The Antioxidant Activity of Phenolic Compounds Isolated from the Bark of Ryukyu Pine Trees (Pinus luchuensis Mayr.)

Article ID: e251121196337 Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Considering that many foreign tourists visit Okinawa, Japan, to purchase cosmetic products, there is an urgent need to create cosmetic products native to Okinawa. As the Ryukyu pine tree, which is endemic to Okinawa, has been used as a source of wood, investigating the possible use of its bark is recommended. Using this natural resource from Okinawa would aid in promoting the products of Okinawa’s unique brands. As a result, this study was designed to isolate useful materials for cosmetic production. Therefore, fractionation was conducted based on a few types of chromatographies, after which the extracted product of the Ryukyu pine tree (Pinus luchuensis Mayr.) bark was analyzed, and its polyphenol contents were compared.

Methods: Bark of the Ryukyu pine tree cultivated in the northern mountainous region of the Okinawa Main Island was used for ASE extraction using ultrapure water at 130°C. DIAION HP20 with methanol and two HPLC fractionation types were subsequently used for phenolic compound isolation.

Results: ASE extraction and HP20 and HPLC fractionations resulted in an isolation of several compounds: threo-1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol (compound 1; 0.03% w/w of an ASE extract), erythro-1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol (compound 2; 0.03% w/w of an ASE extract), catechin (0.11% w/w of an ASE extract), and vanillin (0.31% w/w of an ASE extract). In addition, the value of its antioxidant activity determined by the DPPH (2,2- diphenyl-1-picrylhydrazyl) radical-scavenging capacity assay was 3.3 mmol-trolox eq./g, 2.6 mmol-trolox eq./g, 9.7 mmol-trolox eq./g and 0.7 mmol-trolox eq./g for compound 1, compound 2, catechin, and vanillic acid, respectively.

Conclusion: These phenolic compounds possess whitening and anti-aging potentials. Therefore, the Ryukyu pine tree bark would be a useful raw material source for cosmetic production.

Keywords: Ryukyu pine trees (Pinus luchuensis Mayr.), 1, 2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1, 3-diol, catechin, vanillin, DPPH (2, 2-diphenyl-1-picrylhydrazyl) antioxidant activity.

Graphical Abstract

[1]
Fukuchi, K.; Sakagami, H.; Ikeda, M.; Kawazoe, Y.; Oh-Hara, T.; Konno, K.; Ichikawa, S.; Hata, N.; Kondo, H.; Nonoyama, M. Inhibition of herpes simplex virus infection by pine cone antitumor substances. Anticancer Res., 1989, 9(2), 313-317.
[PMID: 2546481]
[2]
Sealy-Fisher, V.J.; Pizzi, A. Increased pine tannins extraction and wood adhesives development by phlobaphenes minimization. Holz als Roh-und Werkstoff., 1992, 50, 212-220.
[http://dx.doi.org/10.1007/BF02663290]
[3]
Ku, C.S.; Jang, J.P.; Mun, S.P. Exploitation of polyphenol-rich pine barks for potent antioxidant activity. J. Wood Sci., 2007, 53, 524-528.
[http://dx.doi.org/10.1007/s10086-007-0896-6]
[4]
Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Biol. Med., 1999, 27(5-6), 704-724.
[http://dx.doi.org/10.1016/S0891-5849(99)00090-8] [PMID: 10490291]
[5]
Monsanto, M.F.M. Separation of polyphenols from aqueous green and black tea; Technische Universiteit Eindhoven, 2015.
[6]
Furuta, S.; Suda, I.; Nishiba, Y.; Yamakawa, O. High tertbutylperoxyl radical scavenging activities of sweet potato cultivars with purple flesh. J. Food. Sci. Technol Int. Tokyo, 1989, 4, 33-35.
[http://dx.doi.org/10.3136/fsti9596t9798.4.33]
[7]
Oki, T.; Matsuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci., 2002, 67, 1752-1756.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb08718.x]
[8]
Kawamura, F.; Kikuchi, Y.; Ohira, T.; Yatagai, M. Accelerated solvent extraction of paclitaxel and related compounds from the bark of taxus cuspidata. J. Nat. Prod., 1999, 62(2), 244-247.
[http://dx.doi.org/10.1021/np980310j] [PMID: 10075751]
[9]
Miki, K.; Takehara, T.; Sasaya, T.; Sakakibara, A. Lignans of Larix leptolepis. Phytochemistry, 1980, 19, 449-453.
[http://dx.doi.org/10.1016/0031-9422(80)83199-2]
[10]
Englis, D.T.; Manchester, M. Oxidation of vanillin to vanillic acid. analy. chem., 1949, 21(21), 591-593.
[11]
Amalinei, R.L.; Trifan, A.; Cioanca, O.; Miron, S.D.; Mihai, C.T.; Rotinberg, P.; Miron, A. Polyphenol-rich extract from Pinus sylvestris L. bark- chemical and antitumor studies. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2014, 118(2), 551-557.
[PMID: 25076730]
[12]
Watanabe, T.; Oki, J.; Takebayashi, K.; Yamasaki, K.; Tsushida, T. Approaches to establish the standardized methods for the determination of antioxidant capacities of foodstuffs. Kagaku To Seibutsu, 2009, 47, 4.
[http://dx.doi.org/10.1271/kagakutoseibutsu.47.237]
[13]
Cheng, K.T.; Hsu, F.L.; Chen, S.H.; Hsieh, P.K.; Huang, H.S.; Lee, C.K.; Lee, M.H. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 757-761.
[http://dx.doi.org/10.1248/cpb.55.757] [PMID: 17473463]
[14]
Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta, 2011, 1810(2), 170-177.
[http://dx.doi.org/10.1016/j.bbagen.2010.11.004] [PMID: 21095222]
[15]
Zhao, D.; Sun, J.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M. X.S. Hehe, L Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: three components in Chinese Baijiu. RSC Advances, 2017, (73)
[16]
Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol., 2010, 19(8), 742-750.
[http://dx.doi.org/10.1111/j.1600-0625.2010.01091.x] [PMID: 20482617]
[17]
Zilius, M.; Ramanauskienė, K.; Briedis, V. Release of propolis phenolic acids from semisolid formulations and their penetration into the human skin in vitro. Evid. Based Complement. Alternat. Med., 2013, 2013, 958717.
[http://dx.doi.org/10.1155/2013/958717] [PMID: 23762175]
[18]
SOD scavenging activity and DPPH scavenging activity. Japan Food Re. Lab. News, 2003, 32
[19]
Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study. Anal. Sci., 2014, 30(7), 717-721.
[http://dx.doi.org/10.2116/analsci.30.717] [PMID: 25007929]
[20]
Masaki, H. Role of antioxidants in the skin: anti-aging effects. J. Dermatol. Sci., 2010, 58(2), 85-90.
[http://dx.doi.org/10.1016/j.jdermsci.2010.03.003] [PMID: 20399614]
[21]
Wada, S.I.; Iida, A.; Tanaka, R. Triterpene constituents from the stem bark of Pinus luchuensis and their DNA topoisomerase II inhibitory effect. Planta Med., 2001, 67(7), 659-664.
[http://dx.doi.org/10.1055/s-2001-17360] [PMID: 11582546]
[22]
Minami, T.; Wada, S.; Tokuda, H.; Tanabe, G.; Muraoka, O.; Tanaka, R. Potential antitumor-promoting diterpenes from the cones of Pinus luchuensis. J. Nat. Prod., 2002, 65(12), 1921-1923.
[http://dx.doi.org/10.1021/np020258y] [PMID: 12502340]