Changes in Histaminergic System in Neuropsychiatric Disorders and the Potential Treatment Consequences

Page: [403 - 411] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

In contrast to that of other monoamine neurotransmitters, the association of the histaminergic system with neuropsychiatric disorders is not well documented. In the last two decades, several clinical studies involved in the development of drugs targeting the histaminergic system have been reported. These include the H3R-antagonist/inverse agonist, pitolisant, used for the treatment of excessive sleepiness in narcolepsy, and the H1R antagonist, doxepin, used to alleviate symptoms of insomnia. The current review summarizes reports from animal models, including genetic and neuroimaging studies, as well as human brain samples and cerebrospinal fluid measurements from clinical trials, on the possible role of the histaminergic system in neuropsychiatric disorders. These studies will potentially pave the way for novel histamine-related therapeutic strategies.

Keywords: Histamine, histidine decarboxylase, histamine receptors, histamine N-methyltransferase, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, depression, schizophrenia and intellectual disability.

Graphical Abstract

[1]
Hirsch, E.C.; Graybiel, A.M.; Agid, Y. Selective vulnerability of pigmented dopaminergic neurons in Parkinson’s disease. Acta Neurol. Scand. Suppl., 1989, 126, 19-22.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb01778.x] [PMID: 2575832]
[2]
Damier, P.; Hirsch, E.C.; Agid, Y. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 1999, 122(Pt 8), 1437-1448.
[http://dx.doi.org/10.1093/brain/122.8.1437] [PMID: 10430830]
[3]
Damier, P.; Hirsch, E.C.; Agid, Y. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain, 1999, 122(Pt 8), 1421-1436.
[http://dx.doi.org/10.1093/brain/122.8.1421] [PMID: 10430829]
[4]
Caspi, A.; Sugden, K.; Moffitt, T.E. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (80-) 2003, 301, 386-389.
[5]
Dauvilliers, Y.; Bassetti, C.; Lammers, G.J.; Arnulf, I.; Mayer, G.; Rodenbeck, A.; Lehert, P.; Ding, C.L.; Lecomte, J.M.; Schwartz, J.C. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol., 2013, 12(11), 1068-1075.
[http://dx.doi.org/10.1016/S1474-4422(13)70225-4] [PMID: 24107292]
[6]
Kollb-Sielecka, M.; Demolis, P.; Emmerich, J.; Markey, G.; Salmonson, T.; Haas, M. The European Medicines Agency review of pitolisant for treatment of narcolepsy: summary of the scientific assessment by the Committee for Medicinal Products for Human Use. Sleep Med., 2017, 33, 125-129.
[http://dx.doi.org/10.1016/j.sleep.2017.01.002] [PMID: 28449891]
[7]
Panula, P.; Yang, H.Y.T.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576.
[http://dx.doi.org/10.1073/pnas.81.8.2572] [PMID: 6371818]
[8]
Watanabe, T.; Taguchi, Y.; Hayashi, H.; Tanaka, J.; Shiosaka, S.; Tohyama, M.; Kubota, H.; Terano, Y.; Wada, H. Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci. Lett., 1983, 39(3), 249-254.
[http://dx.doi.org/10.1016/0304-3940(83)90308-7] [PMID: 6355911]
[9]
Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241.
[http://dx.doi.org/10.1152/physrev.00043.2007] [PMID: 18626069]
[10]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International union of basic and clinical pharmacology. XCVIII histamine receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[11]
Panula, P.; Nuutinen, S. The histaminergic network in the brain: basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[12]
Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. i. demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964(Suppl. 232), 1-55.
[PMID: 14229500]
[13]
Airaksinen, M.S.; Paetau, A.; Paljärvi, L.; Reinikainen, K.; Riekkinen, P.; Suomalainen, R.; Panula, P. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience, 1991, 44(2), 465-481.
[http://dx.doi.org/10.1016/0306-4522(91)90070-5] [PMID: 1719449]
[14]
Shan, L.; Hofman, M.A.; van Wamelen, D.J.; Van Someren, E.J.; Bao, A.M.; Swaab Dick, F. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep , 2012, 35(5), 713-715.
