Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Agostino Di Ciaula*, Leonilde Bonfrate, Marica Noviello and Piero Portincasa

DOI: 10.2174/1871530321666210909115040

Thyroid Function: A Target for Endocrine Disruptors, Air Pollution and Radiofrequencies

Page: [1032 - 1040] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Thyroid diseases, including congenital hypothyroidism, thyroiditis, and childhood thyrotoxicosis, are progressively increasing. The incidence of thyroid cancer in children and adolescents has also increased in recent decades, mirroring the trends observed in adults. These epidemiologic trends develop in parallel with the rising costs associated with diagnosis and treatment of thyroid diseases. Both genetic and environmental factors are involved in these diseases, and a number of widely diffused toxic chemicals of anthropogenic origin can impair thyroid function and make thyroid cancer worse. Synthetic substances persistently contaminate environmental matrices (i.e., air, soil, water) and the food chain and bio-accumulate in humans, starting from in utero life. Environmental toxins such as air pollutants, endocrine disruptors, and high-frequency electromagnetic fields can act on common targets through common pathways, combined mechanisms, and with trans-generational effects, all of which contribute to thyroid damage. Both experimental and epidemiologic observations show that mechanisms of damage include: modulation of synthesis; transportation and metabolism of thyroid hormones; direct interference with hormone receptors: modulation of gene expression; and autoimmunity. We should not underestimate the available evidence linking environmental pollutants with thyroid disease, cancer included, since toxic substances increasingly diffuse and thyroid hormones play a key role in maintaining systemic metabolic homeostasis during body development. Thus, primary prevention measures are urgently needed in particular to protect children, the most exposed and vulnerable subjects.

Keywords: Hypothyroidism, thyroid, endocrine disruptors, pesticides, pollution, electromagnetic fields.

Graphical Abstract

[1]
Leese, G.P.; Flynn, R.V.; Jung, R.T.; Macdonald, T.M.; Murphy, M.J.; Morris, A.D. Increasing prevalence and incidence of thyroid disease in Tayside, Scotland: the Thyroid Epidemiology Audit and Research Study (TEARS). Clin. Endocrinol. (Oxf.), 2008, 68(2), 311-316.
[PMID: 17970771]
[2]
Razvi, S.; Korevaar, T.I.M.; Taylor, P. Trends, Determinants, and Associations of Treated Hypothyroidism in the United Kingdom, 2005-2014. 2019, 29, 174-182.
[3]
Barry, Y; Bonaldi, C; Goulet, V; Coutant, R; Leger, J; Paty, AC Increased incidence of congenital hypothyroidism in France from 1982 to 2012: A nationwide multicenter analysis. Ann Epidemiol, 2016, 26, 100-105.
[4]
McGrath, N.; Hawkes, C.P.; McDonnell, C.M.; Cody, D.; O’Connell, S.M.; Mayne, P.D.; Murphy, N.P. Incidence of Congenital Hypothyroidism Over 37 Years in Ireland. Pediatrics, 2018, 142(4), 142.
[http://dx.doi.org/10.1542/peds.2018-1199] [PMID: 30242075]
[5]
Martin-Merino, E.; Moreno-Juste, A.; Cano, B.C.; Perez, M.M.; Corominas, D.M. An Estimation of the Incidence of Thyroiditis Among Girls in Primary Care in Spain. J. Clin. Res. Pediatr. Endocrinol., 2020.
[PMID: 33261248]
[6]
Rodanaki, M.; Lodefalk, M.; Forssell, K.; Arvidsson, C.G.; Forssberg, M.; Åman, J. The Incidence of Childhood Thyrotoxicosis Is Increasing in Both Girls and Boys in Sweden. Horm. Res. Paediatr., 2019, 91(3), 195-202.
[http://dx.doi.org/10.1159/000500265] [PMID: 31096231]
[7]
Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.A.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Dal Maso, L.; Steliarova-Foucher, E. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: A population-based study. Lancet Diabetes Endocrinol., 2021, 9(3), 144-152.
[http://dx.doi.org/10.1016/S2213-8587(20)30401-0] [PMID: 33482107]
[8]
Drozd, V.; Saenko, V.; Branovan, D.I.; Brown, K.; Yamashita, S.; Reiners, C. A Search for Causes of Rising Incidence of Differentiated Thyroid Cancer in Children and Adolescents after Chernobyl and Fukushima: Comparison of the Clinical Features and Their Relevance for Treatment and Prognosis. Int. J. Environ. Res. Public Health, 2021, 18(7), 18.
[http://dx.doi.org/10.3390/ijerph18073444] [PMID: 33810323]
[9]
Christison-Lagay, E.; Baertschiger, R.M. Management of Differentiated Thyroid Carcinoma in Pediatric Patients. Surg. Oncol. Clin. N. Am., 2021, 30(2), 235-251.
[http://dx.doi.org/10.1016/j.soc.2020.11.013] [PMID: 33706898]
[10]
Zanella, A.B.; Scheffel, R.S.; Weinert, L.; Dora, J.M.; Maia, A.L. New insights into the management of differentiated thyroid carcinoma in children and adolescents (Review). Int. J. Oncol., 2021, 58(5), 58. [Review].
