V.K.; Brennan, J.H.; Mitra, B.; Willmott, C. Frequency and magnitude of game-related head impacts in male contact sports athletes: a systematic review and meta-analysis. Sports Med., 2019, 49(10), 1575-1583.
[http://dx.doi.org/10.1007/s40279-019-01135-4] [PMID: 31175636]
[189]
Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; Dvořák, J.; Hayden, K.A.; Tator, C.H.; McCrory, P.; Iverson, G.L. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sports Med., 2017, 51(12), 969-977.
[http://dx.doi.org/10.1136/bjsports-2017-097791] [PMID: 28455362]
[190]
Jellinger, K.A. Head injury and dementia. Curr. Opin. Neurol., 2004, 17(6), 719-723.
[http://dx.doi.org/10.1097/00019052-200412000-00012] [PMID: 15542981]
[191]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological signatures of alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[192]
Kemp, P.L. A critique of published studies into the effects of amateur boxing: why is there a lack of consensus? J. R. Nav. Med. Serv., 1995, 81(3), 182-189.
[PMID: 8736312]
[193]
King, D.; Hume, P.; Gissane, C.; Brughelli, M.; Clark, T. The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis. Sports Med., 2016, 46(2), 151-169.
[http://dx.doi.org/10.1007/s40279-015-0423-7] [PMID: 26545363]
[194]
Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; Schneider, K.; Kissick, J.; McCrea, M.; Dvořák, J.; Sills, A.K.; Aubry, M.; Engebretsen, L.; Loosemore, M.; Fuller, G.; Kutcher, J.; Ellenbogen, R.; Guskiewicz, K.; Patricios, J.; Herring, S. The sport concussion assessment tool 5th edition (SCAT5): Background and rationale. Br. J. Sports Med., 2017, 51(11), 848-850.
[195]
King, A. The proposed King-Devick test and its relation to the Pierce saccade test and reading levels. In: Available from the Carl Shepherd Memorial Library; Illinois College of Optometry: Chicago, IL, 1976.
[196]
Galetta, M.S.; Galetta, K.M.; McCrossin, J.; Wilson, J.A.; Moster, S.; Galetta, S.L.; Balcer, L.J.; Dorshimer, G.W.; Master, C.L. Saccades and memory: baseline associations of the King-Devick and SCAT2 SAC tests in professional ice hockey players. J. Neurol. Sci., 2013, 328(1-2), 28-31.
[http://dx.doi.org/10.1016/j.jns.2013.02.008] [PMID: 23499425]
[197]
Brennan, J.H.; Mitra, B.; Synnot, A.; McKenzie, J.; Willmott, C.; McIntosh, A.S.; Maller, J.J.; Rosenfeld, J.V. Accelerometers for the assessment of concussion in male athletes: a systematic review and meta-analysis. Sports Med., 2017, 47(3), 469-478.
[http://dx.doi.org/10.1007/s40279-016-0582-1] [PMID: 27402455]
[198]
Schrieff-Elson, L.E.; Steenkamp, N.; Hendricks, M.I.; Thomas, K.G.F.; Rohlwink, U.K. Local and global challenges in pediatric traumatic brain injury outcome and rehabilitation assessment. Childs Nerv. Syst., 2017, 33(10), 1775-1784.
[http://dx.doi.org/10.1007/s00381-017-3527-6] [PMID: 29149382]
[199]
Bazarian, J.J.; Blyth, B.; Mookerjee, S.; He, H.; McDermott, M.P. Sex differences in outcome after mild traumatic brain injury. J. Neurotrauma, 2010, 27(3), 527-539.
[http://dx.doi.org/10.1089/neu.2009.1068] [PMID: 19938945]
[200]
Wunderle, K.; Hoeger, K.M.; Wasserman, E.; Bazarian, J.J. Menstrual phase as predictor of outcome after mild traumatic brain injury in women. J. Head Trauma. Rehabil., 2014, 29(5), E1-E8.
[http://dx.doi.org/10.1097/HTR.0000000000000006] [PMID: 24220566]
[201]
Freeman, E.W.; Halberstadt, S.M.; Rickels, K.; Legler, J.M.; Lin, H.; Sammel, M.D. Core symptoms that discriminate premenstrual syndrome. J. Womens Health (Larchmt.), 2011, 20(1), 29-35.
