Escherichia coli and Colorectal Cancer: Unfolding the Enigmatic Relationship

Page: [1257 - 1268] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.

Keywords: E. coli, colorectal cancer, inflammation, cyclomodelin, colibactin, DNA mismatch repair.

Graphical Abstract

[1]
Baré, M.; Mora, L.; Pera, M.; Collera, P.; Redondo, M.; Escobar, A.; Anula, R.; Quintana, J.M.; Redondo, M.; Rivas, F. Type and consequences of short-term complications in colon cancer surgery, focusing on the oldest old. Clin. Colorectal Cancer, 2020, 19(1), e18-e25.
[http://dx.doi.org/10.1016/j.clcc.2019.11.003] [PMID: 31874739]
[2]
Buc, E.; Dubois, D.; Sauvanet, P.; Raisch, J.; Delmas, J.; Darfeuille-Michaud, A.; Pezet, D.; Bonnet, R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One, 2013, 8(2)e56964
[http://dx.doi.org/10.1371/journal.pone.0056964] [PMID: 23457644]
[3]
Saus, E.; Iraola-Guzmán, S.; Willis, J.R.; Brunet-Vega, A.; Gabaldón, T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol. Aspects Med., 2019, 69, 93-106.
[http://dx.doi.org/10.1016/j.mam.2019.05.001] [PMID: 31082399]
[4]
Satokari, R. Modulation of gut microbiota for health by current and next-generation probiotics. Nutrients, 2019, 11(8), 1921.
[http://dx.doi.org/10.3390/nu11081921] [PMID: 31443276]
[5]
Harris, K.; Kassis, A.; Major, G.; Chou, C.J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes., 2012, 2012879151
[PMID: 22315672]
[6]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[7]
Zackular, J.P.; Rogers, M.A.; Ruffin, M.T., IV; Schloss, P.D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. (Phila.), 2014, 7(11), 1112-1121.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0129] [PMID: 25104642]
[8]
Aranda-Olmedo, I.; Rubio, L.A. Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. J. Funct. Foods, 2020, 64103707
[http://dx.doi.org/10.1016/j.jff.2019.103707]
[9]
Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One, 2012, 7(6)e39743
[http://dx.doi.org/10.1371/journal.pone.0039743] [PMID: 22761885]
[10]
Allen-Vercoe, E.; Jobin, C. Fusobacterium and Enterobacteriaceae: Important players for CRC? Immunol. Lett., 2014, 162(2 Pt A), 54-61.
[http://dx.doi.org/10.1016/j.imlet.2014.05.014] [PMID: 24972311]
[11]
Raisch, J.; Rolhion, N.; Dubois, A.; Darfeuille-Michaud, A.; Bringer, M-A. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab. Invest., 2015, 95(3), 296-307.
[http://dx.doi.org/10.1038/labinvest.2014.161] [PMID: 25545478]
[12]
Prorok-Hamon, M.; Friswell, M.K.; Alswied, A.; Roberts, C.L.; Song, F.; Flanagan, P.K.; Knight, P.; Codling, C.; Marchesi, J.R.; Winstanley, C.; Hall, N.; Rhodes, J.M.; Campbell, B.J. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut, 2014, 63(5), 761-770.
[http://dx.doi.org/10.1136/gutjnl-2013-304739] [PMID: 23846483]
[13]
Wang, D.; DuBois, R.N. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett., 2008, 267(2), 197-203.
[http://dx.doi.org/10.1016/j.canlet.2008.03.004] [PMID: 18406516]
[14]
Dubois, R.N. Role of inflammation and inflammatory mediators in colorectal cancer. Trans. Am. Clin. Climatol. Assoc., 2014, 125, 358-372.
[PMID: 25125751]
[15]
Rumba, R.; Cipkina, S.; Cukure, F.; Vanags, A. Systemic and local inflammation in colorectal cancer. Acta Med. Litu., 2018, 25(4), 185-196.
[http://dx.doi.org/10.6001/actamedica.v25i4.3929] [PMID: 31308824]
[16]
Luissint, A-C.; Parkos, C.A.; Nusrat, A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology, 2016, 151(4), 616-632.
[http://dx.doi.org/10.1053/j.gastro.2016.07.008] [PMID: 27436072]
[17]
Brennan, C.A.; Garrett, W.S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol., 2016, 70, 395-411.
[http://dx.doi.org/10.1146/annurev-micro-102215-095513] [PMID: 27607555]
[18]
Sun, J.; Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis., 2016, 3(2), 130-143.
[http://dx.doi.org/10.1016/j.gendis.2016.03.004] [PMID: 28078319]
[19]
Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; DuBois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994, 107(4), 1183-1188.
[http://dx.doi.org/10.1016/0016-5085(94)90246-1] [PMID: 7926468]
[20]
Payros, D.; Secher, T.; Boury, M.; Brehin, C.; Ménard, S.; Salvador-Cartier, C.; Cuevas-Ramos, G.; Watrin, C.; Marcq, I.; Nougayrède, J-P.; Dubois, D.; Bedu, A.; Garnier, F.; Clermont, O.; Denamur, E.; Plaisancié, P.; Theodorou, V.; Fioramonti, J.; Olier, M.; Oswald, E. Maternally acquired genotoxic Escherichia coli alters offspring’s intestinal homeostasis. Gut Microbes, 2014, 5(3), 313-325.