[http://dx.doi.org/10.3892/ijo.2021.5193] [PMID: 33649842]
[11]
Møllehave, L.T.; Linneberg, A.; Skaaby, T.; Knudsen, N.; Ehlers, L.; Jørgensen, T.; Thuesen, B.H. Trends in Costs of Thyroid Disease Treatment in Denmark during 1995-2015. Eur. Thyroid J., 2018, 7(2), 75-83.
[http://dx.doi.org/10.1159/000485973] [PMID: 29594058]
[12]
Galindo, RJ.; Hurtado, CR.; Pasquel, FJ.; Garcia Tome, R.; Peng, L. Umpierrez, GE National Trends in Incidence, Mortality, and Clinical Outcomes of Patients Hospitalized for Thyrotoxicosis With and Without Thyroid Storm in the United States, 2004-2013. Thyroid, 2019, 29, 36-43.
[13]
Sahli, Z.T.; Zhou, S.; Sharma, A.K.; Segev, D.L.; Massie, A.; Zeiger, M.A.; Mathur, A. Rising Cost of Thyroid Surgery in Adult Patients. J. Surg. Res., 2021, 260, 28-37.
[http://dx.doi.org/10.1016/j.jss.2020.11.049] [PMID: 33316757]
[14]
Duntas, L.H. Chemical contamination and the thyroid. Endocrine, 2015, 48(1), 53-64.
[http://dx.doi.org/10.1007/s12020-014-0442-4] [PMID: 25294013]
[15]
Braverman, L.E. Clinical studies of exposure to perchlorate in the United States. Thyroid, 2007, 17, 819-822.
[http://dx.doi.org/10.1089/thy.2007.0105]
[16]
Mervish, N.A.; Pajak, A.; Teitelbaum, S.L.; Pinney, S.M.; Windham, G.C.; Kushi, L.H.; Biro, F.M.; Valentin-Blasini, L.; Blount, B.C.; Wolff, M.S. Thyroid Antagonists (Perchlorate, Thiocyanate, and Nitrate) and Childhood Growth in a Longitudinal Study of U.S. Girls. Environ. Health Perspect., 2016, 124(4), 542-549.
[http://dx.doi.org/10.1289/ehp.1409309] [PMID: 26151950]
[17]
Willemin, M.E.; Lumen, A. Thiocyanate: A review and evaluation of the kinetics and the modes of action for thyroid hormone perturbations. Crit. Rev. Toxicol., 2017, 47(7), 537-563.
[http://dx.doi.org/10.1080/10408444.2017.1281590] [PMID: 28632039]
[18]
McMullen, J.; Ghassabian, A.; Kohn, B.; Trasande, L. Identifying Subpopulations Vulnerable to the Thyroid-Blocking Effects of Perchlorate and Thiocyanate. J. Clin. Endocrinol. Metab., 2017, 102(7), 2637-2645.
[http://dx.doi.org/10.1210/jc.2017-00046] [PMID: 28430972]
[19]
Horton, M.K.; Blount, B.C.; Valentin-Blasini, L.; Wapner, R.; Whyatt, R.; Gennings, C.; Factor-Litvak, P. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women. Environ. Res., 2015, 143(Pt A), 1-9.
[http://dx.doi.org/10.1016/j.envres.2015.09.013] [PMID: 26408806]
[20]
Ucal, Y.; Sahin, O.N.; Serdar, M.; Blount, B.; Kumru, P.; Muhcu, M.; Eroglu, M.; Akin-Levi, C.; Keles, Z.Z.Y.; Turam, C.; Valentin-Blasini, L.; Morel-Espinosa, M.; Serteser, M.; Unsal, I.; Ozpinar, A. Exposure to Perchlorate in Lactating Women and Its Associations With Newborn Thyroid Stimulating Hormone. Front. Endocrinol. (Lausanne), 2018, 9, 348.
[http://dx.doi.org/10.3389/fendo.2018.00348] [PMID: 30018593]
[21]
Curtis, SW; Terrell, ML; Jacobson, MH; Cobb, DO; Jiang, VS; Neblett, MF Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. Environmental health : A global access science source, 2019, 18, 75.
[http://dx.doi.org/10.1186/s12940-019-0509-z]
[22]
Jacobson, M.H.; Darrow, L.A.; Barr, D.B.; Howards, P.P.; Lyles, R.H.; Terrell, M.L.; Smith, A.K.; Conneely, K.N.; Marder, M.E.; Marcus, M. Serum Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs) and Thyroid Function among Michigan Adults Several Decades after the 1973-1974 PBB Contamination of Livestock Feed. Environ. Health Perspect., 2017, 125(9), 097020.
[http://dx.doi.org/10.1289/EHP1302] [PMID: 28953452]
[23]
Zhao, X.; Yang, X.; Du, Y.; Li, R.; Zhou, T.; Wang, Y.; Chen, T.; Wang, D.; Shi, Z. Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function. Environ. Pollut., 2021, 270, 116046.
[http://dx.doi.org/10.1016/j.envpol.2020.116046] [PMID: 33333402]
[24]
Sheikh, I.A.; Beg, M.A. Structural studies on the endocrine-disrupting role of polybrominated diphenyl ethers (PBDEs) in thyroid diseases. Environ. Sci. Pollut. Res. Int., 2020, 27(30), 37866-37876.