[http://dx.doi.org/10.1089/jwh.2010.2161] [PMID: 21128818]
[202]
Schmelzer, K.; Ditzen, B.; Weise, C.; Andersson, G.; Hiller, W.; Kleinstäuber, M. Clinical profiles of premenstrual experiences among women having premenstrual syndrome (PMS): Affective changes predominate and relate to social and occupational functioning. Health Care Women Int, 2014, 36(10), 01-20.
[203]
Pan, J.; Connolly, I.D.; Dangelmajer, S.; Kintzing, J.; Ho, A.L.; Grant, G. Sports-related brain injuries: connecting pathology to diagnosis. Neurosurg. Focus, 2016, 40(4), E14.
[http://dx.doi.org/10.3171/2016.1.FOCUS15607] [PMID: 27032917]
[204]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[205]
Zetterberg, H.; Smith, D.H.; Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol., 2013, 9(4), 201-210.
[http://dx.doi.org/10.1038/nrneurol.2013.9] [PMID: 23399646]
[206]
Agoston, D.V.; Shutes-David, A.; Peskind, E.R. Biofluid biomarkers of traumatic brain injury. Brain Inj., 2017, 31(9), 1195-1203.
[http://dx.doi.org/10.1080/02699052.2017.1357836] [PMID: 28981341]
[207]
Shahim, P.; Tegner, Y.; Wilson, D.H.; Randall, J.; Skillbäck, T.; Pazooki, D.; Kallberg, B.; Blennow, K.; Zetterberg, H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol., 2014, 71(6), 684-692.
[http://dx.doi.org/10.1001/jamaneurol.2014.367] [PMID: 24627036]
[208]
Braak, H.; Zetterberg, H.; Del Tredici, K.; Blennow, K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol., 2013, 126(5), 631-641.
[http://dx.doi.org/10.1007/s00401-013-1139-0] [PMID: 23756600]
[209]
Rezaei, O.; Pakdaman, H.; Gharehgozli, K.; Simani, L.; Vahedian-Azimi, A.; Asaadi, S.; Sahraei, Z.; Hajiesmaeili, M. S100 B: A new concept in neurocritical care. Iran. J. Neurol., 2017, 16(2), 83-89.
[PMID: 28761630]
[210]
Thelin, E.P.; Jeppsson, E.; Frostell, A.; Svensson, M.; Mondello, S.; Bellander, B.M.; Nelson, D.W. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit. Care, 2016, 20, 285.
[http://dx.doi.org/10.1186/s13054-016-1450-y] [PMID: 27604350]
[211]
Blyth, B.J.; Bazarian, J.J. Traumatic alterations in consciousness: traumatic brain injury. Emerg. Med. Clin. North Am., 2010, 28(3), 571-594.
[http://dx.doi.org/10.1016/j.emc.2010.03.003] [PMID: 20709244]
[212]
Neselius, S.; Zetterberg, H.; Blennow, K.; Marcusson, J.; Brisby, H. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers. PLoS One, 2013, 8(11), e81249.
[http://dx.doi.org/10.1371/journal.pone.0081249] [PMID: 24260563]
[213]
Marmarou, A.; Foda, M.A.; van den Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J. Neurosurg., 1994, 80(2), 291-300.
[http://dx.doi.org/10.3171/jns.1994.80.2.0291] [PMID: 8283269]
[214]
Pearn, M.L.; Niesman, I.R.; Egawa, J.; Sawada, A.; Almenar- Queralt, A.; Shah, S.B.; Duckworth, J.L.; Head, B.P. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell. Mol. Neurobiol., 2017, 37(4), 571-585.
[http://dx.doi.org/10.1007/s10571-016-0400-1] [PMID: 27383839]
[215]
Duckworth, J.L.; Grimes, J.; Ling, G.S. Pathophysiology of battlefield associated traumatic brain injury. Pathophysiol: Off J Int Soc Pathophysiol/ISP, 2013, 20(1), 23-30.
[http://dx.doi.org/10.1016/j.pathophys.2012.03.001]
[216]
Kane, M.J.; Angoa-Pérez, M.; Briggs, D.I.; Viano, D.C.; Kreipke, C.W.; Kuhn, D.M. A mouse model of human repetitive mild traumatic brain injury. J. Neurosci. Methods, 2012, 203(1), 41-49.