[http://dx.doi.org/10.4161/gmic.28932] [PMID: 24971581]
[21]
Bonnet, M.; Buc, E.; Sauvanet, P.; Darcha, C.; Dubois, D.; Pereira, B.; Déchelotte, P.; Bonnet, R.; Pezet, D.; Darfeuille-Michaud, A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin. Cancer Res., 2014, 20(4), 859-867.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1343] [PMID: 24334760]
[22]
Faïs, T.; Delmas, J.; Barnich, N.; Bonnet, R.; Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins (Basel), 2018, 10(4), 151.
[http://dx.doi.org/10.3390/toxins10040151] [PMID: 29642622]
[23]
Cougnoux, A.; Dalmasso, G.; Martinez, R.; Buc, E.; Delmas, J.; Gibold, L.; Sauvanet, P.; Darcha, C.; Déchelotte, P.; Bonnet, M.; Pezet, D.; Wodrich, H.; Darfeuille-Michaud, A.; Bonnet, R. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 2014, 63(12), 1932-1942.
[http://dx.doi.org/10.1136/gutjnl-2013-305257] [PMID: 24658599]
[24]
Homburg, S.; Oswald, E.; Hacker, J.; Dobrindt, U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol. Lett., 2007, 275(2), 255-262.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00889.x] [PMID: 17714479]
[25]
Liu, C.J.; Zhang, Y.L.; Shang, Y.; Wu, B.; Yang, E.; Luo, Y.Y.; Li, X.R. Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncol. Lett., 2019, 17(1), 1115-1127.
[PMID: 30655873]
[26]
Hanahan, D.; Weinberg, R.A. The hallmarks of Cancer. Cell, 2000, 100(1), 57-70.
[27]
Al-Sohaily, S.; Biankin, A.; Leong, R.; Kohonen-Corish, M.; Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol., 2012, 27(9), 1423-1431.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07200.x] [PMID: 22694276]
[28]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[29]
Kim, D.H.; Hossain, M.A.; Kang, Y.J.; Jang, J.Y.; Lee, Y.J.; Im, E.; Yoon, J.H.; Kim, H.S.; Chung, H.Y.; Kim, N.D. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int. J. Oncol., 2013, 43(5), 1652-1658.
[http://dx.doi.org/10.3892/ijo.2013.2086] [PMID: 24008356]
[30]
Raskov, H.; Burcharth, J.; Pommergaard, H-C. Linking gut microbiota to colorectal cancer. J. Cancer, 2017, 8(17), 3378-3395.
[http://dx.doi.org/10.7150/jca.20497] [PMID: 29151921]
[31]
Lin, C.; Cai, X.; Zhang, J.; Wang, W.; Sheng, Q.; Hua, H.; Zhou, X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion, 2019, 100(1), 72-78.
[http://dx.doi.org/10.1159/000494052] [PMID: 30332668]
[32]
Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. Gut microbiota and colorectal cancer development: a closer look to the adenoma-carcinoma sequence. Biomedicines, 2020, 8(11), 489.
[http://dx.doi.org/10.3390/biomedicines8110489] [PMID: 33182693]
[33]
Gao, R.; Wang, Z.; Li, H.; Cao, Z.; Gao, Z.; Chen, H.; Zhang, X.; Pan, D.; Yang, R.; Zhong, H.; Shen, R.; Yin, L.; Jia, Z.; Shen, T.; Qin, N.; Hu, Z.; Qin, H. Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J. Gastroenterol. Hepatol., 2020, 35(12), 2109-2121.
[http://dx.doi.org/10.1111/jgh.15077] [PMID: 32337748]
[34]
Swidsinski, A.; Khilkin, M.; Kerjaschki, D.; Schreiber, S.; Ortner, M.; Weber, J.; Lochs, H. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology, 1998, 115(2), 281-286.
[http://dx.doi.org/10.1016/S0016-5085(98)70194-5] [PMID: 9679033]
[35]
Weisburger, J.H.; Reddy, B.S.; Narisawa, T.; Wynder, E.L. Germ-free status and colon tumor induction by N-methyl-N'-nitro-N-nitrosoguanidine. Proc. Soc. Exp. Biol. Med., 1975, 148(4), 1119-1121.
[http://dx.doi.org/10.3181/00379727-148-38700] [PMID: 1129327]
[36]
Baxter, N.T.; Zackular, J.P.; Chen, G.Y.; Schloss, P.D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome, 2014, 2(1), 20.
[http://dx.doi.org/10.1186/2049-2618-2-20] [PMID: 24967088]
[37]
Sze, M.A.; Baxter, N.T.; Ruffin, M.T., IV; Rogers, M.A.M.; Schloss, P.D. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome, 2017, 5(1), 150.
[http://dx.doi.org/10.1186/s40168-017-0366-3] [PMID: 29145893]
[38]
Zatorski, H.; Fichna, J. What is the future of the gut microbiota-related treatment? Toward modulation of microbiota in preventive and therapeutic medicine. Front. Med., 2014, 1, 15.