[http://dx.doi.org/10.1007/s11356-020-09913-8] [PMID: 32613508]
[25]
Guo, J.; Zhang, J.; Wang, Z.; Zhang, L.; Qi, X.; Zhang, Y.; Chang, X.; Wu, C.; Zhou, Z. Umbilical cord serum perfluoroalkyl substance mixtures in relation to thyroid function of newborns: Findings from Sheyang Mini Birth Cohort Study. Chemosphere, 2021, 273, 129664.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129664] [PMID: 33493812]
[26]
Kim, HY; Kim, KN; Shin, CH; Lim, YH; Kim, JI; Kim, BN The Relationship Between Perfluoroalkyl Substances Concentrations and Thyroid Function in Early Childhood: A Prospective Cohort Study. Thyroid, 2020, 30, 1556-1565.
[27]
Blake, B.E.; Pinney, S.M.; Hines, E.P.; Fenton, S.E.; Ferguson, K.K. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ. Pollut., 2018, 242(Pt A), 894-904.
[http://dx.doi.org/10.1016/j.envpol.2018.07.042] [PMID: 30373035]
[28]
Kim, M.J.; Moon, S.; Oh, B.C.; Jung, D.; Ji, K.; Choi, K.; Park, Y.J. Association between perfluoroalkyl substances exposure and thyroid function in adults: A meta-analysis. PLoS One, 2018, 13(5), e0197244.
[http://dx.doi.org/10.1371/journal.pone.0197244] [PMID: 29746532]
[29]
Derakhshan, A.; Philips, E.M.; Ghassabian, A.; Santos, S.; Asimakopoulos, A.G.; Kannan, K.; Kortenkamp, A.; Jaddoe, V.W.V.; Trasande, L.; Peeters, R.P.; Korevaar, T.I.M. Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environ. Int., 2021, 146, 106160.
[http://dx.doi.org/10.1016/j.envint.2020.106160] [PMID: 33068853]
[30]
Kwon, J.A.; Shin, B.; Kim, B. Urinary bisphenol A and thyroid function by BMI in the Korean National Environmental Health Survey (KoNEHS) 2012-2014. Chemosphere, 2020, 240, 124918.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124918] [PMID: 31563717]
[31]
Zhang, M.; Deng, Y.L.; Liu, C.; Chen, P.P.; Luo, Q.; Miao, Y.; Cui, F.P.; Wang, L.Q.; Jiang, M.; Zeng, Q. Urinary phthalate metabolite concentrations, oxidative stress and thyroid function biomarkers among patients with thyroid nodules. Environ. Pollut., 2021, 272, 116416.
[http://dx.doi.org/10.1016/j.envpol.2020.116416] [PMID: 33433341]
[32]
Souter, I.; Bellavia, A.; Williams, P.L.; Korevaar, T.I.M.; Meeker, J.D.; Braun, J.M.; de Poortere, R.A.; Broeren, M.A.; Ford, J.B.; Calafat, A.M.; Chavarro, J.E.; Hauser, R.; Mínguez-Alarcón, L. Urinary Concentrations of Phthalate Metabolite Mixtures in Relation to Serum Biomarkers of Thyroid Function and Autoimmunity among Women from a Fertility Center. Environ. Health Perspect., 2020, 128(6), 67007.
[http://dx.doi.org/10.1289/EHP6740] [PMID: 32515996]
[33]
Huang, P.C.; Chang, W.H.; Wu, M.T.; Chen, M.L.; Wang, I.J.; Shih, S.F.; Hsiung, C.A.; Liao, K.W. Characterization of phthalate exposure in relation to serum thyroid and growth hormones, and estimated daily intake levels in children exposed to phthalate-tainted products: A longitudinal cohort study. Environ. Pollut., 2020, 264, 114648.
[http://dx.doi.org/10.1016/j.envpol.2020.114648] [PMID: 32380394]
[34]
Meeker, J.D.; Calafat, A.M.; Hauser, R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ. Health Perspect., 2007, 115(7), 1029-1034.
[http://dx.doi.org/10.1289/ehp.9852] [PMID: 17637918]
[35]
Skarha, J.; Mínguez-Alarcón, L.; Williams, P.L.; Korevaar, T.I.M.; de Poortere, R.A.; Broeren, M.A.C.; Ford, J.B.; Eliot, M.; Hauser, R.; Braun, J.M. Cross-sectional associations between urinary triclosan and serum thyroid function biomarker concentrations in women. Environ. Int., 2019, 122, 256-262.
[http://dx.doi.org/10.1016/j.envint.2018.11.015] [PMID: 30477815]
[36]
Geens, T.; Dirtu, A.C.; Dirinck, E.; Malarvannan, G.; Van Gaal, L.; Jorens, P.G.; Covaci, A. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environ. Int., 2015, 76, 98-105.
[http://dx.doi.org/10.1016/j.envint.2014.12.003] [PMID: 25575039]
[37]
Koeppe, E.S.; Ferguson, K.K.; Colacino, J.A.; Meeker, J.D. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. Sci. Total Environ., 2013, 445-446, 299-305.