[http://dx.doi.org/10.1016/j.jneumeth.2011.09.003] [PMID: 21930157]
[217]
Friess, S.H.; Ichord, R.N.; Ralston, J.; Ryall, K.; Helfaer, M.A.; Smith, C.; Margulies, S.S. Repeated traumatic brain injury affects composite cognitive function in piglets. J. Neurotrauma, 2009, 26(7), 1111-1121.
[http://dx.doi.org/10.1089/neu.2008.0845] [PMID: 19275468]
[218]
Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci., 2013, 14(2), 128-142.
[http://dx.doi.org/10.1038/nrn3407] [PMID: 23329160]
[219]
Sacramento, C.B.; Sondhi, D.; Rosenberg, J.B.; Chen, A.; Giordano, S.; Pey, E.; Lee, V.; Stiles, K.M.; Havlicek, D.F.; Leopold, P.L.; Kaminsky, S.M.; Crystal, R.G. Anti-phospho-tau gene therapy for chronic traumatic encephalopathy. Hum. Gene Ther., 2020, 31(1-2), 57-69.
[http://dx.doi.org/10.1089/hum.2019.174] [PMID: 31608704]
[220]
Oliver, J.M.; Anzalone, A.J.; Turner, S.M. Protection before impact: the potential neuroprotective role of nutritional supplementation in sports-related head trauma. Sports Med., 2018, 48(Suppl. 1), 39-52.
[http://dx.doi.org/10.1007/s40279-017-0847-3] [PMID: 29368186]
[221]
Trojian, T.H.; Wang, D.H.; Leddy, J.J. Nutritional supplements for the treatment and prevention of sports-related concussion-evidence still lacking. Curr. Sports Med. Rep., 2017, 16(4), 247-255.
[http://dx.doi.org/10.1249/JSR.0000000000000387] [PMID: 28696987]
[222]
Ashbaugh, A.; McGrew, C. The role of nutritional supplements in sports concussion treatment. Curr. Sports Med. Rep., 2016, 15(1), 16-19.
[http://dx.doi.org/10.1249/JSR.0000000000000219] [PMID: 26745164]
[223]
Institute of Medicine (US) Committee on Nutrition, Trauma, and the Brain. Nutrition and Traumatic Brain Injury. In: Improving Acute and Subacute Health Outcomes in Military Personnel; John, Erdman; Maria, Oria; Laura, Pillsbury Eds.; Institute of Medicine, National Academies Press: Washington (DC), 2011.
[224]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J. Neurotrauma, 2004, 21(10), 1457-1467.
[http://dx.doi.org/10.1089/neu.2004.21.1457] [PMID: 15672635]
[225]
Kotani, S.; Sakaguchi, E.; Warashina, S.; Matsukawa, N.; Ishikura, Y.; Kiso, Y.; Sakakibara, M.; Yoshimoto, T.; Guo, J.; Yamashima, T. Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci. Res., 2006, 56(2), 159-164.
[http://dx.doi.org/10.1016/j.neures.2006.06.010] [PMID: 16905216]
[226]
Wang, T.; Van, K.C.; Gavitt, B.J.; Grayson, J.K.; Lu, Y.C.; Lyeth, B.G.; Pichakron, K.O. Effect of fish oil supplementation in a rat model of multiple mild traumatic brain injuries. Restor. Neurol. Neurosci., 2013, 31(5), 647-659.
[http://dx.doi.org/10.3233/RNN-130316] [PMID: 23835930]
[227]
Pu, H. G., Y.; Zhang, W. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab, 2013, 33, 1474-1484.
[228]
Hasadsri, L.; Wang, B.H.; Lee, J.V.; Erdman, J.W.; Llano, D.A.; Barbey, A.K.; Wszalek, T.; Sharrock, M.F.; Wang, H.J. Omega-3 fatty acids as a putative treatment for traumatic brain injury. J. Neurotrauma, 2013, 30(11), 897-906.
[http://dx.doi.org/10.1089/neu.2012.2672] [PMID: 23363551]
[229]
Oksman, M.; Iivonen, H.; Hogyes, E.; Amtul, Z.; Penke, B.; Leenders, I.; Broersen, L.; Lütjohann, D.; Hartmann, T.; Tanila, H. Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis., 2006, 23(3), 563-572.