[http://dx.doi.org/10.3389/fmed.2014.00019]
[39]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[40]
Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 2013, 14(7), 685-690.
[http://dx.doi.org/10.1038/ni.2608] [PMID: 23778796]
[41]
Zhu, Q.; Jin, Z.; Wu, W.; Gao, R.; Guo, B.; Gao, Z.; Yang, Y.; Qin, H. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One, 2014, 9(6)e90849
[http://dx.doi.org/10.1371/journal.pone.0090849] [PMID: 24603888]
[42]
Zhang, X.; Li, C.; Cao, W.; Zhang, Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front. Cell. Infect. Microbiol., 2021, 11559148
[http://dx.doi.org/10.3389/fcimb.2021.559148] [PMID: 33747975]
[43]
Deng, Y.; Tang, D.; Hou, P.; Shen, W.; Li, H.; Wang, T.; Liu, R. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb. Pathog., 2021, 150104709
[http://dx.doi.org/10.1016/j.micpath.2020.104709] [PMID: 33378710]
[44]
Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y-X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; Yu, J. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 2021, 70(4), 761-774.
[http://dx.doi.org/10.1136/gutjnl-2019-319664] [PMID: 32694178]
[45]
Mei, Q-X.; Huang, C-L.; Luo, S-Z.; Zhang, X-M.; Zeng, Y.; Lu, Y-Y. Characterization of the duodenal bacterial microbiota in patients with pancreatic head cancer vs. healthy controls. Pancreatology, 2018, 18(4), 438-445.
[http://dx.doi.org/10.1016/j.pan.2018.03.005] [PMID: 29653723]
[46]
Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics, 2018, 16(1), 33-49.
[http://dx.doi.org/10.1016/j.gpb.2017.06.002] [PMID: 29474889]
[47]
Vyas, U.; Ranganathan, N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterol. Res. Pract., 2012, 2012872716
[http://dx.doi.org/10.1155/2012/872716] [PMID: 23049548]
[48]
Matsuoka, K.; Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol., 2015, 37(1), 47-55.
[http://dx.doi.org/10.1007/s00281-014-0454-4] [PMID: 25420450]
[49]
Suau, A.; Bonnet, R.; Sutren, M.; Godon, J-J.; Gibson, G.R.; Collins, M.D.; Doré, J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol., 1999, 65(11), 4799-4807.
[http://dx.doi.org/10.1128/AEM.65.11.4799-4807.1999] [PMID: 10543789]
[50]
Caetano, B.F.; de Moura, N.A.; Almeida, A.P.; Dias, M.C.; Sivieri, K.; Barbisan, L.F. Yacon (Smallanthus sonchifolius) as a food supplement: health-promoting benefits of fructooligosaccharides. Nutrients, 2016, 8(7), 436.
[http://dx.doi.org/10.3390/nu8070436] [PMID: 27455312]
[51]
Vemuri, R.; Gundamaraju, R.; Shastri, M.D.; Shukla, S.D.; Kalpurath, K.; Ball, M.; Tristram, S.; Shankar, E.M.; Ahuja, K.; Eri, R. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Res. Int., 2018, 20184178607
[http://dx.doi.org/10.1155/2018/4178607] [PMID: 29682542]
[52]
Jones, M.L.; Ganopolsky, J.G.; Martoni, C.J.; Labbé, A.; Prakash, S. Emerging science of the human microbiome. Gut Microbes, 2014, 5(4), 446-457.
[http://dx.doi.org/10.4161/gmic.29810] [PMID: 25013912]
[53]
Nagano, T.; Otoshi, T.; Hazama, D.; Kiriu, T.; Umezawa, K.; Katsurada, N.; Nishimura, Y. Novel cancer therapy targeting microbiome. OncoTargets Ther., 2019, 12, 3619-3624.
[http://dx.doi.org/10.2147/OTT.S207546] [PMID: 31190864]
[54]
Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26(1), 26191.
[PMID: 25651997]
[55]
Zhang, J.; Haines, C.; Watson, A.J.M.; Hart, A.R.; Platt, M.J.; Pardoll, D.M.; Cosgrove, S.E.; Gebo, K.A.; Sears, C.L. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study. Gut, 2019, 68(11), 1971-1978.
[http://dx.doi.org/10.1136/gutjnl-2019-318593] [PMID: 31427405]
[56]
Niederreiter, L.; Adolph, T.E.; Tilg, H. Food, microbiome and colorectal cancer. Dig. Liver Dis., 2018, 50(7), 647-652.
[http://dx.doi.org/10.1016/j.dld.2018.03.030] [PMID: 29705028]
[57]
Shivappa, N.; Zucchetto, A.; Montella, M.; Serraino, D.; Steck, S.E.; La Vecchia, C.; Hébert, J.R. Inflammatory potential of diet and risk of colorectal cancer: a case-control study from Italy. Br. J. Nutr., 2015, 114(1), 152-158.
[http://dx.doi.org/10.1017/S0007114515001828] [PMID: 26050563]
[58]
Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.A.; Speizer, F.E. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med., 1990, 323(24), 1664-1672.
