Strategy of Virtual Screening based Discovery of HSP90 C-terminal Inhibitors and Network Pharmacological Analysis

Page: [1637 - 1646] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: HSP90 has been considered an important anticancer target for several decades, but traditional HSP90 N-terminal inhibitors often suffered from organ toxicity and/or drug resistance.

Methods: The development of HSP90 C-terminal inhibitors represents a reliable alternative strategy. In view of rare examples of structure-based identification of HSP90 C-terminal inhibitors, we report a virtual screening based strategy for the discovery of HSP90 C-terminal inhibitors as anticancer agents from natural products.

Results & Discussion: 13 chemical ingredients from licorice were identified as possible HSP90 inhibitors and 3 of them have been reported as anticancer agents. The binding modes towards HSP90 C-terminus were predicted by molecular docking and refined by molecular dynamics simulation.

Conclusion: Further network pharmacological analysis predicted overall possible targets involved in the pathways in cancer and revealed that 8 molecules possibly interact with HSP90. A structure based virtual screening strategy was established for the discovery of HSP90 Cterminal inhibitors.

Keywords: HSP90, virtual screening, network pharmacology, anticancer, molecular dynamics simulation, licorice.

Graphical Abstract

[1]
Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet., 1988, 22, 631-677.
[2]
Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci., 2002, 59, 1640-1648.
[3]
Garnier, C.; Lafitte, D.; Tsvetkov, P.O.; Barbier, P.; Leclerc-Devin, J.; Millot, J.M.; Briand, C.; Makarov, A.A.; Catelli, M.G.; Peyrot, V. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem., 2002, 277, 12208-12214.
[4]
Kamal, A.; Boehm, M.F.; Burrows, F.J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med., 2004, 10, 283-290.
[5]
Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem., 2006, 75, 271-294.
[6]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci., 2017, 38, 226-256.
[7]
Xiao, Y.; Liu, Y. Recent Advances in the Discovery of Novel HSP90 Inhibitors: An Update from 2014. Curr. Drug Targets, 2020, 21, 302-317.
[8]
Liu, J.; Sun, W.; Dong, W.; Wang, Z.; Qin, Y.; Zhang, T.; Zhang, H. HSP90 inhibitor NVP-AUY922 induces cell apoptosis by disruption of the survivin in papillary thyroid carcinoma cells. Biochem. Biophys. Res. Commun., 2017, 487, 313-319.
[9]
Kaigorodova, E.V.; Bogatyuk, M.V. Heat shock proteins as prognostic markers of cancer. Curr. Cancer Drug Targets, 2014, 14, 713-726.
[10]
Khalil, A.A.; Kabapy, N.F.; Deraz, S.F.; Smith, C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim. Biophys. Acta, 2011, 1816, 89-104.
[11]
Miyata, Y.; Nakamoto, H.; Neckers, L. The Therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des., 2013, 19, 347-365.
[12]
Yuno, A.; Lee, M.J.; Lee, S.; Tomita, Y.; Rekhtman, D.; Moore, B.; Trepel, J.B. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol. Biol., 2018, 1709, 423-441.
[13]
Bagatell, R.; Paine-Murrieta, G.D.; Taylor, C.W.; Pulcini, E.J.; Akinaga, S.; Benjamin, I.J.; Whitesell, L. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin. Cancer Res., 2000, 6, 3312-3318.
[14]
Ferraro, M.; D’Annessa, I.; Moroni, E.; Morra, G.; Paladino, A.; Rinaldi, S.; Compostella, F.; Colombo, G. Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J. Med. Chem., 2019, 62, 60-87.
[15]
Bickel, D.; Gohlke, H. C-terminal modulators of heat shock protein of 90kDa (HSP90): State of development and modes of action. Bioorg. Med. Chem., 2019, 27, 115080.
