Anticancer Activity of Selenium Nanoparticles In Vitro Studies

Page: [1658 - 1673] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.

Keywords: Selenium nanoparticles, anticancer, prostate, breast, cervical, lung, liver, colorectal.

Graphical Abstract

[1]
Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113.
[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442]
[2]
Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; Sliva, D.; Subbarayan, P.R.; Sarkar, M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Ye, L.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Nowsheen, S.; Pantano, F.; Santini, D. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin. Cancer Biol., 2015, 35(Suppl.), S244-S275.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.008] [PMID: 25865774]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Common Cancer Types - National Cancer Institute. Available from: https://www.cancer.gov/types/common-cancers
[6]
Chen, F.Z.; Zhao, X.K. Prostate cancer: current treatment and prevention strategies. Iran. Red Crescent Med. J., 2013, 15(4), 279-284.
[http://dx.doi.org/10.5812/ircmj.6499] [PMID: 24082997]
[7]
Wu, E.S.; Jeronimo, J.; Feldman, S. Barriers and challenges to treatment alternatives for early-stage cervical cancer in lower-resource settings. J. Glob. Oncol., 2017, 3(5), 572-582.
[http://dx.doi.org/10.1200/JGO.2016.007369] [PMID: 29094097]
[8]
Peralta-Zaragoza, O.; Bermúdez-Morales, V.H.; Pérez-Plasencia, C.; Salazar-León, J.; Gómez-Cerón, C.; Madrid-Marina, V. Targeted treatments for cervical cancer: a review. OncoTargets Ther., 2012, 5, 315-328.
[http://dx.doi.org/10.2147/OTT.S25123] [PMID: 23144564]
[9]
Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y-W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2015, 1856(2), 189-210.
[10]
Liu, C-Y.; Chen, K-F.; Chen, P-J. Treatment of liver cancer. Cold Spring Harb. Perspect. Med., 2015, 5(9), a021535.
[http://dx.doi.org/10.1101/cshperspect.a021535] [PMID: 26187874]
[11]
Cheung, K-L. Treatment strategies and survival outcomes in breast cancer. Cancers (Basel), 2020, 12(3), E735.
[http://dx.doi.org/10.3390/cancers12030735] [PMID: 32244985]
[12]
Adjiri, A. Identifying and targeting the cause of cancer is needed to cure cancer. Oncol. Ther., 2016, 4(1), 17-33.
[http://dx.doi.org/10.1007/s40487-015-0015-6] [PMID: 28261638]
[13]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6, ed16.
[PMID: 24883085]
[14]
Litwin, M.S.; Tan, H-J. The diagnosis and treatment of prostate cancer: A review. JAMA, 2017, 317(24), 2532-2542.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[15]
Lumachi, F.; Brunello, A.; Maruzzo, M.; Basso, U.; Basso, S.M.M. Treatment of estrogen receptor-positive breast cancer. Curr. Med. Chem., 2013, 20(5), 596-604.
[http://dx.doi.org/10.2174/092986713804999303] [PMID: 23278394]
[16]
Sun, Y-S.; Zhao, Z.; Yang, Z-N.; Xu, F.; Lu, H-J.; Zhu, Z-Y.; Shi, W.; Jiang, J.; Yao, P-P.; Zhu, H-P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[17]
Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800.
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[18]
Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 2020, 9(7), E1651.
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[19]
Kim, E.S. Chemotherapy resistance in lung cancer. Adv. Exp. Med. Biol., 2016, 893, 189-209.
[http://dx.doi.org/10.1007/978-3-319-24223-1_10] [PMID: 26667345]
[20]
Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X.; Zhu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Devel. Ther., 2016, 10, 1885-1895.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[21]
Carceles-Cordon, M.; Kelly, W.K.; Gomella, L.; Knudsen, K.E.; Rodriguez-Bravo, V.; Domingo-Domenech, J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat. Rev. Urol., 2020, 17(5), 292-307.
[http://dx.doi.org/10.1038/s41585-020-0298-8] [PMID: 32203305]
[22]
Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; De Toni, E.N.; Wang, X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther., 2020, 5(1), 87.
[http://dx.doi.org/10.1038/s41392-020-0187-x] [PMID: 32532960]
[23]
Barabadi, H.; Hosseini, O.; Damavandi Kamali, K.; Jazayeri Shoushtari, F.; Rashedi, M.; Haghi-Aminjan, H.; Saravanan, M. Emerging theranostic silver nanomaterials to combat lung cancer: A systematic review. J. Cluster Sci., 2020, 31(1), 1-10.