[http://dx.doi.org/10.1056/NEJM199012133232404] [PMID: 2172820]
[59]
Larsson, S.C.; Rafter, J.; Holmberg, L.; Bergkvist, L.; Wolk, A. Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int. J. Cancer, 2005, 113(5), 829-834.
[http://dx.doi.org/10.1002/ijc.20658] [PMID: 15499619]
[60]
Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel), 2019, 11(1), 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[61]
Irrazábal, T.; Belcheva, A.; Girardin, S.E.; Martin, A.; Philpott, D.J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell, 2014, 54(2), 309-320.
[http://dx.doi.org/10.1016/j.molcel.2014.03.039] [PMID: 24766895]
[62]
Borges-Canha, M.; Portela-Cidade, J.P.; Dinis-Ribeiro, M.; Leite-Moreira, A.F.; Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: A systematic review. Rev. Esp. Enferm. Dig., 2015, 107(11), 659-671.
[http://dx.doi.org/10.17235/reed.2015.3830/2015] [PMID: 26541655]
[63]
Burns, M.B.; Lynch, J.; Starr, T.K.; Knights, D.; Blekhman, R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med., 2015, 7(1), 55.
[http://dx.doi.org/10.1186/s13073-015-0177-8] [PMID: 26170900]
[64]
Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J., 2012, 6(2), 320-329.
[http://dx.doi.org/10.1038/ismej.2011.109] [PMID: 21850056]
[65]
Sobhani, I.; Tap, J.; Roudot-Thoraval, F.; Roperch, J.P.; Letulle, S.; Langella, P.; Corthier, G.; Tran Van Nhieu, J.; Furet, J.P. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One, 2011, 6(1)e16393
[http://dx.doi.org/10.1371/journal.pone.0016393] [PMID: 21297998]
[66]
Shang, F-M.; Liu, H-L. Fusobacterium nucleatum and colorectal cancer: A review. World J. Gastrointest. Oncol., 2018, 10(3), 71-81.
[http://dx.doi.org/10.4251/wjgo.v10.i3.71] [PMID: 29564037]
[67]
Li, Y-Y.; Ge, Q-X.; Cao, J.; Zhou, Y-J.; Du, Y-L.; Shen, B.; Wan, Y-J.Y.; Nie, Y-Q. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J. Gastroenterol., 2016, 22(11), 3227-3233.
[http://dx.doi.org/10.3748/wjg.v22.i11.3227] [PMID: 27004000]
[68]
Liu, I.L.; Tsai, C-H.; Hsu, C-H.; Hu, J-M.; Chen, Y-C.; Tian, Y-F.; You, S-L.; Chen, C-Y.; Hsiao, C-W.; Lin, C-Y.; Chou, Y.C.; Sun, C.A. Helicobacter pylori infection and the risk of colorectal cancer: A nationwide population-based cohort study. QJM, 2019, 112(10), 787-792.
[http://dx.doi.org/10.1093/qjmed/hcz157] [PMID: 31250012]
[69]
Gold, J.S.; Bayar, S.; Salem, R.R. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch. Surg., 2004, 139(7), 760-765.
[http://dx.doi.org/10.1001/archsurg.139.7.760] [PMID: 15249410]
[70]
Haghi, F.; Goli, E.; Mirzaei, B.; Zeighami, H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer, 2019, 19(1), 879.
[http://dx.doi.org/10.1186/s12885-019-6115-1] [PMID: 31488085]
[71]
Gagnière, J.; Raisch, J.; Veziant, J.; Barnich, N.; Bonnet, R.; Buc, E.; Bringer, M-A.; Pezet, D.; Bonnet, M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol., 2016, 22(2), 501-518.
[http://dx.doi.org/10.3748/wjg.v22.i2.501] [PMID: 26811603]
[72]
Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(5), 877-886.
[http://dx.doi.org/10.1007/s10096-015-2323-z] [PMID: 25630538]
[73]
Tomkovich, S.; Gharaibeh, R.Z.; Dejea, C.M.; Pope, J.L.; Jiang, J.; Winglee, K.; Gauthier, J.; Newsome, R.C.; Yang, Y.; Fodor, A.A.; Schmittgen, T.D.; Sears, C.L.; Jobin, C. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. mSystems, 2020, 5(1), e00451-e19.
[http://dx.doi.org/10.1128/mSystems.00451-19] [PMID: 31937674]
[74]
Tomkovich, S.; Dejea, C.M.; Winglee, K.; Drewes, J.L.; Chung, L.; Housseau, F.; Pope, J.L.; Gauthier, J.; Sun, X.; Mühlbauer, M.; Liu, X.; Fathi, P.; Anders, R.A.; Besharati, S.; Perez-Chanona, E.; Yang, Y.; Ding, H.; Wu, X.; Wu, S.; White, J.R.; Gharaibeh, R.Z.; Fodor, A.A.; Wang, H.; Pardoll, D.M.; Jobin, C.; Sears, C.L. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest., 2019, 129(4), 1699-1712.
[http://dx.doi.org/10.1172/JCI124196] [PMID: 30855275]
[75]
Tilg, H.; Adolph, T.E.; Gerner, R.R.; Moschen, A.R. The intestinal microbiota in colorectal cancer. Cancer Cell, 2018, 33(6), 954-964.
