Optimization of Phenolic Compound Recovery and Antioxidant Activity of Bay Leaves using Sequential and Response Surface Methodologies

Article ID: e021221196343 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The laurel is a shrub native to the Mediterranean basin. It is too often wrongly relegated to the kitchen as a simple condiment while it possesses many therapeutic properties and virtues. The valorization of this plant in terms of bioactive compounds seems to be important.

Objective: The aim of the present study is to optimize total phenolic content (TPC) extraction and antioxidant activity from dried bay leaves using conventional process and response surface methodology (RSM).

Methods: The study of optimization firstly tested three extraction methods (maceration, ultrasonicassisted extraction (UAE), and Microwave-assisted extraction (MAE)) then the best one was considered for RSM.

Results: The results for the sequential procedure indicated that MAE was the best method for TPC extraction and antioxidant activity of Laurus nobilis leaves. The mathematical modeling of MEA using response surface methodology showed that optimal conditions for phenolic compounds extraction were 57% methanol with microwaves power of 602W during 3.48 minutes. These conditions allowed TPC extraction of 83.53 mg/g and manifested an antioxidant activity of 32.51 mg EAG/g.

Conclusion: The validation of models indicated that experimental values were in accordance with predicted ones, demonstrating the suitability of developed models and the success of RSM in the optimization of antioxidants extraction from Laurus nobilis leaves. Therefore, the bay leaves could be considered as an interesting source of phenolic antioxidants.

Keywords: Laurus nobilis, optimization, extraction condition, microwave-assisted extraction, phenolic compounds, antioxidant activity.