[http://dx.doi.org/10.5665/sleep.1838] [PMID: 22547898]
[15]
Yu, X.; Zecharia, A.; Zhang, Z.; Yang, Q.; Yustos, R.; Jager, P.; Vyssotski, A.L.; Maywood, E.S.; Chesham, J.E.; Ma, Y.; Brickley, S.G.; Hastings, M.H.; Franks, N.P.; Wisden, W. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr. Biol., 2014, 24(23), 2838-2844.
[http://dx.doi.org/10.1016/j.cub.2014.10.019] [PMID: 25454592]
[16]
McGregor, R.; Shan, L.; Wu, M.F.; Siegel, J.M. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One, 2017, 12(6)e0178573
[http://dx.doi.org/10.1371/journal.pone.0178573] [PMID: 28570646]
[17]
Shan, L.; Fronczek, R.; Lammers, G.J.; Swaab, D.F. The tuberomamillary nucleus in neuropsychiatric disorders. Handb. Clin. Neurol., 2021, 180, 389-400.
[http://dx.doi.org/10.1016/B978-0-12-820107-7.00024-0] [PMID: 34225943]
[18]
Lin, J.S. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med. Rev., 2000, 4(5), 471-503.
[http://dx.doi.org/10.1053/smrv.2000.0116] [PMID: 17210278]
[19]
Abe, H.; Honma, S.; Ohtsu, H.; Honma, K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res., 2004, 124(2), 178-187.
[http://dx.doi.org/10.1016/j.molbrainres.2004.02.015] [PMID: 15135226]
[20]
Morin, F.; Singh, N.; Mdzomba, J.B.; Dumas, A.; Pernet, V.; Vallières, L. Conditional deletions of Hdc confirm roles of histamine in anaphylaxis and circadian activity but not in autoimmune encephalomyelitis. J. Immunol., 2021, 206(9), 2029-2037.
[http://dx.doi.org/10.4049/jimmunol.2000719] [PMID: 33846226]
[21]
Del Tredici, K.; Rüb, U.; De Vos, R.A.; Bohl, J.R.; Braak, H. Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol., 2002, 61(5), 413-426.
[http://dx.doi.org/10.1093/jnen/61.5.413] [PMID: 12030260]
[22]
Shan, L.; Liu, C.Q.; Balesar, R.; Hofman, M.A.; Bao, A.M.; Swaab, D.F. Neuronal histamine production remains unaltered in Parkinson’s disease despite the accumulation of Lewy bodies and Lewy neurites in the tuberomamillary nucleus. Neurobiol. Aging, 2012, 33(7), 1343-1344.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.01.004] [PMID: 21371786]
[23]
Nakamura, S.; Ohnishi, K.; Nishimura, M.; Suenaga, T.; Akiguchi, I.; Kimura, J.; Kimura, T. Large neurons in the tuberomammillary nucleus in patients with Parkinson’s disease and multiple system atrophy. Neurology, 1996, 46(6), 1693-1696.
[http://dx.doi.org/10.1212/WNL.46.6.1693] [PMID: 8649572]
[24]
Garbarg, M.; Javoy-Agid, F.; Schwartz, J.C.; Agid, Y. Brain histidine decarboxylase activity in Parkinson’s disease. Lancet,, 1983, 1(8314), 74-75.
[http://dx.doi.org/10.1016/S0140-6736(83)91613-6] [PMID: 6129410]
[25]
Prell, G.D.; Khandelwal, J.K.; Burns, R.S.; Blandina, P.; Morrishow, A.M.; Green, J.P. Levels of pros-methylimidazoleacetic acid: correlation with severity of Parkinson’s disease in CSF of patients and with the depletion of striatal dopamine and its metabolites in MPTP-treated mice. J. Neural Transm. Park. Dis. Dement. Sect., 1991, 3(2), 109-125.
[http://dx.doi.org/10.1007/BF02260886] [PMID: 1910485]
[26]
Shan, L.; Swaab, D.F.; Bao, A.M. Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp. Gerontol., 2013, 48(7), 603-607.
[http://dx.doi.org/10.1016/j.exger.2012.08.002] [PMID: 22910064]
[27]
Peyron, C.; Faraco, J.; Rogers, W.; Ripley, B.; Overeem, S.; Charnay, Y.; Nevsimalova, S.; Aldrich, M.; Reynolds, D.; Albin, R.; Li, R.; Hungs, M.; Pedrazzoli, M.; Padigaru, M.; Kucherlapati, M.; Fan, J.; Maki, R.; Lammers, G.J.; Bouras, C.; Kucherlapati, R.; Nishino, S.; Mignot, E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med., 2000, 6(9), 991-997.