[http://dx.doi.org/10.1016/j.ccell.2018.03.004] [PMID: 29657127]
[76]
Dejea, C.M.; Wick, E.C.; Hechenbleikner, E.M.; White, J.R.; Mark Welch, J.L.; Rossetti, B.J.; Peterson, S.N.; Snesrud, E.C.; Borisy, G.G.; Lazarev, M.; Stein, E.; Vadivelu, J.; Roslani, A.C.; Malik, A.A.; Wanyiri, J.W.; Goh, K.L.; Thevambiga, I.; Fu, K.; Wan, F.; Llosa, N.; Housseau, F.; Romans, K.; Wu, X.; McAllister, F.M.; Wu, S.; Vogelstein, B.; Kinzler, K.W.; Pardoll, D.M.; Sears, C.L. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA, 2014, 111(51), 18321-18326.
[http://dx.doi.org/10.1073/pnas.1406199111] [PMID: 25489084]
[77]
Mori, G.; Pasca, M.R. Gut microbial signatures in sporadic and hereditary colorectal cancer. Int. J. Mol. Sci., 2021, 22(3), 1312.
[http://dx.doi.org/10.3390/ijms22031312] [PMID: 33525662]
[78]
Coleman, O.I.; Haller, D. Microbe-mucus interface in the pathogenesis of colorectal cancer. Cancers (Basel), 2021, 13(4), 616.
[http://dx.doi.org/10.3390/cancers13040616] [PMID: 33557139]
[79]
Johnson, C.H.; Dejea, C.M.; Edler, D.; Hoang, L.T.; Santidrian, A.F.; Felding, B.H.; Ivanisevic, J.; Cho, K.; Wick, E.C.; Hechenbleikner, E.M.; Uritboonthai, W.; Goetz, L.; Casero, R.A., Jr; Pardoll, D.M.; White, J.R.; Patti, G.J.; Sears, C.L.; Siuzdak, G. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab., 2015, 21(6), 891-897.
[http://dx.doi.org/10.1016/j.cmet.2015.04.011] [PMID: 25959674]
[80]
Gerner, E.W.; Meyskens, F.L., Jr Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer, 2004, 4(10), 781-792.
[http://dx.doi.org/10.1038/nrc1454] [PMID: 15510159]
[81]
Shah, P.; Swiatlo, E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol., 2008, 68(1), 4-16.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06126.x] [PMID: 18405343]
[82]
Patel, C.N.; Wortham, B.W.; Lines, J.L.; Fetherston, J.D.; Perry, R.D.; Oliveira, M.A. Polyamines are essential for the formation of plague biofilm. J. Bacteriol., 2006, 188(7), 2355-2363.
[http://dx.doi.org/10.1128/JB.188.7.2355-2363.2006] [PMID: 16547021]
[83]
Collins, D.; Hogan, A.M.; Winter, D.C. Microbial and viral pathogens in colorectal cancer. Lancet Oncol., 2011, 12(5), 504-512.
[84]
Raisch, J.; Buc, E.; Bonnet, M.; Sauvanet, P.; Vazeille, E.; de Vallée, A.; Déchelotte, P.; Darcha, C.; Pezet, D.; Bonnet, R.; Bringer, M.A.; Darfeuille-Michaud, A. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J. Gastroenterol., 2014, 20(21), 6560-6572.
[http://dx.doi.org/10.3748/wjg.v20.i21.6560] [PMID: 24914378]
[85]
Martin, H.M.; Campbell, B.J.; Hart, C.A.; Mpofu, C.; Nayar, M.; Singh, R.; Englyst, H.; Williams, H.F.; Rhodes, J.M. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology, 2004, 127(1), 80-93.
[http://dx.doi.org/10.1053/j.gastro.2004.03.054] [PMID: 15236175]
[86]
Thoma, R.; Häuptle, P.; Degen, L.; Bassetti, S.; Osthoff, M. Escherichia coli bloodstream infection preceding the diagnosis of rectal carcinoma. Oxf. Med. Case Rep., 2018, 2018(11)omy084
[http://dx.doi.org/10.1093/omcr/omy084] [PMID: 30364353]
[87]
Bernier, C.; Gounon, P.; Le Bouguénec, C. Identification of an Aggregative Adhesion Fimbria (AAF) type III-encoding operon in enteroaggregative Escherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect. Immun., 2002, 70(8), 4302-4311.
[http://dx.doi.org/10.1128/IAI.70.8.4302-4311.2002] [PMID: 12117939]
[88]
Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep., 2013, 5(1), 58-65.
[http://dx.doi.org/10.1111/1758-2229.12019] [PMID: 23757131]
[89]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[90]
Fernandes, J.V.; Cobucci, R.N.O.; Jatobá, C.A.N.; Fernandes, T.A.; de Azevedo, J.W.V.; de Araújo, J.M.G. The role of the mediators of inflammation in cancer development. Pathol. Oncol. Res., 2015, 21(3), 527-534.