[http://dx.doi.org/10.1016/j.scitotenv.2012.12.052] [PMID: 23340023]
[38]
Itoh, S.; Baba, T.; Yuasa, M.; Miyashita, C.; Kobayashi, S.; Araki, A.; Sasaki, S.; Kajiwara, J.; Hori, T.; Todaka, T.; Fujikura, K.; Nakajima, S.; Kato, S.; Kishi, R. Association of maternal serum concentration of hydroxylated polychlorinated biphenyls with maternal and neonatal thyroid hormones: The Hokkaido birth cohort study. Environ. Res., 2018, 167, 583-590.
[http://dx.doi.org/10.1016/j.envres.2018.08.027] [PMID: 30173115]
[39]
Baba, T.; Ito, S.; Yuasa, M.; Yoshioka, E.; Miyashita, C.; Araki, A.; Sasaki, S.; Kobayashi, S.; Kajiwara, J.; Hori, T.; Kato, S.; Kishi, R. Association of prenatal exposure to PCDD/Fs and PCBs with maternal and infant thyroid hormones: The Hokkaido Study on Environment and Children’s Health. Sci. Total Environ., 2018, 615, 1239-1246.
[http://dx.doi.org/10.1016/j.scitotenv.2017.09.038] [PMID: 29751429]
[40]
de Cock, M.; de Boer, M.R.; Govarts, E.; Iszatt, N.; Palkovicova, L.; Lamoree, M.H.; Schoeters, G.; Eggesbø, M.; Trnovec, T.; Legler, J.; van de Bor, M. Thyroid-stimulating hormone levels in newborns and early life exposure to endocrine-disrupting chemicals: Analysis of three European mother-child cohorts. Pediatr. Res., 2017, 82(3), 429-437.
[http://dx.doi.org/10.1038/pr.2017.50] [PMID: 28288144]
[41]
Su, P.H.; Chen, H.Y.; Chen, S.J.; Chen, J.Y.; Liou, S.H.; Wang, S.L. Thyroid and growth hormone concentrations in 8-year-old children exposed in utero to dioxins and polychlorinated biphenyls. J. Toxicol. Sci., 2015, 40(3), 309-319.
[http://dx.doi.org/10.2131/jts.40.309] [PMID: 25972192]
[42]
Bai, X.; Yan, L.; Ji, C.; Zhang, Q.; Dong, X.; Chen, A.; Zhao, M. A combination of ternary classification models and reporter gene assays for the comprehensive thyroid hormone disruption profiles of 209 polychlorinated biphenyls. Chemosphere, 2018, 210, 312-319.
[http://dx.doi.org/10.1016/j.chemosphere.2018.07.023] [PMID: 30005353]
[43]
Zheng, J.; He, C.T.; Chen, S.J.; Yan, X.; Guo, M.N.; Wang, M.H.; Yu, Y.J.; Yang, Z.Y.; Mai, B.X. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers. Environ. Int., 2017, 102, 138-144.
[http://dx.doi.org/10.1016/j.envint.2017.02.009] [PMID: 28245931]
[44]
Cowell, W; Sjodin, A; Jones, RL; Wang, Y; Wang, S Whyatt, R Pre and Postnatal Polybrominated Diphenyl Ether Concentrations in Relation to Thyroid Parameters Measured During Early Childhood. Thyroid, 2019.
[http://dx.doi.org/10.1089/thy.2018.0417]
[45]
Gibson, E.A.; Siegel, E.L.; Eniola, F.; Herbstman, J.B.; Factor-Litvak, P. Effects of Polybrominated Diphenyl Ethers on Child Cognitive, Behavioral, and Motor Development. Int. J. Environ. Res. Public Health, 2018, 15(8), 15.
[http://dx.doi.org/10.3390/ijerph15081636] [PMID: 30072620]
[46]
Jacobson, M.H.; Barr, D.B.; Marcus, M.; Muir, A.B.; Lyles, R.H.; Howards, P.P.; Pardo, L.; Darrow, L.A. Serum polybrominated diphenyl ether concentrations and thyroid function in young children. Environ. Res., 2016, 149, 222-230.
[http://dx.doi.org/10.1016/j.envres.2016.05.022] [PMID: 27228485]
[47]
Ji, H.; Liang, H.; Wang, Z.; Miao, M.; Wang, X.; Zhang, X.; Wen, S.; Chen, A.; Sun, X.; Yuan, W. Associations of prenatal exposures to low levels of Polybrominated Diphenyl Ether (PBDE) with thyroid hormones in cord plasma and neurobehavioral development in children at 2 and 4 years. Environ. Int., 2019, 131, 105010.
[http://dx.doi.org/10.1016/j.envint.2019.105010] [PMID: 31326823]
[48]
Berto-Júnior, C.; Santos-Silva, A.P.; Ferreira, A.C.F.; Graceli, J.B.; de Carvalho, D.P.; Soares, P.; Romeiro, N.C.; Miranda-Alves, L. Unraveling molecular targets of bisphenol A and S in the thyroid gland. Environ. Sci. Pollut. Res. Int., 2018, 25(27), 26916-26926.