[http://dx.doi.org/10.1038/79690] [PMID: 10973318]
[28]
Thannickal, T.C.; Moore, R.Y.; Nienhuis, R.; Ramanathan, L.; Gulyani, S.; Aldrich, M.; Cornford, M.; Siegel, J.M. Reduced number of hypocretin neurons in human narcolepsy. Neuron, 2000, 27(3), 469-474.
[http://dx.doi.org/10.1016/S0896-6273(00)00058-1] [PMID: 11055430]
[29]
Bassetti, C.L.A.; Adamantidis, A.; Burdakov, D.; Han, F.; Gay, S.; Kallweit, U.; Khatami, R.; Koning, F.; Kornum, B.R.; Lammers, G.J.; Liblau, R.S.; Luppi, P.H.; Mayer, G.; Pollmächer, T.; Sakurai, T.; Sallusto, F.; Scammell, T.E.; Tafti, M.; Dauvilliers, Y. Narcolepsy - clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat. Rev. Neurol., 2019, 15(9), 519-539.
[http://dx.doi.org/10.1038/s41582-019-0226-9] [PMID: 31324898]
[30]
Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; Fitch, T.E.; Nakazato, M.; Hammer, R.E.; Saper, C.B.; Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 1999, 98(4), 437-451.
[http://dx.doi.org/10.1016/S0092-8674(00)81973-X] [PMID: 10481909]
[31]
Hara, J.; Beuckmann, C.T.; Nambu, T.; Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Sugiyama, F.; Yagami, K.; Goto, K.; Yanagisawa, M.; Sakurai, T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron, 2001, 30(2), 345-354.
[http://dx.doi.org/10.1016/S0896-6273(01)00293-8] [PMID: 11394998]
[32]
Tabuchi, S.; Tsunematsu, T.; Black, S.W.; Tominaga, M.; Maruyama, M.; Takagi, K.; Minokoshi, Y.; Sakurai, T.; Kilduff, T.S.; Yamanaka, A. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci., 2014, 34(19), 6495-6509.
[http://dx.doi.org/10.1523/JNEUROSCI.0073-14.2014] [PMID: 24806676]
[33]
John, J.; Thannickal, T.C.; McGregor, R.; Ramanathan, L.; Ohtsu, H.; Nishino, S.; Sakai, N.; Yamanaka, A.; Stone, C.; Cornford, M.; Siegel, J.M. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol., 2013, 74(6), 786-793.
[http://dx.doi.org/10.1002/ana.23968] [PMID: 23821583]
[34]
Valko, P.O.; Gavrilov, Y.V.; Yamamoto, M.; Reddy, H.; Haybaeck, J.; Mignot, E.; Baumann, C.R.; Scammell, T.E. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol., 2013, 74(6), 794-804.
[http://dx.doi.org/10.1002/ana.24019] [PMID: 24006291]
[35]
Nishino, S.; Sakurai, E.; Nevsimalova, S.; Yoshida, Y.; Watanabe, T.; Yanai, K.; Mignot, E. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep, 2009, 32(2), 175-180.
[http://dx.doi.org/10.1093/sleep/32.2.175] [PMID: 19238804]
[36]
Bassetti, C.L.; Baumann, C.R.; Dauvilliers, Y.; Croyal, M.; Robert, P.; Schwartz, J.C. Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J. Sleep Res., 2010, 19(4), 620-623.
[http://dx.doi.org/10.1111/j.1365-2869.2010.00819.x] [PMID: 20846244]
[37]
Dauvilliers, Y.; Delallée, N.; Jaussent, I.; Scholz, S.; Bayard, S.; Croyal, M.; Schwartz, J.C.; Robert, P. Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep , 2012, 35(10), 1359-1366.