[http://dx.doi.org/10.1007/s10876-019-01639-z]
[24]
Kurokawa, S.; Berry, M.J. Selenium. Role of the essential metalloid in health. Met. Ions Life Sci., 2013, 13, 499-534.
[http://dx.doi.org/10.1007/978-94-007-7500-8_16] [PMID: 24470102]
[25]
Kang, D.; Lee, J.; Wu, C.; Guo, X.; Lee, B.J.; Chun, J-S.; Kim, J-H. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp. Mol. Med., 2020, 52(8), 1198-1208.
[http://dx.doi.org/10.1038/s12276-020-0408-y] [PMID: 32788658]
[26]
Guan, B.; Yan, R.; Li, R.; Zhang, X. Selenium as a pleiotropic agent for medical discovery and drug delivery. Int. J. Nanomedicine, 2018, 13, 7473-7490.
[http://dx.doi.org/10.2147/IJN.S181343] [PMID: 30532534]
[27]
Sakr, T.M.; Korany, M.; Katti, K.V. Selenium nanomaterials in biomedicine-an overview of new opportunities in nanomedicine of selenium. J. Drug Deliv. Sci. Technol., 2018, 46, 223-233.
[http://dx.doi.org/10.1016/j.jddst.2018.05.023]
[28]
Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev., 2014, 94(3), 739-777.
[http://dx.doi.org/10.1152/physrev.00039.2013] [PMID: 24987004]
[29]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[30]
Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6(1), 25-54.
[http://dx.doi.org/10.1039/C3MT00185G] [PMID: 24185753]
[31]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[32]
Bayford, R.; Rademacher, T.; Roitt, I.; Wang, S.X. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiol. Meas., 2017, 38(8), R183-R203.
[http://dx.doi.org/10.1088/1361-6579/aa7182] [PMID: 28480874]
[33]
Haider, N.; Fatima, S.; Taha, M.; Rizwanullah, M.; Firdous, J.; Ahmad, R.; Mazhar, F.; Khan, M.A. Nanomedicines in diagnosis and treatment of cancer: An update. Curr. Pharm. Des., 2020, 26(11), 1216-1231.
[http://dx.doi.org/10.2174/1381612826666200318170716] [PMID: 32188379]
[34]
Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25(9), 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[35]
Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr. Drug Targets, 2018, 19(14), 1696-1709.
[http://dx.doi.org/10.2174/1389450119666180326122831] [PMID: 29577855]
[36]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[37]
Lee, W-H.; Loo, C-Y.; Leong, C-R.; Young, P.M.; Traini, D.; Rohanizadeh, R. The achievement of ligand-functionalized organic/polymeric nanoparticles for treating multidrug resistant cancer. Expert Opin. Drug Deliv., 2017, 14(8), 937-957.
[http://dx.doi.org/10.1080/17425247.2017.1247804] [PMID: 27759437]
[38]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[39]
Zhang, D.; Ma, X.L.; Gu, Y.; Huang, H.; Zhang, G.W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[40]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111, 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[41]
Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z-U-R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedicine, 2021, 16, 249-268.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[42]
Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021.
[http://dx.doi.org/10.2174/1389557521666210203154024] [PMID: 33535949]
[43]
Zhang, J.S.; Gao, X.Y.; Zhang, L.D.; Bao, Y.P. Biological effects of a nano red elemental selenium. Biofactors, 2001, 15(1), 27-38.
[http://dx.doi.org/10.1002/biof.5520150103] [PMID: 11673642]
[44]
Wang, H.; Zhang, J.; Yu, H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic. Biol. Med., 2007, 42(10), 1524-1533.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.013] [PMID: 17448899]
[45]
Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; Bjørklund, G.; Sochor, J.; Kizek, R. Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomedicine, 2018, 13, 2107-2128.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[46]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: principles, properties, and regulatory issues. Front Chem., 2018, 6, 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[47]
Merriel, S.W.D.; Funston, G.; Hamilton, W. Prostate cancer in primary care. Adv. Ther., 2018, 35(9), 1285-1294.