[http://dx.doi.org/10.1007/s11356-018-2419-y] [PMID: 30006815]
[49]
Zhu, M.; Chen, X.Y.; Li, Y.Y.; Yin, N.Y.; Faiola, F.; Qin, Z.F.; Wei, W.J.; Bisphenol, F. Disrupts Thyroid Hormone Signaling and Postembryonic Development in Xenopus laevis. Environ. Sci. Technol., 2018, 52(3), 1602-1611.
[http://dx.doi.org/10.1021/acs.est.7b06270] [PMID: 29323886]
[50]
Wu, Y.; Beland, F.A.; Fang, J.L. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicology in vitro : An international journal published in association with BIBRA, 2016, 32, 310-319.
[51]
Zhang, Y.F.; Ren, X.M.; Li, Y.Y.; Yao, X.F.; Li, C.H.; Qin, Z.F.; Guo, L.H. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environ. Pollut., 2018, 237, 1072-1079.
[http://dx.doi.org/10.1016/j.envpol.2017.11.027] [PMID: 29146198]
[52]
Kim, MJ; Moon, S; Oh, BC; Jung, D; Choi, K Park, YJ Association Between Diethylhexyl Phthalate Exposure and Thyroid Function: A Meta-Analysis. Thyroid, 2019, 29, 183-192.
[http://dx.doi.org/10.1089/thy.2018.0051]
[53]
Hyun Kim, D.; Min Choi, S.; Soo Lim, D.; Roh, T.; Jun Kwack, S.; Yoon, S.; Kook Kim, M.; Sil Yoon, K.; Sik Kim, H.; Wook Kim, D.; Lee, B.M. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents. J. Toxicol. Environ. Health A, 2018, 81(21), 1150-1164.
[http://dx.doi.org/10.1080/15287394.2018.1543231] [PMID: 30415604]
[54]
Li, N.; Papandonatos, G.D.; Calafat, A.M.; Yolton, K.; Lanphear, B.P.; Chen, A.; Braun, J.M. Gestational and childhood exposure to phthalates and child behavior. Environ. Int., 2020, 144, 106036.
[http://dx.doi.org/10.1016/j.envint.2020.106036] [PMID: 32798801]
[55]
Pearce, E.N.; Braverman, L.E. Environmental pollutants and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(6), 801-813.
[http://dx.doi.org/10.1016/j.beem.2009.06.003] [PMID: 19942155]
[56]
Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid Disrupting Chemicals. Int. J. Mol. Sci., 2017, 18(12), 18.
[http://dx.doi.org/10.3390/ijms18122583] [PMID: 29194390]
[57]
Witorsch, R.J. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit. Rev. Toxicol., 2014, 44(6), 535-555.
[http://dx.doi.org/10.3109/10408444.2014.910754] [PMID: 24897554]
[58]
Paul, KB; Hedge, JM; DeVito, MJ; Crofton, KM Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in Young Long-Evans rats. Toxicol. Sci., 2010, 113, 367-379.
[http://dx.doi.org/10.1093/toxsci/kfp271]
[59]
Crivellente, F.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Pedersen, R.; Terron, A.; Wolterink, G.; Mohimont, L. Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J., 2019, 17(9), e05801.
[PMID: 32626429]
[60]
Shrestha, S.; Parks, C.G.; Goldner, W.S.; Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Koutros, S.; Hofmann, J.N.; Beane Freeman, L.E.; Sandler, D.P. Pesticide Use and Incident Hypothyroidism in Pesticide Applicators in the Agricultural Health Study. Environ. Health Perspect., 2018, 126(9), 97008.
[http://dx.doi.org/10.1289/EHP3194] [PMID: 30256155]
[61]
Goldman, M. The effect of a single dose of DDT on thyroid function in male rats. Arch. Int. Pharmacodyn. Ther., 1981, 252(2), 327-334.
[PMID: 7305567]
[62]
Luo, D.; Pu, Y.; Tian, H.; Wu, W.; Sun, X.; Zhou, T.; Tao, Y.; Yuan, J.; Shen, X.; Feng, Y.; Mei, S. Association of in utero exposure to organochlorine pesticides with thyroid hormone levels in cord blood of newborns. Environ. Pollut., 2017, 231(Pt 1), 78-86.
[http://dx.doi.org/10.1016/j.envpol.2017.07.091] [PMID: 28787707]
[63]
Yamazaki, K.; Itoh, S.; Araki, A.; Miyashita, C.; Minatoya, M.; Ikeno, T.; Kato, S.; Fujikura, K.; Mizutani, F.; Chisaki, Y.; Kishi, R. Associations between prenatal exposure to organochlorine pesticides and thyroid hormone levels in mothers and infants: The Hokkaido study on environment and children’s health. Environ. Res., 2020, 189, 109840.
[http://dx.doi.org/10.1016/j.envres.2020.109840] [PMID: 32979988]
[64]
de Souza, J.S.; Kizys, M.M.; da Conceição, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Giannocco, G.; da Silva, I.D.; Dias da Silva, M.R.; Romano, M.A.; Chiamolera, M.I. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology, 2017, 377, 25-37.
[http://dx.doi.org/10.1016/j.tox.2016.11.005] [PMID: 27916585]
[65]
Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Konthonbut, P.; Choochouy, N.; Sowanthip, P.; Khangkhun, P.; Yimsabai, J.; Woskie, S. Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics, 2021, 9(1), 9.