[http://dx.doi.org/10.1007/s12253-015-9913-z] [PMID: 25740073]
[91]
Edin, S.; Wikberg, M.L.; Dahlin, A.M.; Rutegård, J.; Öberg, Å.; Oldenborg, P.A.; Palmqvist, R. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One, 2012, 7(10)e47045
[http://dx.doi.org/10.1371/journal.pone.0047045] [PMID: 23077543]
[92]
Kabel, A.M. Relationship between cancer and cytokines. J. Cancer Res. Treat., 2014, 2(2), 41-43.
[93]
De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; Monteleone, G.; Stolfi, C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene, 2015, 34(27), 3493-3503.
[http://dx.doi.org/10.1038/onc.2014.286] [PMID: 25174402]
[94]
Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer, 2003, 3(4), 276-285.
[http://dx.doi.org/10.1038/nrc1046] [PMID: 12671666]
[95]
Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis, 2000, 21(3), 361-370.
[96]
Wang, L-S.; Kuo, C-T.; Huang, Y-W.; Stoner, G.D.; Lechner, J.F. Gene-diet interactions on colorectal cancer risk. Curr. Nutr. Rep., 2012, 1(3), 132-141.
[http://dx.doi.org/10.1007/s13668-012-0023-1] [PMID: 24392268]
[97]
Grivennikov, S.I. Inflammation and colorectal cancer: Colitis-associated neoplasia. Semin. Immunopathol., 2013, 35(2), 229-244.
[http://dx.doi.org/10.1007/s00281-012-0352-6] [PMID: 23161445]
[98]
Ullman, T. A.; Itzkowitz, S. H. Intestinal inflammation and cancer. Gastroenterology, 2011, 140(6), 1807-1816.. e1801.
[http://dx.doi.org/10.1053/j.gastro.2011.01.057]
[99]
Darfeuille-Michaud, A.; Boudeau, J.; Bulois, P.; Neut, C.; Glasser, A-L.; Barnich, N.; Bringer, M-A.; Swidsinski, A.; Beaugerie, L.; Colombel, J-F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology, 2004, 127(2), 412-421.
[http://dx.doi.org/10.1053/j.gastro.2004.04.061] [PMID: 15300573]
[100]
Nguyen, H.T.T.; Dalmasso, G.; Müller, S.; Carrière, J.; Seibold, F.; Darfeuille-Michaud, A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology, 2014, 146(2), 508-519.
[http://dx.doi.org/10.1053/j.gastro.2013.10.021] [PMID: 24148619]
[101]
Larabi, A.; Dalmasso, G.; Delmas, J.; Barnich, N.; Nguyen, H.T.T. Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn’s disease-associated adherent-invasive E. coli. Gut Microbes, 2020, 11(6), 1677-1694.
[http://dx.doi.org/10.1080/19490976.2020.1771985] [PMID: 32583714]
[102]
Denizot, J.; Desrichard, A.; Agus, A.; Uhrhammer, N.; Dreux, N.; Vouret-Craviari, V.; Hofman, P.; Darfeuille-Michaud, A.; Barnich, N. Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut, 2015, 64(3), 428-437.
[http://dx.doi.org/10.1136/gutjnl-2014-306944] [PMID: 24898815]
[103]
Barnich, N.; Darfeuille-Michaud, A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent-invasive E. coli. Virulence, 2010, 1(4), 281-282.
[http://dx.doi.org/10.4161/viru.1.4.11510] [PMID: 21178454]
[104]
Bringer, M-A.; Billard, E.; Glasser, A-L.; Colombel, J-F.; Darfeuille-Michaud, A. Replication of Crohn’s disease-associated AIEC within macrophages is dependent on TNF-α secretion. Lab. Invest., 2012, 92(3), 411-419.
[http://dx.doi.org/10.1038/labinvest.2011.156] [PMID: 22042084]
[105]
Small, C-L.N.; Reid-Yu, S.A.; McPhee, J.B.; Coombes, B.K. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat. Commun., 2013, 4(1), 1957.
[http://dx.doi.org/10.1038/ncomms2957] [PMID: 23748852]
[106]
Wang, G.; Mao, W.; Zheng, S. MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett., 2008, 582(25-26), 3663-3668.
[http://dx.doi.org/10.1016/j.febslet.2008.09.051] [PMID: 18840437]
[107]
Singletary, K.; Milner, J. Diet, autophagy, and cancer: A review. Cancer Epidemiol. Biomarkers Prev., 2008, 17(7), 1596-1610.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2917] [PMID: 18628411]
[108]
Badadani, M. Autophagy mechanism, regulation, functions, and disorders. ISRN Cell Biol., 2012.927064
[109]
Li, Z-L.; Zhang, H-L.; Huang, Y.; Huang, J-H.; Sun, P.; Zhou, N-N.; Chen, Y-H.; Mai, J.; Wang, Y.; Yu, Y.; Zhou, L.H.; Li, X.; Yang, D.; Peng, X.D.; Feng, G.K.; Tang, J.; Zhu, X.F.; Deng, R. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun., 2020, 11(1), 3806.
[http://dx.doi.org/10.1038/s41467-020-17395-y] [PMID: 32732922]
[110]
Qureshi-Baig, K.; Kuhn, D.; Viry, E.; Pozdeev, V.I.; Schmitz, M.; Rodriguez, F.; Ullmann, P.; Koncina, E.; Nurmik, M.; Frasquilho, S.; Nazarov, P.V.; Zuegel, N.; Boulmont, M.; Karapetyan, Y.; Antunes, L.; Val, D.; Mittelbronn, M.; Janji, B.; Haan, S.; Letellier, E. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy, 2020, 16(8), 1436-1452.