[http://dx.doi.org/10.1016/j.nbd.2006.04.013] [PMID: 16765602]
[230]
Green, K.N.; Martinez-Coria, H.; Khashwji, H.; Hall, E.B.; Yurko-Mauro, K.A.; Ellis, L.; LaFerla, F.M. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci., 2007, 27(16), 4385-4395.
[http://dx.doi.org/10.1523/JNEUROSCI.0055-07.2007] [PMID: 17442823]
[231]
Lebbadi, M.; Julien, C.; Phivilay, A.; Tremblay, C.; Emond, V.; Kang, J.X.; Calon, F. Endogenous conversion of omega-6 into omega-3 fatty acids improves neuropathology in an animal model of Alzheimer’s disease. J. Alzheimers Dis., 2011, 27(4), 853-869.
[http://dx.doi.org/10.3233/JAD-2011-111010] [PMID: 21914946]
[232]
Mills, J.D.; Bailes, J.E.; Sedney, C.L.; Hutchins, H.; Sears, B. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J. Neurosurg., 2011, 114(1), 77-84.
[http://dx.doi.org/10.3171/2010.5.JNS08914] [PMID: 20635852]
[233]
Bailes, J.E.; Mills, J.D. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J. Neurotrauma, 2010, 27(9), 1617-1624.
[http://dx.doi.org/10.1089/neu.2009.1239] [PMID: 20597639]
[234]
Mills, J.D.; Hadley, K.; Bailes, J.E. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery, 2011, 68(2), 474-481.
[http://dx.doi.org/10.1227/NEU.0b013e3181ff692b] [PMID: 21135750]
[235]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J. Neurotrauma, 2011, 28(10), 2113-2122.
[http://dx.doi.org/10.1089/neu.2011.1872] [PMID: 21851229]
[236]
Oliver, J.M.; Jones, M.T.; Kirk, K.M.; Gable, D.A.; Repshas, J.T.; Johnson, T.A.; Andréasson, U.; Norgren, N.; Blennow, K.; Zetterberg, H. Effect of docosahexaenoic acid on a biomarker of head trauma in american football. Med. Sci. Sports Exerc., 2016, 48(6), 974-982.
[http://dx.doi.org/10.1249/MSS.0000000000000875] [PMID: 26765633]
[237]
Petraglia, A.L.; Winkler, E.A.; Bailes, J.E. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg. Neurol. Int., 2011, 2, 146.
[http://dx.doi.org/10.4103/2152-7806.85987] [PMID: 22059141]
[238]
Sullivan, P.G.; Geiger, J.D.; Mattson, M.P.; Scheff, S.W. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol., 2000, 48(5), 723-729.
[http://dx.doi.org/10.1002/1531-8249(200011)48:5<723::AID-ANA5>3.0.CO;2-W] [PMID: 11079535]
[239]
Adcock, K.H.; Nedelcu, J.; Loenneker, T.; Martin, E.; Wallimann, T.; Wagner, B.P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci., 2002, 24(5), 382-388.
[http://dx.doi.org/10.1159/000069043] [PMID: 12640176]
[240]
Zhu, S.; Li, M.; Figueroa, B.E.; Liu, A.; Stavrovskaya, I.G.; Pasinelli, P.; Beal, M.F.; Brown, R.H., Jr; Kristal, B.S.; Ferrante, R.J.; Friedlander, R.M. Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J. Neurosci., 2004, 24(26), 5909-5912.
[http://dx.doi.org/10.1523/JNEUROSCI.1278-04.2004] [PMID: 15229238]
[241]
Scheff, S.W.; Dhillon, H.S. Creatine-enhanced diet alters levels of lactate and free fatty acids after experimental brain injury. Neurochem. Res., 2004, 29(2), 469-479.
[http://dx.doi.org/10.1023/B:NERE.0000013753.22615.59] [PMID: 15002746]
[242]
Sakellaris, G.; Kotsiou, M.; Tamiolaki, M.; Kalostos, G.; Tsapaki, E.; Spanaki, M.; Spilioti, M.; Charissis, G.; Evangeliou, A. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. J. Trauma, 2006, 61(2), 322-329.