[http://dx.doi.org/10.1007/s12325-018-0766-1] [PMID: 30097885]
[48]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[49]
Leitzmann, M.F.; Rohrmann, S. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin. Epidemiol., 2012, 4, 1-11.
[http://dx.doi.org/10.2147/CLEP.S16747] [PMID: 22291478]
[50]
Namekawa, T.; Ikeda, K.; Horie-Inoue, K.; Inoue, S. Application of prostate cancer models for preclinical study: Advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells, 2019, 8(1), E74.
[http://dx.doi.org/10.3390/cells8010074] [PMID: 30669516]
[51]
Horoszewicz, J.S.; Leong, S.S.; Chu, T.M.; Wajsman, Z.L.; Friedman, M.; Papsidero, L.; Kim, U.; Chai, L.S.; Kakati, S.; Arya, S.K.; Sandberg, A.A. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res., 1980, 37, 115-132.
[PMID: 7384082]
[52]
Tai, S.; Sun, Y.; Squires, J.M.; Zhang, H.; Oh, W.K.; Liang, C-Z.; Huang, J. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate, 2011, 71(15), 1668-1679.
[http://dx.doi.org/10.1002/pros.21383] [PMID: 21432867]
[53]
Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol., 1979, 17(1), 16-23.
[PMID: 447482]
[54]
Kong, L.; Yuan, Q.; Zhu, H.; Li, Y.; Guo, Q.; Wang, Q.; Bi, X.; Gao, X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials, 2011, 32(27), 6515-6522.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.032] [PMID: 21640377]
[55]
Sonkusre, P. Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J. Nanomed. Nanotechnol., 2014, 05(02)
[http://dx.doi.org/10.4172/2157-7439.1000194]
[56]
Sonkusre, P.; Cameotra, S.S. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J. Nanobiotechnology, 2017, 15(1), 43.
[http://dx.doi.org/10.1186/s12951-017-0276-3] [PMID: 28592284]
[57]
Sonkusre, P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: An in vitro and in vivo Study. Front. Oncol., 2020, 9, 1541.
[http://dx.doi.org/10.3389/fonc.2019.01541] [PMID: 32010628]
[58]
Liao, G.; Tang, J.; Wang, D.; Zuo, H.; Zhang, Q.; Liu, Y.; Xiong, H. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J. Surg. Oncol., 2020, 18(1), 81.
[http://dx.doi.org/10.1186/s12957-020-01850-7] [PMID: 32357938]
[59]
Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer, 2017, 8(16), 3131-3141.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[60]
Soule, H.D.; Vazguez, J.; Long, A.; Albert, S.; Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst., 1973, 51(5), 1409-1416.
[http://dx.doi.org/10.1093/jnci/51.5.1409] [PMID: 4357757]
[61]
Levenson, A.S.; Jordan, V.C. MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res., 1997, 57(15), 3071-3078.
[PMID: 9242427]
[62]
Gest, C.; Joimel, U.; Huang, L.; Pritchard, L-L.; Petit, A.; Dulong, C.; Buquet, C.; Hu, C-Q.; Mirshahi, P.; Laurent, M.; Fauvel-Lafève, F.; Cazin, L.; Vannier, J.P.; Lu, H.; Soria, J.; Li, H.; Varin, R.; Soria, C. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer, 2013, 13, 63.
[http://dx.doi.org/10.1186/1471-2407-13-63] [PMID: 23388133]
[63]
Pulaski, B.A.; Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. In: Curr Protoc Immunol; , 2001.
[64]
Vekariya, K.K.; Kaur, J.; Tikoo, K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine (Lond.), 2012, 8(7), 1125-1132.
[http://dx.doi.org/10.1016/j.nano.2011.12.003] [PMID: 22197727]
[65]
Ramamurthy, Ch.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng., 2013, 36(8), 1131-1139.
[http://dx.doi.org/10.1007/s00449-012-0867-1] [PMID: 23446776]
[66]
Pi, J.; Jin, H.; Liu, R.; Song, B.; Wu, Q.; Liu, L.; Jiang, J.; Yang, F.; Cai, H.; Cai, J. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl. Microbiol. Biotechnol., 2013, 97(3), 1051-1062.
[http://dx.doi.org/10.1007/s00253-012-4359-7] [PMID: 22945264]
[67]
Wadhwani, S.A.; Gorain, M.; Banerjee, P.; Shedbalkar, U.U.; Singh, R.; Kundu, G.C.; Chopade, B.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int. J. Nanomedicine, 2017, 12, 6841-6855.