[http://dx.doi.org/10.1080/15548627.2019.1687213] [PMID: 31775562]
[111]
Maddocks, O.D.K.; Scanlon, K.M.; Donnenberg, M.S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. MBio, 2013, 4(3), e00152-e13.
[http://dx.doi.org/10.1128/mBio.00152-13] [PMID: 23781066]
[112]
Khan, S. Potential role of Escherichia coli DNA mismatch repair proteins in colon cancer. Crit. Rev. Oncol. Hematol., 2015, 96(3), 475-482.
[http://dx.doi.org/10.1016/j.critrevonc.2015.05.002] [PMID: 26014615]
[113]
Magdy, A.; Elhadidy, M.; Abd Ellatif, M.E.; El Nakeeb, A.; Abdallah, E.; Thabet, W.; Youssef, M.; Khafagy, W.; Morshed, M.; Farid, M. Enteropathogenic Escherichia coli (EPEC): Does it have a role in colorectal tumourigenesis? A Prospective Cohort Study. Int. J. Surg., 2015, 18, 169-173.
[http://dx.doi.org/10.1016/j.ijsu.2015.04.077] [PMID: 25937151]
[114]
Maddocks, O.D.; Short, A.J.; Donnenberg, M.S.; Bader, S.; Harrison, D.J. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One, 2009, 4(5)e5517
[http://dx.doi.org/10.1371/journal.pone.0005517] [PMID: 19436735]
[115]
Jascur, T.; Boland, C.R. Structure and function of the components of the human DNA mismatch repair system. Int. J. Cancer, 2006, 119(9), 2030-2035.
[http://dx.doi.org/10.1002/ijc.22023] [PMID: 16804905]
[116]
Choi, H.J.; Kim, J.; Do, K.H.; Park, S.H.; Moon, Y. Enteropathogenic Escherichia coli-induced macrophage inhibi-tory cytokine 1 mediates cancer cell survival: An in vitro implication of infection-linked tumor dissemination. Oncogene, 2013, 32(41), 4960-4969.
[http://dx.doi.org/10.1038/onc.2012.508] [PMID: 23503457]
[117]
Li, P.; Lin, J.E.; Snook, A.E.; Waldman, S.A.P.; Lin, J.E.; Snook, A.E.; Waldman, S.A. ST-producing E. coli oppose carcinogen-induced colorectal tumorigenesis in mice. Toxins (Basel), 2017, 9(9), 279.
[http://dx.doi.org/10.3390/toxins9090279] [PMID: 28895923]
[118]
Lin, J.E.; Li, P.; Snook, A.E.; Schulz, S.; Dasgupta, A.; Hyslop, T.M.; Gibbons, A.V.; Marszlowicz, G.; Pitari, G.M.; Waldman, S.A. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology, 2010, 138(1), 241-254.
[http://dx.doi.org/10.1053/j.gastro.2009.08.064] [PMID: 19737566]
[119]
Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
[120]
Wieczorska, K.; Stolarek, M.; Stec, R. The role of the gut microbiome in colorectal cancer: where are we? where are we going? Clin. Colorectal Cancer, 2020, 19(1), 5-12.
[http://dx.doi.org/10.1016/j.clcc.2019.07.006] [PMID: 31678050]
[121]
Lopès, A.; Billard, E.; Casse, A.H.; Villéger, R.; Veziant, J.; Roche, G.; Carrier, G.; Sauvanet, P.; Briat, A.; Pagès, F.; Naimi, S.; Pezet, D.; Barnich, N.; Dumas, B.; Bonnet, M. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int. J. Cancer, 2020, 146(11), 3147-3159.
[http://dx.doi.org/10.1002/ijc.32920] [PMID: 32037530]
[122]
Veziant, J.; Gagnière, J.; Jouberton, E.; Bonnin, V.; Sauvanet, P.; Pezet, D.; Barnich, N.; Miot-Noirault, E.; Bonnet, M. Association of colorectal cancer with pathogenic Escherichia coli: Focus on mechanisms using optical imaging. World J. Clin. Oncol., 2016, 7(3), 293-301.
[http://dx.doi.org/10.5306/wjco.v7.i3.293] [PMID: 27298769]
[123]
Dai, Z.; Zhang, J.; Wu, Q.; Chen, J.; Liu, J.; Wang, L.; Chen, C.; Xu, J.; Zhang, H.; Shi, C.; Li, Z.; Fang, H.; Lin, C.; Tang, D.; Wang, D. The role of microbiota in the development of colorectal cancer. Int. J. Cancer, 2019, 145(8), 2032-2041.