[http://dx.doi.org/10.5665/sleep.2114] [PMID: 23024434]
[38]
Fronczek, R.; Overeem, S.; Lee, S.Y.; Hegeman, I.M.; van Pelt, J.; van Duinen, S.G.; Lammers, G.J.; Swaab, D.F. Hypocretin (orexin) loss and sleep disturbances in Parkinson’s Disease. Brain, 2008, 131(Pt 1)e88
[PMID: 17898003]
[39]
Thannickal, T.C.; Lai, Y.Y.; Siegel, J.M. Hypocretin (orexin) and melanin concentrating hormone loss and the symptoms of Parkinson’s disease. Brain, 2008, 131(Pt 1)e87
[PMID: 17898004]
[40]
Shan, L.; Bossers, K.; Unmehopa, U.; Bao, A.M.; Swaab, D.F. Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol. Aging, 2012, 33(11), 2585-2598.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.026] [PMID: 22284987]
[41]
Spitzer, N.C. Activity-dependent neurotransmitter respecification. Nat. Rev. Neurosci., 2012, 13(2), 94-106.
[http://dx.doi.org/10.1038/nrn3154] [PMID: 22251956]
[42]
Lee, D.A.; Blackshaw, S. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int. J. Dev. Neurosci., 2012, 30(8), 615-621.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.07.003] [PMID: 22867732]
[43]
Migaud, M.; Batailler, M.; Segura, S.; Duittoz, A.; Franceschini, I.; Pillon, D. Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur. J. Neurosci., 2010, 32(12), 2042-2052.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07521.x] [PMID: 21143659]
[44]
Shan, L.; Dauvilliers, Y.; Siegel, J.M. Interactions of the histamine and hypocretin systems in CNS disorders. Nat. Rev. Neurol., 2015, 11(7), 401-413.
[http://dx.doi.org/10.1038/nrneurol.2015.99] [PMID: 26100750]
[45]
Heidari, A.; Tongsook, C.; Najafipour, R.; Musante, L.; Vasli, N.; Garshasbi, M.; Hu, H.; Mittal, K.; McNaughton, A.J.; Sritharan, K.; Hudson, M.; Stehr, H.; Talebi, S.; Moradi, M.; Darvish, H.; Arshad, R.M.; Mozhdehipanah, H.; Rashidinejad, A.; Samiei, S.; Ghadami, M.; Windpassinger, C.; Gillessen-Kaesbach, G.; Tzschach, A.; Ahmed, I.; Mikhailov, A.; Stavropoulos, D.J.; Carter, M.T.; Keshavarz, S.; Ayub, M.; Najmabadi, H.; Liu, X.; Ropers, H.H.; Macheroux, P.; Vincent, J.B. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability. Hum. Mol. Genet., 2015, 24(20), 5697-5710.
[http://dx.doi.org/10.1093/hmg/ddv286] [PMID: 26206890]
[46]
Verhoeven, W.M.A.; Egger, J.I.M.; Janssen, P.K.C.; van Haeringen, A. Adult male patient with severe intellectual disability caused by a homozygous mutation in the HNMT gene. BMJ Case Rep., 2020, 13(12)235972
[http://dx.doi.org/10.1136/bcr-2020-235972] [PMID: 33310825]
[47]
Naganuma, F.; Nakamura, T.; Yoshikawa, T.; Iida, T.; Miura, Y.; Kárpáti, A.; Matsuzawa, T.; Yanai, A.; Mogi, A.; Mochizuki, T.; Okamura, N.; Yanai, K. Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci. Rep., 2017, 7(1), 15899.
[http://dx.doi.org/10.1038/s41598-017-16019-8] [PMID: 29162912]
[48]
Auvinen, S.; Panula, P. Development of histamine-immunoreactive neurons in the rat brain. J. Comp. Neurol., 1988, 276(2), 289-303.
[http://dx.doi.org/10.1002/cne.902760211] [PMID: 3220984]
[49]
Han, S.; Márquez-Gómez, R.; Woodman, M.; Ellender, T. Histaminergic control of corticostriatal synaptic plasticity during early postnatal development. J. Neurosci., 2020, 40(34), 6557-6571.
[http://dx.doi.org/10.1523/JNEUROSCI.0740-20.2020] [PMID: 32709692]
[50]
Zlomuzica, A.; Viggiano, D.; De Souza Silva, M.A.; Ishizuka, T.; Gironi, C.U.A.; Ruocco, L.A.; Watanabe, T.; Sadile, A.G.; Huston, J.P.; Dere, E. The histamine H1-receptor mediates the motivational effects of novelty. Eur. J. Neurosci., 2008, 27(6), 1461-1474.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06115.x] [PMID: 18331338]
[51]
Yanai, K.; Son, L.Z.; Endou, M.; Sakurai, E.; Nakagawasai, O.; Tadano, T.; Kisara, K.; Inoue, I.; Watanabe, T.; Watanabe, T. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience, 1998, 87(2), 479-487.