[http://dx.doi.org/10.2147/IJN.S139212] [PMID: 28979122]
[68]
Shahverdi, A.R.; Shahverdi, F.; Faghfuri, E.; Reza Khoshayand, M.; Mavandadnejad, F.; Yazdi, M.H.; Amini, M. Characterization of folic acid surface-coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer. Arch. Med. Res., 2018, 49(1), 10-17.
[http://dx.doi.org/10.1016/j.arcmed.2018.04.007] [PMID: 29699810]
[69]
Chen, F.; Zhang, X.H.; Hu, X.D.; Liu, P.D.; Zhang, H.Q. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 937-948.
[http://dx.doi.org/10.1080/21691401.2017.1347941] [PMID: 28685585]
[70]
Rajasekar, S.; Kuppusamy, S. Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. J. Cluster Sci., 2020, 31(3)
[http://dx.doi.org/10.1007/s10876-020-01856-x]
[71]
Luo, H.; Wang, F.; Bai, Y.; Chen, T.; Zheng, W. Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf. B Biointerfaces, 2012, 94, 304-308.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.006] [PMID: 22377217]
[72]
Gao, X.; Li, X.; Mu, J.; Ho, C-T.; Su, J.; Zhang, Y.; Lin, X.; Chen, Z.; Li, B.; Xie, Y. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Int. J. Biol. Macromol., 2020, 152, 605-615.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.199] [PMID: 32087224]
[74]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[75]
Mittelman, D.; Wilson, J.H. The fractured genome of HeLa cells. Genome Biol., 2013, 14(4), 111.
[http://dx.doi.org/10.1186/gb-2013-14-4-111] [PMID: 23594443]
[76]
Srivastava, P.; Kowshik, M. Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb. Technol., 2016, 95, 192-200.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.002] [PMID: 27866615]
[77]
Zhou, Y.; Xu, M.; Liu, Y.; Bai, Y.; Deng, Y.; Liu, J.; Chen, L. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells. Colloids Surf. B Biointerfaces, 2016, 144, 118-124.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.004] [PMID: 27085043]
[78]
Xia, Y.; Xu, T.; Zhao, M.; Hua, L.; Chen, Y.; Wang, C.; Tang, Y.; Zhu, B. Delivery of doxorubicin for human cervical carcinoma targeting therapy by folic acid-modified selenium nanoparticles. Int. J. Mol. Sci., 2018, 19(11), E3582.
[http://dx.doi.org/10.3390/ijms19113582] [PMID: 30428576]
[79]
Xia, Y.; Tang, G.; Wang, C.; Zhong, J.; Chen, Y.; Hua, L.; Li, Y.; Liu, H.; Zhu, B. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv., 2020, 27(1), 15-25.
[http://dx.doi.org/10.1080/10717544.2019.1667452] [PMID: 31830840]
[80]
Pi, L.; Zhu, G.; She, L.; Wei, M.; Liu, G.; Chen, C.; Hu, D.; Peng, F.; Tan, H.; Liu, Y.; Huang, D.; Tian, Y.; Zhang, X. Elevated expression of Derlin-1 associates with unfavorable survival time of squamous cell carcinoma of the head and neck and promotes its malignance. J. Cancer, 2017, 8(12), 2336-2345.
[http://dx.doi.org/10.7150/jca.19411] [PMID: 28819438]
[81]
Li, L.; Liu, M.; Zhang, Z.; Zhang, W.; Liu, N.; Sheng, X.; Wei, P. Derlin1 functions as an oncogene in cervical cancer via AKT/mTOR signaling pathway. Biol. Res., 2019, 52(1), 8.
[http://dx.doi.org/10.1186/s40659-019-0215-x] [PMID: 30808417]
[82]
Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C, 2020, 106, 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[83]
Rajkumar, K.; Mvs, S.; Koganti, S.; Burgula, S. Selenium Nanoparticles Synthesized Using Pseudomonas stutzeri (MH191156) Show Antiproliferative and Anti-angiogenic Activity Against Cervical Cancer Cells. Int. J. Nanomedicine, 2020, 15, 4523-4540.