[http://dx.doi.org/10.3390/toxics9010016] [PMID: 33477987]
[66]
Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Choochouy, N.; Yimsabai, J.; Woskie, S. Thyroid Hormones in Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health, 2019, 16(15), 16.
[http://dx.doi.org/10.3390/ijerph16152704] [PMID: 31362416]
[67]
Chevrier, J.; Rauch, S.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Sex and poverty modify associations between maternal peripartum concentrations of DDT/E and pyrethroid metabolites and thyroid hormone levels in neonates participating in the VHEMBE study, South Africa. Environ. Int., 2019, 131, 104958.
[http://dx.doi.org/10.1016/j.envint.2019.104958] [PMID: 31284115]
[68]
Hu, Y.; Zhang, Z.; Qin, K.; Zhang, Y.; Pan, R.; Wang, Y.; Shi, R.; Gao, Y.; Tian, Y. Environmental pyrethroid exposure and thyroid hormones of pregnant women in Shandong, China. Chemosphere, 2019, 234, 815-821.
[http://dx.doi.org/10.1016/j.chemosphere.2019.06.098] [PMID: 31247491]
[69]
Benvenga, S.; Elia, G.; Ragusa, F.; Paparo, S.R.; Sturniolo, M.M.; Ferrari, S.M.; Antonelli, A.; Fallahi, P. Endocrine disruptors and thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab., 2020, 34(1), 101377.
[http://dx.doi.org/10.1016/j.beem.2020.101377] [PMID: 32081544]
[70]
Benvenga, S.; Vigo, M.T.; Metro, D.; Granese, R.; Vita, R.; Le Donne, M. Type of fish consumed and thyroid autoimmunity in pregnancy and postpartum. Endocrine, 2016, 52(1), 120-129.
[http://dx.doi.org/10.1007/s12020-015-0698-3] [PMID: 26306774]
[71]
Gallagher, C.M.; Meliker, J.R. Mercury and thyroid autoantibodies in U.S. women, NHANES 2007-2008. Environ. Int., 2012, 40, 39-43.
[http://dx.doi.org/10.1016/j.envint.2011.11.014] [PMID: 22280926]
[72]
Nie, X.; Chen, Y.; Chen, Y.; Chen, C.; Han, B.; Li, Q.; Zhu, C.; Xia, F.; Zhai, H.; Wang, N.; Lu, Y. Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women. Environ. Pollut., 2017, 230, 320-328.
[http://dx.doi.org/10.1016/j.envpol.2017.06.052] [PMID: 28667913]
[73]
Kahn, L.G.; Liu, X.; Rajovic, B.; Popovac, D.; Oberfield, S.; Graziano, J.H.; Factor-Litvak, P. Blood lead concentration and thyroid function during pregnancy: results from the Yugoslavia Prospective Study of Environmental Lead Exposure. Environ. Health Perspect., 2014, 122(10), 1134-1140.
[http://dx.doi.org/10.1289/ehp.1307669] [PMID: 24866691]
[74]
Tajtáková, M.; Semanová, Z.; Tomková, Z.; Szökeová, E.; Majoros, J.; Rádiková, Z.; Seböková, E.; Klimes, I.; Langer, P. Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area. Chemosphere, 2006, 62(4), 559-564.
[http://dx.doi.org/10.1016/j.chemosphere.2005.06.030] [PMID: 16095667]
[75]
Freire, C.; Koifman, R.J.; Sarcinelli, P.N.; Simões Rosa, A.C.; Clapauch, R.; Koifman, S. Long-term exposure to organochlorine pesticides and thyroid status in adults in a heavily contaminated area in Brazil. Environ. Res., 2013, 127, 7-15.
[http://dx.doi.org/10.1016/j.envres.2013.09.001] [PMID: 24183346]
[76]
Langer, P.; Tajtáková, M.; Kocan, A.; Petrík, J.; Koska, J.; Ksinantová, L.; Rádiková, Z.; Ukropec, J.; Imrich, R.; Hucková, M.; Chovancová, J.; Drobná, B.; Jursa, S.; Vlcek, M.; Bergman, A.; Athanasiadou, M.; Hovander, L.; Shishiba, Y.; Trnovec, T.; Seböková, E.; Klimes, I. Thyroid ultrasound volume, structure and function after long-term high exposure of large population to polychlorinated biphenyls, pesticides and dioxin. Chemosphere, 2007, 69(1), 118-127.
[http://dx.doi.org/10.1016/j.chemosphere.2007.04.039] [PMID: 17537484]
[77]
Schell, L.M.; Gallo, M.V.; Ravenscroft, J.; DeCaprio, A.P. Persistent organic pollutants and anti-thyroid peroxidase levels in Akwesasne Mohawk young adults. Environ. Res., 2009, 109(1), 86-92.
[http://dx.doi.org/10.1016/j.envres.2008.08.015] [PMID: 18995849]
[78]
Soldin, OP; Goughenour, BE; Gilbert, SZ; Landy, HJ; Soldin, SJ Thyroid hormone levels associated with active and passive cigarette smoking. Thyroid, 2009, 19, 817-823.