[16]
Donnelly, A.; Blagg, B.S. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem., 2008, 15, 2702-2717.
[17]
Garg, G.; Forsberg, L.K.; Zhao, H.; Blagg, B.S.J. Development of phenyl cyclohexylcarboxamides as a novel class of Hsp90 C-terminal inhibitors. Chem. Eur. J., 2017, 23, 16574-16585.
[18]
Jiang, F.; Guo, A.P.; Xu, J.C.; Wang, H.J.; Mo, X.F.; You, Q.D.; Xu, X.L. Identification and optimization of novel 6-acylamino-2-aminoquinolines as potent Hsp90 C-terminal inhibitors. Eur. J. Med. Chem., 2017, 141, 1-14.
[19]
Shao, L.D.; Su, J.; Ye, B.; Liu, J.X.; Zuo, Z.L.; Li, Y.; Wang, Y.Y.; Xia, C.; Zhao, Q.S. Design synthesis and biological activities of vibsanin B derivatives: A new class of HSP90 C-terminal inhibitors. J. Med. Chem., 2017, 60, 9053-9066.
[20]
Khalid, S.; Paul, S. Identifying a C-terminal ATP binding sites-based novel Hsp90-inhibitor in silico: a plausible therapeutic approach in Alzheimer’s disease. Med. Hypotheses, 2014, 83, 39-46.
[21]
Matts, R.L.; Dixit, A.; Peterson, L.B.; Sun, L.; Voruganti, S.; Kalyanaraman, P.; Hartson, S.D.; Verkhivker, G.M.; Blagg, B.S.J. Elucidation of the Hsp90 C-terminal inhibitor binding site. ACS Chem. Biol., 2011, 6, 800-807.
[22]
Morra, G.; Neves, M.A.C.; Plescia, C.J.; Tsustsumi, S.; Neckers, L.; Verkhivker, G.; Altieri, D.C.; Colombo, G. Dynamics-based discovery of allosteric inhibitors: selection of new ligands for the C-terminal domain of Hsp90. J. Chem. Theory Comput., 2010, 6, 2978-2989.
[23]
Sgobba, M.; Degliesposti, G.; Ferrari, A.M.; Rastelli, G. Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs. Chem. Biol. Drug Des., 2008, 71, 420-433.
[24]
Yang, R.; Wang, L.Q.; Yuan, B.C.; Liu, Y. The Pharmacological Activities of Licorice. Planta Med., 2015, 81, 1654-1669.
[25]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[26]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11, 905-919.
[27]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24, 417-422.
[28]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46, W363-W367.
[29]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[30]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[31]
Lee, T.S.; Allen, B.K.; Giese, T.J.; Guo, Z.; Li, P.; Lin, C.; McGee, T.D., Jr; Pearlman, D.A.; Radak, B.K.; Tao, Y.; Tsai, H.C.; Xu, H.; Sherman, W.; York, D.M. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J. Chem. Inf. Model., 2020, 60, 5595-5623.
[32]
Nayar, D.; Agarwal, M.; Chakravarty, C. Comparison of tetrahedral order, liquid state anomalies, and hydration behavior of mTIP3P and TIP4P Water Models. J. Chem. Theory Comput., 2011, 7, 3354-3367.
[33]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.
[34]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25, 1157.
[35]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42, W32-W38.
[36]
Huang da. W.; Sherman, B. T.; Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4, 44-57.
[37]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13, 2498-2504.
[38]
Verba, K.A.; Wang, R.Y.; Arakawa, A.; Liu, Y.; Shirouzu, M.; Yokoyama, S.; Agard, D.A. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science, 2016, 352, 1542-1547.
[39]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25, 1605-1612.
[40]
Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M.; Glycybridins, A-K. Bioactive Phenolic Compounds from Glycyrrhiza glabra. J. Nat. Prod., 2017, 80, 334-346.
[41]
Lin, Y.; Kuang, Y.; Li, K.; Wang, S.; Song, W.; Qiao, X.; Sabir, G.; Ye, M. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg. Med. Chem., 2017, 25, 3706-3713.