[http://dx.doi.org/10.1002/ijc.32017] [PMID: 30474116]
[124]
Lemonnier, M.; Landraud, L.; Lemichez, E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol. Rev., 2007, 31(5), 515-534.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00078.x] [PMID: 17680807]
[125]
Messina, V.; Loizzo, S.; Travaglione, S.; Bertuccini, L.; Condello, M.; Superti, F.; Guidotti, M.; Alano, P.; Silvestrini, F.; Fiorentini, C. The bacterial protein CNF1 as a new strategy against Plasmodium falciparum cytoadherence. PLoS One, 2019, 14(3)e0213529
[http://dx.doi.org/10.1371/journal.pone.0213529] [PMID: 30845261]
[126]
Lerm, M.; Pop, M.; Fritz, G.; Aktories, K.; Schmidt, G. Proteasomal degradation of cytotoxic necrotizing factor 1-activated rac. Infect. Immun., 2002, 70(8), 4053-4058.
[http://dx.doi.org/10.1128/IAI.70.8.4053-4058.2002] [PMID: 12117911]
[127]
Samba-Louaka, A.; Nougayrède, J.P.; Watrin, C.; Jubelin, G.; Oswald, E.; Taieb, F. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol., 2008, 10(12), 2496-2508.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01224.x] [PMID: 18705694]
[128]
Haghjoo, E.; Galán, J.E. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4614-4619.
[http://dx.doi.org/10.1073/pnas.0400932101] [PMID: 15070766]
[129]
Ge, Z.; Schauer, D.B.; Fox, J.G. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell. Microbiol., 2008, 10(8), 1599-1607.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01173.x] [PMID: 18489725]
[130]
Taieb, F.; Nougayrède, J.P.; Watrin, C.; Samba-Louaka, A.; Oswald, E. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway. Cell. Microbiol., 2006, 8(12), 1910-1921.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00757.x] [PMID: 16848790]
[131]
Putze, J.; Hennequin, C.; Nougayrède, J-P.; Zhang, W.; Homburg, S.; Karch, H.; Bringer, M-A.; Fayolle, C.; Carniel, E.; Rabsch, W.; Oelschlaeger, T.A.; Oswald, E.; Forestier, C.; Hacker, J.; Dobrindt, U. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect. Immun., 2009, 77(11), 4696-4703.
[http://dx.doi.org/10.1128/IAI.00522-09] [PMID: 19720753]
[132]
Balskus, E.P. Colibactin: understanding an elusive gut bacterial genotoxin. Nat. Prod. Rep., 2015, 32(11), 1534-1540.
[http://dx.doi.org/10.1039/C5NP00091B] [PMID: 26390983]
[133]
Reuter, C.; Alzheimer, M.; Walles, H.; Oelschlaeger, T.A. An adherent mucus layer attenuates the genotoxic effect of colibactin. Cell. Microbiol., 2018, 20(2)e12812
[http://dx.doi.org/10.1111/cmi.12812] [PMID: 29156489]
[134]
Shimpoh, T.; Hirata, Y.; Ihara, S.; Suzuki, N.; Kinoshita, H.; Hayakawa, Y.; Ota, Y.; Narita, A.; Yoshida, S.; Yamada, A.; Koike, K. Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathog., 2017, 9(1), 35.
[http://dx.doi.org/10.1186/s13099-017-0185-x] [PMID: 28616082]
[135]
Park, C.H.; Eun, C.S.; Han, D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res., 2018, 16(3), 338-345.
[http://dx.doi.org/10.5217/ir.2018.16.3.338] [PMID: 30090032]
[136]
Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T-J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; Rhodes, J.M.; Stintzi, A.; Simpson, K.W.; Hansen, J.J.; Keku, T.O.; Fodor, A.A.; Jobin, C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012, 338(6103), 120-123.
[http://dx.doi.org/10.1126/science.1224820] [PMID: 22903521]
[137]
Zeng, H.; Umar, S.; Rust, B.; Lazarova, D.; Bordonaro, M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci., 2019, 20(5), 1214.
[http://dx.doi.org/10.3390/ijms20051214] [PMID: 30862015]
[138]
Iftekhar, A.; Berger, H.; Bouznad, N.; Heuberger, J.; Boccellato, F.; Dobrindt, U.; Hermeking, H.; Sigal, M.; Meyer, T.F. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun., 2021, 12(1), 1003.
[http://dx.doi.org/10.1038/s41467-021-21162-y] [PMID: 33579932]
[139]
Secher, T.; Samba-Louaka, A.; Oswald, E.; Nougayrède, J-P. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One, 2013, 8(10)e77157
[http://dx.doi.org/10.1371/journal.pone.0077157] [PMID: 24116215]
[140]
Cuevas-Ramos, G.; Petit, C.R.; Marcq, I.; Boury, M.; Oswald, E.; Nougayrède, J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11537-11542.
[http://dx.doi.org/10.1073/pnas.1001261107] [PMID: 20534522]
[141]
Dalmasso, G.; Cougnoux, A.; Delmas, J.; Darfeuille-Michaud, A.; Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes, 2014, 5(5), 675-680.
[http://dx.doi.org/10.4161/19490976.2014.969989] [PMID: 25483338]
[142]
Iyadorai, T.; Mariappan, V.; Vellasamy, K.M.; Wanyiri, J.W.; Roslani, A.C.; Lee, G.K.; Sears, C.; Vadivelu, J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS One, 2020, 15(1), , e0228217.
[http://dx.doi.org/10.1371/journal.pone.0228217] [PMID: 31990962]