[http://dx.doi.org/10.1097/01.ta.0000230269.46108.d5] [PMID: 16917445]
[243]
Sakellaris, G.; Nasis, G.; Kotsiou, M.; Tamiolaki, M.; Charissis, G.; Evangeliou, A. Prevention of traumatic headache, dizziness and fatigue with creatine administration. A pilot study. Acta paediatrica (Oslo, Norway : 1992), 2008, 97(1), 31-34.
[244]
Allah, Y., R.; Akbar, A.; Iqbal, F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res, 2015, 21;1595, 92-100.
[245]
Freire Royes, L.F.; Cassol, G. The effects of creatine supplementation and physical exercise on traumatic brain injury. Mini Rev. Med. Chem., 2016, 16(1), 29-39.
[http://dx.doi.org/10.2174/1389557515666150722101926] [PMID: 26202200]
[246]
Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr., 2017, 14, 18.
[http://dx.doi.org/10.1186/s12970-017-0173-z] [PMID: 28615996]
[247]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317.
[http://dx.doi.org/10.1016/j.expneurol.2005.09.004] [PMID: 16364299]
[248]
Sharma, S.; Zhuang, Y.; Ying, Z.; Wu, A.; Gomez-Pinilla, F. Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience, 2009, 161(4), 1037-1044.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.042] [PMID: 19393301]
[249]
Sharma, S.; Ying, Z.; Gomez-Pinilla, F. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp. Neurol., 2010, 226(1), 191-199.
[http://dx.doi.org/10.1016/j.expneurol.2010.08.027] [PMID: 20816821]
[250]
Laird, M.D.; Sukumari-Ramesh, S.; Swift, A.E.; Meiler, S.E.; Vender, J.R.; Dhandapani, K.M. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J. Neurochem., 2010, 113(3), 637-648.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06630.x] [PMID: 20132469]
[251]
Samini, F.; Samarghandian, S.; Borji, A.; Mohammadi, G.; bakaian, M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol. Biochem. Behav., 2013, 110, 238-244.
[http://dx.doi.org/10.1016/j.pbb.2013.07.019] [PMID: 23932920]
[252]
Zhu, H.T.; Bian, C.; Yuan, J.C.; Chu, W.H.; Xiang, X.; Chen, F.; Wang, C.S.; Feng, H.; Lin, J.K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation, 2014, 11, 59.
[http://dx.doi.org/10.1186/1742-2094-11-59] [PMID: 24669820]
[253]
Conte, V.; Uryu, K.; Fujimoto, S.; Yao, Y.; Rokach, J.; Longhi, L.; Trojanowski, J.Q.; Lee, V.M.; McIntosh, T.K.; Praticò, D. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem., 2004, 90(3), 758-764.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02560.x] [PMID: 15255955]
[254]
Yang, J.; Han, Y.; Ye, W.; Liu, F.; Zhuang, K.; Wu, G. Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J. Surg. Res., 2013, 182(2), e69-e77.
[http://dx.doi.org/10.1016/j.jss.2012.11.010] [PMID: 23207171]
[255]
Razmkon, A.; Sadidi, A.; Sherafat-Kazemzadeh, E.; Mehrafshan, A.; Jamali, M.; Malekpour, B.; Saghafinia, M. Administration of vitamin C and vitamin E in severe head injury: a randomized double-blind controlled trial. Clin. Neurosurg., 2011, 58, 133-137.
[http://dx.doi.org/10.1227/NEU.0b013e3182279a8f] [PMID: 21916138]
[256]
Ishaq, G.M.; Saidu, Y.; Bilbis, L.S.; Muhammad, S.A.; Jinjir, N.; Shehu, B.B. Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. J. Neurosci. Rural Pract., 2013, 4(3), 292-297.
[http://dx.doi.org/10.4103/0976-3147.118784] [PMID: 24250162]
[257]
Aminmansour, B.; Nikbakht, H.; Ghorbani, A.; Rezvani, M.; Rahmani, P.; Torkashvand, M.; Nourian, M.; Moradi, M. Comparison of the administration of progesterone versus progesterone and vitamin D in improvement of outcomes in patients with traumatic brain injury: A randomized clinical trial with placebo group. Adv. Biomed. Res., 2012, 1, 58.