[http://dx.doi.org/10.1016/S0306-4522(98)00167-5] [PMID: 9740406]
[52]
Takahashi, K.; Suwa, H.; Ishikawa, T.; Kotani, H. Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. J. Clin. Invest., 2002, 110(12), 1791-1799.
[http://dx.doi.org/10.1172/JCI15784] [PMID: 12488429]
[53]
Gondard, E.; Anaclet, C.; Akaoka, H.; Guo, R.X.; Zhang, M.; Buda, C.; Franco, P.; Kotani, H.; Lin, J.S. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice. Neuropsychopharmacology, 2013, 38(6), 1015-1031.
[http://dx.doi.org/10.1038/npp.2012.266] [PMID: 23303066]
[54]
Reichmann, F.; Rimmer, N.; Tilley, C.A.; Dalla, V.E.; Pinion, J.; Al Oustah, A.; Carreño, G.H.; Young, A.M.J.; McDearmid, J.R.; Winter, M.J.; Norton, W.H.J. The zebrafish histamine H3 receptor modulates aggression, neural activity and forebrain functional connectivity. Acta Physiol. (Oxf.), 2020, 230(4)e13543
[http://dx.doi.org/10.1111/apha.13543] [PMID: 32743878]
[55]
van Wamelen, D.J.; Shan, L.; Aziz, N.A.; Anink, J.J.; Bao, A.M.; Roos, R.A.; Swaab, D.F. Functional increase of brain histaminergic signaling in Huntington’s disease. Brain Pathol., 2011, 21(4), 419-427.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00465.x] [PMID: 21106039]
[56]
Prell, G.D.; Green, J.P. Histamine metabolites and pros-methylimidazoleacetic acid in human cerebrospinal fluid. Agents Actions Suppl., 1991, 33, 343-363.
[http://dx.doi.org/10.1007/978-3-0348-7309-3_25] [PMID: 1828934]
[57]
Lieberman, P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc., 2009, 30(5), 482-486.
[http://dx.doi.org/10.2500/aap.2009.30.3264]
[58]
Krystal, A.D. A compendium of placebo-controlled trials of the risks/benefits of pharmacological treatments for insomnia: the empirical basis for U.S. clinical practice. Sleep Med. Rev., 2009, 13(4), 265-274.
[http://dx.doi.org/10.1016/j.smrv.2008.08.001] [PMID: 19153052]
[59]
Wang, Y.Q.; Takata, Y.; Li, R.; Zhang, Z.; Zhang, M.Q.; Urade, Y.; Qu, W.M.; Huang, Z.L. Doxepin and diphenhydramine increased non-rapid eye movement sleep through blockade of histamine H1 receptors. Pharmacol. Biochem. Behav., 2015, 129, 56-64.
[http://dx.doi.org/10.1016/j.pbb.2014.12.002] [PMID: 25498564]
[60]
Roth, T.; Rogowski, R.; Hull, S.; Schwartz, H.; Koshorek, G.; Corser, B.; Seiden, D.; Lankford, A. Efficacy and safety of doxepin 1 mg, 3 mg, and 6 mg in adults with primary insomnia. Sleep, 2007, 30(11), 1555-1561.
[http://dx.doi.org/10.1093/sleep/30.11.1555] [PMID: 18041488]
[61]
Krystal, A.D.; Richelson, E.; Roth, T. Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications. Sleep Med. Rev., 2013, 17(4), 263-272.
[http://dx.doi.org/10.1016/j.smrv.2012.08.001] [PMID: 23357028]
[62]
Krystal, A.D.; Durrence, H.H.; Scharf, M.; Jochelson, P.; Rogowski, R.; Ludington, E.; Roth, T. Efficacy and safety of doxepin 1 mg and 3 mg in a 12-week sleep laboratory and outpatient trial of elderly subjects with chronic primary insomnia. Sleep, 2010, 33(11), 1553-1561.
[http://dx.doi.org/10.1093/sleep/33.11.1553] [PMID: 21102997]
[63]
Krystal, A.D.; Lankford, A.; Durrence, H.H.; Ludington, E.; Jochelson, P.; Rogowski, R.; Roth, T. Efficacy and safety of doxepin 3 and 6 mg in a 35-day sleep laboratory trial in adults with chronic primary insomnia. Sleep , 2011, 34(10), 1433-1442.