[http://dx.doi.org/10.1089/thy.2009.0023]
[79]
Zeng, Y.; He, H.; Wang, X.; Zhang, M.; An, Z. Climate and air pollution exposure are associated with thyroid function parameters: A retrospective cross-sectional study. J. Endocrinol. Invest., 2020.
[PMID: 33159683]
[80]
Kim, H.J.; Kwon, H.; Yun, J.M.; Cho, B.; Park, J.H. Association Between Exposure to Ambient Air Pollution and Thyroid Function in Korean Adults. J. Clin. Endocrinol. Metab., 2020, 105(8), 105.
[http://dx.doi.org/10.1210/clinem/dgaa338] [PMID: 32491176]
[81]
Ghassabian, A.; Pierotti, L.; Basterrechea, M.; Chatzi, L.; Estarlich, M.; Fernández-Somoano, A.; Fleisch, A.F.; Gold, D.R.; Julvez, J.; Karakosta, P.; Lertxundi, A.; Lopez-Espinosa, M.J.; Mulder, T.A.; Korevaar, T.I.M.; Oken, E.; Peeters, R.P.; Rifas-Shiman, S.; Stephanou, E.; Tardón, A.; Tiemeier, H.; Vrijheid, M.; Vrijkotte, T.G.M.; Sunyer, J.; Guxens, M. Association of Exposure to Ambient Air Pollution With Thyroid Function During Pregnancy. JAMA Netw. Open, 2019, 2(10), e1912902.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.12902] [PMID: 31617922]
[82]
Howe, C.G.; Eckel, S.P.; Habre, R.; Girguis, M.S.; Gao, L.; Lurmann, F.W.; Gilliland, F.D.; Breton, C.V. Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Children’s Health Study. JAMA Netw. Open, 2018, 1(5), e182172.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.2172] [PMID: 30646156]
[83]
Janssen, B.G.; Saenen, N.D.; Roels, H.A.; Madhloum, N.; Gyselaers, W.; Lefebvre, W.; Penders, J.; Vanpoucke, C.; Vrijens, K.; Nawrot, T.S. Fetal Thyroid Function, Birth Weight, and in Utero Exposure to Fine Particle Air Pollution: A Birth Cohort Study. Environ. Health Perspect., 2017, 125(4), 699-705.
[http://dx.doi.org/10.1289/EHP508] [PMID: 27623605]
[84]
Chen, A.; Kim, S.S.; Chung, E.; Dietrich, K.N. Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health and Nutrition Examination Survey, 2007-2008. Environ. Health Perspect., 2013, 121(2), 181-186.
[http://dx.doi.org/10.1289/ehp.1205239] [PMID: 23164649]
[85]
Kim, M.J.; Kim, S.; Choi, S.; Lee, I.; Moon, M.K.; Choi, K.; Park, Y.J.; Cho, Y.H.; Kwon, Y.M.; Yoo, J.; Cheon, G.J.; Park, J. Association of exposure to polycyclic aromatic hydrocarbons and heavy metals with thyroid hormones in general adult population and potential mechanisms. Sci. Total Environ., 2021, 762, 144227.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144227] [PMID: 33373756]
[86]
Chung, S.M.; Moon, J.S.; Yoon, J.S.; Won, K.C.; Lee, H.W. Sex-specific effects of blood cadmium on thyroid hormones and thyroid function status: Korean nationwide cross-sectional study. J. Trace elem. Med. Biol., 2019, 53, 55-61.
[87]
Wang, X.; Sun, X.; Zhang, Y.; Chen, M.; Dehli Villanger, G.; Aase, H.; Xia, Y. Identifying a critical window of maternal metal exposure for maternal and neonatal thyroid function in China: A cohort study. Environ. Int., 2020, 139, 105696.
[http://dx.doi.org/10.1016/j.envint.2020.105696] [PMID: 32259758]
[88]
Di Ciaula, A. Towards 5G communication systems: Are there health implications? Int. J. Hyg. Environ. Health, 2018, 221(3), 367-375.
[http://dx.doi.org/10.1016/j.ijheh.2018.01.011] [PMID: 29402696]
[89]
López-Martín, E.; Jorge-Barreiro, F.J.; Relova-Quintero, J.L.; Salas-Sánchez, A.A.; Ares-Pena, F.J. Exposure to 2.45 GHz radiofrequency modulates calcitonin-dependent activity and HSP-90 protein in parafollicular cells of rat thyroid gland. Tissue Cell, 2021, 68, 101478.
[http://dx.doi.org/10.1016/j.tice.2020.101478] [PMID: 33373917]
[90]
Pawlak, K.; Sechman, A.; Nieckarz, Z. Plasma thyroid hormones and corticosterone levels in blood of chicken embryos and post hatch chickens exposed during incubation to 1800 MHz electromagnetic field. Int. J. Occup. Med. Environ. Health, 2014, 27(1), 114-122.
[http://dx.doi.org/10.2478/s13382-014-0222-7] [PMID: 24488772]
[91]
Koyu, A.; Cesur, G.; Ozguner, F.; Akdogan, M.; Mollaoglu, H.; Ozen, S. Effects of 900 MHz electromagnetic field on TSH and thyroid hormones in rats. Toxicol. Lett., 2005, 157(3), 257-262.