[http://dx.doi.org/10.4103/2277-9175.100176] [PMID: 23326789]
[258]
Tang, H.; Hua, F.; Wang, J.; Sayeed, I.; Wang, X.; Chen, Z.; Yousuf, S.; Atif, F.; Stein, D.G. Progesterone and vitamin D: Improvement after traumatic brain injury in middle-aged rats. Horm. Behav., 2013, 64(3), 527-538.
[http://dx.doi.org/10.1016/j.yhbeh.2013.06.009] [PMID: 23896206]
[259]
Scrimgeour, A.G.; Condlin, M.L. Nutritional treatment for traumatic brain injury. J. Neurotrauma, 2014, 31(11), 989-999.
[http://dx.doi.org/10.1089/neu.2013.3234] [PMID: 24605947]
[260]
Tang, H.; Hua, F.; Wang, J.; Yousuf, S.; Atif, F.; Sayeed, I.; Stein, D.G. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj., 2015, 29(10), 1165-1174.
[http://dx.doi.org/10.3109/02699052.2015.1035330] [PMID: 26083048]
[261]
Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther., 2003, 28(1), 53-59.
[http://dx.doi.org/10.1046/j.1365-2710.2003.00463.x] [PMID: 12605619]
[262]
Qiao, S.; Li, W.; Tsubouchi, R.; Haneda, M.; Murakami, K.; Takeuchi, F.; Nisimoto, Y.; Yoshino, M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res., 2005, 39(9), 995-1003.
[http://dx.doi.org/10.1080/10715760500231836] [PMID: 16087481]
[263]
Lee, H.J.; Cho, H.S.; Park, E.; Kim, S.; Lee, S.Y.; Kim, C.S.; Kim, D.K.; Kim, S.J.; Chun, H.S. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology, 2008, 250(2-3), 109-115.
[http://dx.doi.org/10.1016/j.tox.2008.06.010] [PMID: 18644421]
[264]
Gao, Z.B.; Chen, X.Q.; Hu, G.Y. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res., 2006, 1111(1), 41-47.
[http://dx.doi.org/10.1016/j.brainres.2006.06.096] [PMID: 16876771]
[265]
Ates, O.; Cayli, S.; Altinoz, E.; Gurses, I.; Yucel, N.; Sener, M.; Kocak, A.; Yologlu, S. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol. Cell. Biochem., 2007, 294(1-2), 137-144.
[http://dx.doi.org/10.1007/s11010-006-9253-0] [PMID: 16924419]
[266]
Lin, C.J.; Chen, T.H.; Yang, L.Y.; Shih, C.M. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis., 2014, 5(3), e1147.
[http://dx.doi.org/10.1038/cddis.2014.123] [PMID: 24675465]
[267]
Singleton, R.H.; Yan, H.Q.; Fellows-Mayle, W.; Dixon, C.E. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J. Neurotrauma, 2010, 27(6), 1091-1099.
[http://dx.doi.org/10.1089/neu.2010.1291] [PMID: 20560755]
[268]
Beni, S.M.; Kohen, R.; Reiter, R.J.; Tan, D.X.; Shohami, E. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J., 2004, 18(1), 149-151.
[http://dx.doi.org/10.1096/fj.03-0323fje] [PMID: 14597558]
[269]
Pandi-Perumal, S.R.; BaHammam, A.S.; Brown, G.M.; Spence, D.W.; Bharti, V.K.; Kaur, C.; Hardeland, R.; Cardinali, D.P. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox. Res., 2013, 23(3), 267-300.
[http://dx.doi.org/10.1007/s12640-012-9337-4] [PMID: 22739839]
[270]
Masliah, E.; Díez-Tejedor, E. The pharmacology of neurotrophic treatment with Cerebrolysin: Brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs of today (Barcelona, Spain : 1998), 2012, 48(Suppl A), 3-24.
[271]
Zhang, Y.; Chopp, M.; Meng, Y.; Zhang, Z.G.; Doppler, E.; Mahmood, A.; Xiong, Y. Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J. Neurosurg., 2013, 118(6), 1343-1355.
[http://dx.doi.org/10.3171/2013.3.JNS122061] [PMID: 23581594]
[272]
Chen, C.C.; Wei, S.T.; Tsaia, S.C.; Chen, X.X.; Cho, D.Y. Cerebrolysin enhances cognitive recovery of mild traumatic brain injury patients: double-blind, placebo-controlled, randomized study. Br. J. Neurosurg., 2013, 27(6), 803-807.