[PMID: 21966075]
[64]
Roth, T.; Heith Durrence, H.; Jochelson, P.; Peterson, G.; Ludington, E.; Rogowski, R.; Scharf, M.; Lankford, A. Efficacy and safety of doxepin 6 mg in a model of transient insomnia. Sleep Med., 2010, 11(9), 843-847.
[http://dx.doi.org/10.1016/j.sleep.2010.07.006] [PMID: 20817598]
[65]
Hajak, G.; Rodenbeck, A.; Voderholzer, U.; Riemann, D.; Cohrs, S.; Hohagen, F.; Berger, M.; Rüther, E. Doxepin in the treatment of primary insomnia: a placebo-controlled, double-blind, polysomnographic study. J. Clin. Psychiatry, 2001, 62(6), 453-463.
[http://dx.doi.org/10.4088/JCP.v62n0609] [PMID: 11465523]
[66]
Yeung, W.F.; Chung, K.F.; Yung, K.P.; Ng, T.H. Doxepin for insomnia: a systematic review of randomized placebo-controlled trials. Sleep Med. Rev., 2015, 19, 75-83.
[http://dx.doi.org/10.1016/j.smrv.2014.06.001] [PMID: 25047681]
[67]
Kano, M.; Fukudo, S.; Tashiro, A.; Utsumi, A.; Tamura, D.; Itoh, M.; Iwata, R.; Tashiro, M.; Mochizuki, H.; Funaki, Y.; Kato, M.; Hongo, M.; Yanai, K. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur. J. Neurosci., 2004, 20(3), 803-810.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03540.x] [PMID: 15255990]
[68]
Yanai, K.; Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol. Ther., 2007, 113(1), 1-15.
[http://dx.doi.org/10.1016/j.pharmthera.2006.06.008] [PMID: 16890992]
[69]
Higuchi, M.; Yanai, K.; Okamura, N.; Meguro, K.; Arai, H.; Itoh, M.; Iwata, R.; Ido, T.; Watanabe, T.; Sasaki, H. Histamine H(1) receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience, 2000, 99(4), 721-729.
[http://dx.doi.org/10.1016/S0306-4522(00)00230-X] [PMID: 10974435]
[70]
Tiligada, E.; Ennis, M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br. J. Pharmacol., 2020, 177(3), 469-489.
[http://dx.doi.org/10.1111/bph.14524] [PMID: 30341770]
[71]
Dai, H.; Kaneko, K.; Kato, H.; Fujii, S.; Jing, Y.; Xu, A.; Sakurai, E.; Kato, M.; Okamura, N.; Kuramasu, A.; Yanai, K. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci. Res., 2007, 57(2), 306-313.
[http://dx.doi.org/10.1016/j.neures.2006.10.020] [PMID: 17145090]
[72]
Kaminsky, R.; Moriarty, T.M.; Bodine, J.; Wolf, D.E.; Davidson, M. Effect of famotidine on deficit symptoms of schizophrenia. Lancet, 1990, 335(8701), 1351-1352.
[http://dx.doi.org/10.1016/0140-6736(90)91237-5] [PMID: 1971414]
[73]
Oyewumi, L.K.; Vollick, D.; Merskey, H.; Plumb, C. Famotidine as an adjunct treatment of resistant schizophrenia. J. Psychiatry Neurosci., 1994, 19(2), 145-150.
[PMID: 8204567]
[74]
Rosse, R.B.; Kendrick, K.; Fay-McCarthy, M.; Prell, G.D.; Rosenberg, P.; Tsui, L.C.; Wyatt, R.J.; Deutsch, S.I. An open-label study of the therapeutic efficacy of high-dose famotidine adjuvant pharmacotherapy in schizophrenia: preliminary evidence for treatment efficacy. Clin. Neuropharmacol., 1996, 19(4), 341-348.
[http://dx.doi.org/10.1097/00002826-199619040-00007] [PMID: 8828997]
[75]
Meskanen, K.; Ekelund, H.; Laitinen, J.; Neuvonen, P.J.; Haukka, J.; Panula, P.; Ekelund, J. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. J. Clin. Psychopharmacol., 2013, 33(4), 472-478.