Graphical Abstract

[1]
Ambrose, D.C.; Manickavasagan, A.; Naik, R. Leafy medicinal herbs: Botany, chemistry, postharvest technology and uses. London, CABI, 2016, 28
[http://dx.doi.org/10.1079/9781780645599.0000]
[2]
Barroso, W.A.; Gondim, R.S.D.; Barroso, V.; Vilanova, M. Pharmacognostic characterization of Laurus nobilis L. leaves. J. Chem. Pharm. Res., 2017, 10, 30-37.
[3]
Sharma, A.; Singh, J.; Kumar, S. Bay leaves. Handbook of herbs and spices; Woodhead Publishing, 2012, 640, .
[http://dx.doi.org/10.1533/9780857095671.73]
[4]
Khaled Khodja, Y.; Bachir-bey, M.; Ladjouzi, R.; Djenadi, K.; Khettal, B. In vitro antioxidant and antibacterial activities of phenolic and alkaloid extracts of Laurus nobilis. South Asian Res. J. Bio., 2021, 11(3), 345-354.
[5]
Chaaben, H.; Motri, S.; Ben Selma, M. Study of the physicochemical properties of Laurus nobilis fruit oil and the effect of maceration by the fruits and leaves of Laurus nobilis on the physicochemical properties and oxidative stability of olive oil. J. New Sci. Agric. Biotechnol., 2015, 8, 873-880.
[6]
Efe, R.; Ozturk, M.; Atalay, I. Natural environment and culture in the Mediterranean region II; Cambridge Scholars Publishing: UK, 2011.
[7]
Ravindran, P. The encyclopedia of herbs and spices; CAB International Publishing, 2017.
[8]
Buto, S.K.; Tsang, T.K.; Sielaff, G.W.; Gutstein, L.L.; Meiselman, M.S. Bay leaf impaction in the esophagus and hypopharynx. Ann. Intern. Med., 1990, 113(1), 82-83.
[http://dx.doi.org/10.7326/0003-4819-113-1-82] [PMID: 2350114]
[9]
Iserin, P.; Masson, M.; Restellini, J.; Ybert, E. Larousse encyclopédie des plantes médicinales identification, préparation, soins. Paris, Larousse, 2001, 336.
[10]
Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A, 2004, 1054(1-2), 95-111.
[http://dx.doi.org/10.1016/S0021-9673(04)01409-8] [PMID: 15553136]
[11]
Nithya, T.; Jayanthi, J.; Ragunathan, M. Antioxidant activity, total phenol, flavonoid, alkaloid, tannin, and saponin contents of leaf extracts of Salvinia molesta DS Mitchell (1972). Asian J. Pharm. Clin. Res., 2016, 9, 200-203.
[12]
Hiromoto, P.J.; Umeda, W.M.; Jorge, N. Antioxidant activity of phenolic compounds in ethanolic extract of Hibiscus sabdariffa L. on oxidative stability of soybean oil. Curr. Bioact. Compd., 2021, e190721191385.
[http://dx.doi.org/10.2174/1573407217666210215084828]
[13]
Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem., 2012, 19(3), 486-490.
[http://dx.doi.org/10.1016/j.ultsonch.2011.11.006] [PMID: 22142939]
[14]
Yang, Z.; Zhai, W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov. Food Sci. Emerg., 2010, 11, 470-476.
[http://dx.doi.org/10.1016/j.ifset.2010.03.003]
[15]
Khaled Khodja, Y.; Dahmoune, F.; Bachir-bey, M.; Madani, K.; Khettal, B. Conventional and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Braz. J. Food. Technol., 2020, 23, e2019214.
[http://dx.doi.org/10.1590/1981-6723.21419]
[16]
Radojković, M.; Zeković, Z.; Jokić, S.; Vidović, S.; Lepojević, Ž.; Milošević, S. Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technol. Biotechnol., 2012, 50, 167-176.
[17]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[18]
Bachir bey, M.; Meziant, L.; Benchikh, Y.; Louaileche, H. Deployment of response surface methodology to optimize recovery of dried dark fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Int. Food Res. J., 2014, 21(4), 1477-1482.
[19]
Boulila, A.; Hassen, I.; Haouari, L.; Mejri, F.; Amor, I.B.; Casabianca, H. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind. Crops Prod., 2015, 74, 485-493.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.050]
[20]
Pérez, M.B.; Calderon, N.L.; Croci, C.A. Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem., 2007, 104, 585-592.
[http://dx.doi.org/10.1016/j.foodchem.2006.12.009]
[21]
Kivrak, S.; Göktürk, T.; Kivrak, I. Assessment of volatile oil composition, phenolics and antioxidant activity of Bay (Laurus nobilis) leaf and usage in cosmetic applications. Int. J. Sec. Met., 2017, 4, 148-161.
[http://dx.doi.org/10.21448/ijsm.323800]
[22]
Ishtiaque, S.; Naz, S.; Soomro, N.; Khan, K.; Siddiqui, R. Antioxidant activity and total phenolics content of extracts from Murraya koenigii (curry leaves), Laurus nobilis (bay leaves), and Camellia sinensis (tea). Quaid-e-Awam Univ. Res. J. Eng. Sci. Technol., 2015, 14, 20-25.
[23]
Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separ. Purif. Tech., 2007, 55, 217-225.
[http://dx.doi.org/10.1016/j.seppur.2006.12.005]
[24]
Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 2005, 93, 47-56.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.050]
[25]
Martins, S.; Aguilar, C.N.; Teixeira, J.A.; Mussatto, S.I. Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separ. Purif. Tech., 2012, 88, 163-167.
[http://dx.doi.org/10.1016/j.seppur.2011.12.020]
[26]
Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Separ. Purif. Tech., 2011, 83, 173-179.
[http://dx.doi.org/10.1016/j.seppur.2011.09.036]
[27]
Kim, D.O.; Lee, C.Y. Extraction and isolation of polyphenolics. Cur. Prot. Food Anal. Chem., 2002, 6, 2-12.
[28]
Handa, S.S.; Khanuja, S.P.S.; Longo, G.; Rakesh, D.D. Extraction technologies for medicinal and aromatic plants: Earth, environmental and marine sciences and technologies. Organization UNID, Trieste: ICS-UNIDO, 2008, 266
[29]
Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int., 2011, 44, 530-536.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[30]
Słowianek, M.; Leszczyńska, J. Antioxidant properties of selected culinary spices. Herba Pol., 2016, 62, 29-41.
[http://dx.doi.org/10.1515/hepo-2016-0003]
[31]
Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z. Lebensm. Unters. Forsch., 1993, 196(4), 329-338.
[http://dx.doi.org/10.1007/BF01197931] [PMID: 8493816]
[32]
Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and biological activities of laurel tree (Laurus nobilis). Nat. Prod. Commun., 2017, 12, 1934578X1701200519.
[33]
Marques, M.R.; Paz, D.D.; Batista, L.P.R.; Barbosa, C.O.; Araújo, M.A.M.; Moreira-Araújo, R.S.R. An in vitro analysis of the total phenolic content, antioxidant power, physical, physicochemical, and chemical composition of Terminalia Catappa Linn fruits. Food Sc. Technol., 2012, 32, 209-213.
[http://dx.doi.org/10.1590/S0101-20612012005000023]
[34]
Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta, 2012, 732, 100-104.
[http://dx.doi.org/10.1016/j.aca.2011.11.032] [PMID: 22688040]
[35]
Odabaş, H.İ.; Koca, I. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Ind. Crops Prod., 2016, 91, 114-124.
[http://dx.doi.org/10.1016/j.indcrop.2016.05.033]
[36]
Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem., 2016, 29, 502-511.
[http://dx.doi.org/10.1016/j.ultsonch.2015.11.005] [PMID: 26563916]
[37]
Chew, K.; Khoo, M.; Ng, S.; Thoo, Y.; Aida, W.W.; Ho, C. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int. Food Res. J., 2011, 18, 1427.
[38]
Li, H.; Deng, Z.; Wu, T.; Liu, R.; Loewen, S.; Tsao, R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem., 2012, 130, 928-936.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.019]
[39]
Upadhyay, R.; Ramalakshmi, K.; Rao, L.J.M. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem., 2012, 130, 184-188.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.057]
[40]
Ahmad, J.; Langrish, T. Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J. Food Eng., 2012, 109, 162-174.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.017]
[41]
Uttara, J.; Leena, W.; Mohini, U. Microwave assisted extraction of crude drugs. Int. J. Pharm. Bio. Sci., 2010, 1, 330-332.
[42]
Ince, A.E.; Sahin, S.; Sümnü, S.G. Extraction of phenolic compounds from melissa using microwave and ultrasound. Turk. J. Agric. For., 2013, 37, 69-75.
[43]
Inchuen, S.; Narkrugsa, W.; Pornchaloempong, P. Effect of drying methods on chemical composition, color and antioxidant properties of Thai red curry powder. Witthayasan Kasetsat Witthayasat, 2010, 44, 142-151.
[44]
Dragovic-Uzelac, V.; Garofulic, I.E.; Jukic, M.; Penic, M.; Dent, M. The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) polyphenols. Food Technol. Biotechnol., 2012, 50, 377.
[45]
Dong, J.; Ma, X.; Fu, Z.; Guo, Y. Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Ind. Crops Prod., 2011, 34, 1102-1110.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.026]
[46]
Chan, S.; Lee, C.; Yap, C.; Mustapha, W.A.W.; Ho, C. Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J., 2009, 16, 203-213.
[47]
Barizão, É.O.; Martins, A.C.; Ercoli, L.; Kvitschal, M.V.; Silva, R.; Junior, O.P. Optimization of antioxidant compounds extraction from flesh of new developed apple cultivar using response surface methodology. Food Anal. Methods, 2013, 6, 1407-1415.
[http://dx.doi.org/10.1007/s12161-012-9558-4]