[http://dx.doi.org/10.3109/02688697.2013.793287] [PMID: 23656173]
[273]
Scafidi, S.; Racz, J.; Hazelton, J.; McKenna, M.C.; Fiskum, G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev. Neurosci., 2010, 32(5-6), 480-487.
[PMID: 21228558]
[274]
Nagesh Babu, G.; Kumar, A.; Singh, R.L. Chronic pretreatment with acetyl-L-carnitine and ±DL-α-lipoic acid protects against acute glutamate-induced neurotoxicity in rat brain by altering mitochondrial function. Neurotox. Res., 2011, 19(2), 319-329.
[http://dx.doi.org/10.1007/s12640-010-9165-3] [PMID: 20217290]
[275]
Prins, M.L.; Matsumoto, J.H. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J. Lipid Res., 2014, 55(12), 2450-2457.
[http://dx.doi.org/10.1194/jlr.R046706] [PMID: 24721741]
[276]
Krishna, G.; Ying, Z.; Gomez-Pinilla, F. Blueberry supplementation mitigates altered brain plasticity and behavior after traumatic brain injury in rats. Mol. Nutr. Food Res., 2019, 63(15), e1801055.
[http://dx.doi.org/10.1002/mnfr.201801055] [PMID: 31115168]
[277]
Bacci Ballerini, F.; López Anguera, A.; Alcaraz, P.; Hernández Reyes, N. Treatment of postconcussion syndrome with S-adenosylmethionine. Med. Clin. (Barc.), 1983, 80(4), 161-164.
[PMID: 6345953]
[278]
Amen, D.G.; Wu, J.C.; Taylor, D.; Willeumier, K. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J. Psychoactive Drugs, 2011, 43(1), 1-5.
[http://dx.doi.org/10.1080/02791072.2011.566489] [PMID: 21615001]
[279]
Başkaya, M.K.; Doğan, A.; Rao, A.M.; Dempsey, R.J. Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. J. Neurosurg., 2000, 92(3), 448-452.
[http://dx.doi.org/10.3171/jns.2000.92.3.0448] [PMID: 10701532]
[280]
Zafonte, R.D.; Bagiella, E.; Ansel, B.M.; Novack, T.A.; Friedewald, W.T.; Hesdorffer, D.C.; Timmons, S.D.; Jallo, J.; Eisenberg, H.; Hart, T.; Ricker, J.H.; Diaz-Arrastia, R.; Merchant, R.E.; Temkin, N.R.; Melton, S.; Dikmen, S.S. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA, 2012, 308(19), 1993-2000.
[http://dx.doi.org/10.1001/jama.2012.13256] [PMID: 23168823]
[281]
Theadom, A.; Mahon, S.; Barker-Collo, S.; McPherson, K.; Rush, E.; Vandal, A.C.; Feigin, V.L. Enzogenol for cognitive functioning in traumatic brain injury: a pilot placebo-controlled RCT. Eur. J. Neurol., 2013, 20(8), 1135-1144.
[http://dx.doi.org/10.1111/ene.12099] [PMID: 23384428]
[282]
Furukawa, S.; Yang, L.; Sameshima, H. Galantamine, an acetylcholinesterase inhibitor, reduces brain damage induced by hypoxia-ischemia in newborn rats. Int. J. Dev. Neurosci., 2014, 37, 52-57.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.06.011] [PMID: 24972037]
[283]
U.S Food and Drug Administration. FDA 101: Dietary Supplements. Available from: www.fda.gov/consumers/consumer- updates/fda-101-dietary-supplements
[284]
U.S Food and Drug Administration. Dietary Supplements, Available from: www.fda.gov/food/dietary-supplements
[285]
International Conference on Harmonization. Clinical Safety Data Management: Definitions and Standards for Expedited Reporting E2A, 1994.
[286]
Elshafie, S.; Roberti, A.M.; Zaghloul, I. Pharmacovigilance in developing countries (part II): a path forward. Int. J. Clin. Pharm., 2018, 40(4), 764-768.
[http://dx.doi.org/10.1007/s11096-017-0588-2] [PMID: 29322474]