[http://dx.doi.org/10.1097/JCP.0b013e3182970490] [PMID: 23764683]
[76]
Kishi, T.; Iwata, N. Efficacy and tolerability of histamine-2 receptor antagonist adjunction of antipsychotic treatment in schizophrenia: a meta-analysis of randomized placebo-controlled trials. Pharmacopsychiatry, 2015, 48(1), 30-36.
[PMID: 25321187]
[77]
Orange, P.R.; Heath, P.R.; Wright, S.R.; Ramchand, C.N.; Kolkeiwicz, L.; Pearson, R.C. Individuals with schizophrenia have an increased incidence of the H2R649G allele for the histamine H2 receptor gene. Mol. Psychiatry, 1996, 1(6), 466-469.
[PMID: 9154248]
[78]
Ito, C.; Morisset, S.; Krebs, M.O.; Olié, J.P.; Lôo, H.; Poirier, M.F.; Lannfelt, L.; Schwartz, J.C.; Arrang, J.M. Histamine H2 receptor gene variants: lack of association with schizophrenia. Mol. Psychiatry, 2000, 5(2), 159-164.
[http://dx.doi.org/10.1038/sj.mp.4000664] [PMID: 10822343]
[79]
Mahoney, C.E.; Cogswell, A.; Koralnik, I.J.; Scammell, T.E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci., 2019, 20(2), 83-93.
[http://dx.doi.org/10.1038/s41583-018-0097-x] [PMID: 30546103]
[80]
Szakacs, Z.; Dauvilliers, Y.; Mikhaylov, V.; Poverennova, I.; Krylov, S.; Jankovic, S.; Sonka, K.; Lehert, P.; Lecomte, I.; Lecomte, J.M.; Schwartz, J.C. Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2017, 16(3), 200-207.
[http://dx.doi.org/10.1016/S1474-4422(16)30333-7] [PMID: 28129985]
[81]
Lin, J.S.; Dauvilliers, Y.; Arnulf, I.; Bastuji, H.; Anaclet, C.; Parmentier, R.; Kocher, L.; Yanagisawa, M.; Lehert, P.; Ligneau, X.; Perrin, D.; Robert, P.; Roux, M.; Lecomte, J.M.; Schwartz, J.C. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol. Dis., 2008, 30(1), 74-83.
[http://dx.doi.org/10.1016/j.nbd.2007.12.003] [PMID: 18295497]
[82]
Thannickal, T.C.; Lai, Y.Y.; Siegel, J.M. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain, 2007, 130(Pt 6), 1586-1595.
[http://dx.doi.org/10.1093/brain/awm097] [PMID: 17491094]
[83]
Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci., 2011, 32(4), 242-249.
[http://dx.doi.org/10.1016/j.tips.2011.01.003] [PMID: 21324537]
[84]
Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav. Brain Res., 2016, 312, 415-430.
[http://dx.doi.org/10.1016/j.bbr.2016.06.051] [PMID: 27363923]
[85]
Egan, M.; Yaari, R.; Liu, L.; Ryan, M.; Peng, Y.; Lines, C.; Michelson, D. Pilot randomized controlled study of a histamine receptor inverse agonist in the symptomatic treatment of AD. Curr. Alzheimer Res., 2012, 9(4), 481-490.
[http://dx.doi.org/10.2174/156720512800492530] [PMID: 22272611]
[86]
Grove, R.A.; Harrington, C.M.; Mahler, A.; Beresford, I.; Maruff, P.; Lowy, M.T.; Nicholls, A.P.; Boardley, R.L.; Berges, A.C.; Nathan, P.J.; Horrigan, J.P. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease. Curr. Alzheimer Res., 2014, 11(1), 47-58.
[http://dx.doi.org/10.2174/1567205010666131212110148] [PMID: 24359500]
[87]
Kubo, M.; Kishi, T.; Matsunaga, S.; Iwata, N. Histamine H3 Receptor Antagonists for Alzheimer’s Disease: A systematic review and meta-analysis of randomized placebo-controlled trials. J. Alzheimers Dis., 2015, 48(3), 667-671.
[http://dx.doi.org/10.3233/JAD-150393] [PMID: 26402104]
[88]
Haig, G.M.; Bain, E.; Robieson, W.; Othman, A.A.; Baker, J.; Lenz, R.A. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia. Schizophr. Bull., 2014, 40(6), 1433-1442.