[http://dx.doi.org/10.1016/j.toxlet.2005.03.006] [PMID: 15917150]
[92]
Eşmekaya, M.A.; Seyhan, N.; Ömeroğlu, S. Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: A light, electron microscopy and immunohistochemical study. Int. J. Radiat. Biol., 2010, 86(12), 1106-1116.
[http://dx.doi.org/10.3109/09553002.2010.502960] [PMID: 20807179]
[93]
Asl, J.F.; Larijani, B.; Zakerkish, M.; Rahim, F.; Shirbandi, K.; Akbari, R. The possible global hazard of cell phone radiation on thyroid cells and hormones: A systematic review of evidences. Environ. Sci. Pollut. Res. Int., 2019, 26(18), 18017-18031.
[http://dx.doi.org/10.1007/s11356-019-05096-z] [PMID: 31062236]
[94]
Hussien, N.I.; Mousa, A.M.; Shoman, A.A. Decreased level of plasma nesfatin-1 in rats exposed to cell phone radiation is correlated with thyroid dysfunction, oxidative stress, and apoptosis. Arch. Physiol. Biochem., 2020, 1-7.
[http://dx.doi.org/10.1080/13813455.2020.1778037] [PMID: 32552170]
[95]
Mortavazi, S.; Habib, A.; Ganj-Karami, A.; Samimi-Doost, R.; Pour-Abedi, A.; Babaie, A. Alterations in TSH and Thyroid Hormones following Mobile Phone Use. Oman Med. J., 2009, 24(4), 274-278.
[http://dx.doi.org/10.5001/omj.2009.56] [PMID: 22216380]
[96]
Eskander, E.F.; Estefan, S.F.; Abd-Rabou, A.A. How does long term exposure to base stations and mobile phones affect human hormone profiles? Clin. Biochem., 2012, 45(1-2), 157-161.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.11.006] [PMID: 22138021]
[97]
Luo, J.; Li, H.; Deziel, N.C.; Huang, H.; Zhao, N.; Ma, S.; Ni, X.; Udelsman, R.; Zhang, Y. Genetic susceptibility may modify the association between cell phone use and thyroid cancer: A population-based case-control study in Connecticut. Environ. Res., 2020, 182, 109013.
[http://dx.doi.org/10.1016/j.envres.2019.109013] [PMID: 31918310]
[98]
Di Ciaula, A.; Portincasa, P. The role of environmental pollution in endocrine diseases. Endocrinology and Systemic Diseases; Portincasa, P.; Frühbeck, G., Eds.; Springer International Publishing: Switzerland, 2020.
[99]
Huang, J.; Eskenazi, B.; Bornman, R.; Rauch, S.; Chevrier, J. Maternal Peripartum Serum DDT/E and Urinary Pyrethroid Metabolite Concentrations and Child Infections at 2 Years in the VHEMBE Birth Cohort. Environ. Health Perspect., 2018, 126(6), 067006.
[http://dx.doi.org/10.1289/EHP2657] [PMID: 29906263]
[100]
Eskenazi, B.; An, S.; Rauch, S.A.; Coker, E.S.; Maphula, A.; Obida, M.; Crause, M.; Kogut, K.R.; Bornman, R.; Chevrier, J. Prenatal Exposure to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The VHEMBE Cohort, South Africa. Environ. Health Perspect., 2018, 126(4), 047004.
[http://dx.doi.org/10.1289/EHP2129] [PMID: 29648420]
[101]
Coker, E.; Chevrier, J.; Rauch, S.; Bradman, A.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Corrigendum to “Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort”. Environ. Int., 2020, 143, 106070.
[http://dx.doi.org/10.1016/j.envint.2020.106070] [PMID: 32861474]
[102]
Bao, W.; Liu, B.; Simonsen, D.W.; Lehmler, H.J. Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population. JAMA Intern. Med., 2020, 180(3), 367-374.
[http://dx.doi.org/10.1001/jamainternmed.2019.6019] [PMID: 31886824]
[103]
World Health Organization. Global report on insecticide resistance in malaria vectors: 2010-2016; World Health Organization: Geneva, 2018.
[104]
RiJk, I; van Duursen, ERT; van den Berg, M Health costs that may be associated with Endocrine Disrupting Chemicals; Institute for Risk Assessment Science, University of Utrecht: Utrech, the Netherlands, 2016.
[105]
Attina, T.M.; Hauser, R.; Sathyanarayana, S.; Hunt, P.A.; Bourguignon, J.P.; Myers, J.P.; DiGangi, J.; Zoeller, R.T.; Trasande, L. Exposure to endocrine-disrupting chemicals in the USA: A population-based disease burden and cost analysis. Lancet Diabetes Endocrinol., 2016, 4(12), 996-1003.
[http://dx.doi.org/10.1016/S2213-8587(16)30275-3] [PMID: 27765541]
[106]
Attina, T.M.; Malits, J.; Naidu, M.; Trasande, L. Racial/ethnic disparities in disease burden and costs related to exposure to endocrine-disrupting chemicals in the United States: An exploratory analysis. J. Clin. Epidemiol., 2019, 108, 34-43.
[http://dx.doi.org/10.1016/j.jclinepi.2018.11.024] [PMID: 30529005]