[http://dx.doi.org/10.2147/IJN.S247426] [PMID: 32606692]
[84]
de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res., 2018, 7(3), 220-233.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[85]
Foster, K.A.; Oster, C.G.; Mayer, M.M.; Avery, M.L.; Audus, K.L. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res., 1998, 243(2), 359-366.
[http://dx.doi.org/10.1006/excr.1998.4172] [PMID: 9743595]
[86]
Poofery, J.; Khaw-On, P.; Subhawa, S.; Sripanidkulchai, B.; Tantraworasin, A.; Saeteng, S.; Siwachat, S.; Lertprasertsuke, N.; Banjerdpongchai, R. Potential of thai herbal extracts on lung cancer treatment by inducing apoptosis and synergizing chemotherapy. Molecules, 2020, 25(1), 231.
[http://dx.doi.org/10.3390/molecules25010231] [PMID: 31935933]
[87]
Wu, H.; Zhu, H.; Li, X.; Liu, Z.; Zheng, W.; Chen, T.; Yu, B.; Wong, K-H. Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: an effect enhanced by polysaccharide-protein complexes from Polyporus rhinocerus. J. Agric. Food Chem., 2013, 61(41), 9859-9866.
[http://dx.doi.org/10.1021/jf403564s] [PMID: 24053442]
[88]
Mary, T.A.; Shanthi, K.; Vimala, K.; Soundarapandian, K. PEG Functionalized Selenium Nanoparticles as a Carrier of Crocin to Achieve Anticancer Synergism. RSC Advances, 2016, 6(27), 22936-22949.
[http://dx.doi.org/10.1039/C5RA25109E]
[89]
Zhang, H.; Sun, Q.; Tong, L.; Hao, Y.; Yu, T. Synergistic combination of PEGylated selenium nanoparticles and X-ray-induced radiotherapy for enhanced anticancer effect in human lung carcinoma. Biomed. Pharmacother., 2018, 107, 1135-1141.
[http://dx.doi.org/10.1016/j.biopha.2018.08.074] [PMID: 30257326]
[90]
Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3456-3464.
[http://dx.doi.org/10.1080/21691401.2019.1626863] [PMID: 31469318]
[91]
Cruz, L.Y.; Wang, D.; Liu, J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J. Photochem. Photobiol. B, 2019, 191, 123-127.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.008] [PMID: 30616036]
[92]
Dasgupta, P.; Henshaw, C.; Youlden, D.R.; Clark, P.J.; Aitken, J.F.; Baade, P.D. Global trends in incidence rates of primary adult liver cancers: A systematic review and meta-analysis. Front. Oncol., 2020, 10, 171.
[http://dx.doi.org/10.3389/fonc.2020.00171] [PMID: 32185125]
[94]
Donato, M.T.; Tolosa, L.; Gómez-Lechón, M.J. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol. Biol., 2015, 1250, 77-93.
[http://dx.doi.org/10.1007/978-1-4939-2074-7_5] [PMID: 26272135]
[95]
Li, G.; Chen, X.; Wang, Q.; Xu, Z.; Zhang, W.; Ye, L. The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2007, 27(2), 173-175.
[http://dx.doi.org/10.1007/s11596-007-0217-8] [PMID: 17497289]
[96]
Zhao, R.; Wang, T-Z.; Kong, D.; Zhang, L.; Meng, H-X.; Jiang, Y.; Wu, Y-Q.; Yu, Z-X.; Jin, X-M. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J. Gastroenterol., 2011, 17(9), 1152-1159.
[http://dx.doi.org/10.3748/wjg.v17.i9.1152] [PMID: 21448419]
[97]
Liu, T.; Zeng, L.; Jiang, W.; Fu, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine (Lond.), 2015, 11(4), 947-958.
[http://dx.doi.org/10.1016/j.nano.2015.01.009] [PMID: 25680543]
[98]
Xia, Y.; You, P.; Xu, F.; Liu, J.; Xing, F. Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity In vitro. Nanoscale Res. Lett., 2015, 10(1), 1051.
[http://dx.doi.org/10.1186/s11671-015-1051-8] [PMID: 26334544]
[99]
Fang, X.; Wu, X.; Li, C.; Zhou, B.; Chen, X.; Chen, T.; Yang, F. Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer. RSC Advances, 2017, 7(14), 8178-8185.
[http://dx.doi.org/10.1039/C6RA28229F]
[100]
Cui, D.; Liang, T.; Sun, L.; Meng, L.; Yang, C.; Wang, L.; Liang, T.; Li, Q. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol., 2018, 56(1), 528-534.