[http://dx.doi.org/10.1093/schbul/sbt240] [PMID: 24516190]
[89]
Jarskog, L.F.; Lowy, M.T.; Grove, R.A.; Keefe, R.S.; Horrigan, J.P.; Ball, M.P.; Breier, A.; Buchanan, R.W.; Carter, C.S.; Csernansky, J.G.; Goff, D.C.; Green, M.F.; Kantrowitz, J.T.; Keshavan, M.S.; Laurelle, M.; Lieberman, J.A.; Marder, S.R.; Maruff, P.; McMahon, R.P.; Seidman, L.J.; Peykamian, M.A. A Phase II study of a histamine H3 receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy. Schizophr. Res., 2015, 164(1-3), 136-142.
[http://dx.doi.org/10.1016/j.schres.2015.01.041] [PMID: 25728831]
[90]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[91]
Anichtchik, O.V.; Rinne, J.O.; Kalimo, H.; Panula, P. An altered histaminergic innervation of the substantia nigra in Parkinson’s disease. Exp. Neurol., 2000, 163(1), 20-30.
[http://dx.doi.org/10.1006/exnr.2000.7362] [PMID: 10785440]
[92]
Rinne, J.O.; Anichtchik, O.V.; Eriksson, K.S.; Kaslin, J.; Tuomisto, L.; Kalimo, H.; Röyttä, M.; Panula, P. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J. Neurochem., 2002, 81(5), 954-960.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00871.x] [PMID: 12065607]
[93]
Rocha, S.M.; Saraiva, T.; Cristóvão, A.C.; Ferreira, R.; Santos, T.; Esteves, M.; Saraiva, C.; Je, G.; Cortes, L.; Valero, J.; Alves, G.; Klibanov, A.; Kim, Y.S.; Bernardino, L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J. Neuroinflammation, 2016, 13(1), 137.
[http://dx.doi.org/10.1186/s12974-016-0600-0] [PMID: 27260166]
[94]
Rocha, S.M.; Pires, J.; Esteves, M.; Graça, B.; Bernardino, L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front. Cell. Neurosci., 2014, 8, 120.
[http://dx.doi.org/10.3389/fncel.2014.00120] [PMID: 24817841]
[95]
Vizuete, M.L.; Merino, M.; Venero, J.L.; Santiago, M.; Cano, J.; Machado, A. Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J. Neurochem., 2000, 75(2), 540-552.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750540.x] [PMID: 10899929]
[96]
Liu, C.Q.; Chen, Z.; Liu, F.X.; Hu, D.N.; Luo, J.H. Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology, 2007, 53(7), 832-841.
[http://dx.doi.org/10.1016/j.neuropharm.2007.08.014] [PMID: 17919665]
[97]
Shan, L.; Bossers, K.; Luchetti, S.; Balesar, R.; Lethbridge, N.; Chazot, P.L.; Bao, A.M.; Swaab, D.F. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: a postmortem study. Neurobiol. Aging, 2012, 33(7), 1488.e1-1488.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.016] [PMID: 22118942]
[98]
Fang, Q.; Xicoy, H.; Shen, J. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav. Immun., 2021, 92, 127-138.
[http://dx.doi.org/10.1016/j.bbi.2020.11.036] [PMID: 33249171]
[99]
Zhou, P.; Homberg, J.R.; Fang, Q.; Wang, J.; Li, W.; Meng, X.; Shen, J.; Luan, Y.; Liao, P.; Swaab, D.F.; Shan, L.; Liu, C. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav. Immun., 2019, 76, 61-73.
[http://dx.doi.org/10.1016/j.bbi.2018.11.006] [PMID: 30408497]
[100]
Ferna, A.; Kruijver, F.P.; Fodor, M. Sex differences in the distribution of androgen receptors in the human hypothalamus. J. Comp. Neurol., 2000, 425(3), 422-435.
[http://dx.doi.org/10.1002/1096-9861(20000925)425:3422:aid-cne7>3.0.co;2-h] [PMID: 10972942]
[101]
Shan, L.; Bao, A-M.; Swaab, D.F. Changes in histidine decarboxylase, histamine n-methyltransferase and histamine receptors in neuropsychiatric disorders. Handb. Exp. Pharmacol., 2017, 241, 259-276.
[http://dx.doi.org/10.1007/164_2016_125] [PMID: 28233178]