[http://dx.doi.org/10.1080/13880209.2018.1510974] [PMID: 30387372]
[101]
Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R. Soc. Open Sci., 2018, 5(11), 180509.
[http://dx.doi.org/10.1098/rsos.180509] [PMID: 30564384]
[102]
Zhu, G.; Shi, W.; Fan, H.; Zhang, X.; Xu, J.; Chen, Y.; Xu, Z.; Tao, T.; Cheng, C. HES5 promotes cell proliferation and invasion through activation of STAT3 and predicts poor survival in hepatocellular carcinoma. Exp. Mol. Pathol., 2015, 99(3), 474-484.
[http://dx.doi.org/10.1016/j.yexmp.2015.09.002] [PMID: 26342546]
[103]
Xia, Y.; Zhao, M.; Chen, Y.; Hua, L.; Xu, T.; Wang, C.; Li, Y.; Zhu, B. Folate-targeted selenium nanoparticles deliver therapeutic SiRNA to improve hepatocellular carcinoma therapy. RSC Advances, 2018, 8(46), 25932-25940.
[http://dx.doi.org/10.1039/C8RA04204G]
[104]
Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[105]
Cui, D.; Ma, J.; Liang, T.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int. J. Biol. Macromol., 2019, 137, 829-835.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.031] [PMID: 31284007]
[106]
Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E-D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K-H.; Kornmann, M. Are colon and rectal cancer two different tumor entities? A proposal to abandon the term colorectal cancer. Int. J. Mol. Sci., 2018, 19(9), 2577.
[http://dx.doi.org/10.3390/ijms19092577] [PMID: 30200215]
[107]
Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2013, 2(9), e71.
[http://dx.doi.org/10.1038/oncsis.2013.35] [PMID: 24042735]
[108]
Zhang, J.; Teng, Z.; Yuan, Y.; Zeng, Q.-Z.; Lou, Z.; Lee, S.-H.; Wang, Q. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by betalactoglobulin. Int J Biol Macromol,, 2018, 107(Pt B), 1406-1413.
[109]
Huang, G.; Liu, Z.; He, L.; Luk, K-H.; Cheung, S-T.; Wong, K-H.; Chen, T. Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomater. Sci., 2018, 6(9), 2508-2517.
[http://dx.doi.org/10.1039/C8BM00670A] [PMID: 30091749]
[110]
Ranjitha, V.R.; Muddegowda, U.; Ravishankar Rai, V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev. Ind. Pharm., 2019, 45(9), 1496-1505.
[http://dx.doi.org/10.1080/03639045.2019.1634090] [PMID: 31241372]
[111]
El-Batal, A.I.; Mosallam, F.M.; Ghorab, M.M.; Hanora, A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; Pal, K.; Fathy, R.M.; Abd Elkodous, M.; El-Sayyad, G.S. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol., 2020, 156, 1584-1599.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.210] [PMID: 31790741]
[112]
Xia, Y.; Tang, G.; Guo, M.; Xu, T.; Chen, H.; Lin, Z.; Li, Y.; Chen, Y.; Zhu, B.; Liu, H.; Cao, J. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. Mater. Sci. Eng. C, 2020, 110, 110594.
[http://dx.doi.org/10.1016/j.msec.2019.110594] [PMID: 32204058]
[113]
Anchordoquy, T.J.; Barenholz, Y.; Boraschi, D.; Chorny, M.; Decuzzi, P.; Dobrovolskaia, M.A.; Farhangrazi, Z.S.; Farrell, D.; Gabizon, A.; Ghandehari, H.; Godin, B.; La-Beck, N.M.; Ljubimova, J.; Moghimi, S.M.; Pagliaro, L.; Park, J.H.; Peer, D.; Ruoslahti, E.; Serkova, N.J.; Simberg, D. Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions. ACS Nano, 2017, 11(1), 12-18.
[http://dx.doi.org/10.1021/acsnano.6b08244] [PMID: 28068099]
[114]
Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington), 2018, 21(6), 673-685.
[http://dx.doi.org/10.1016/j.mattod.2017.11.022] [PMID: 30197553]
[115]
Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem. 2020, 8, 341
[http://dx.doi.org/10.3389/fchem.2020.00341] [PMID: 32509720]