Saponins in Management of Hepatic Disorders: A Review

Article ID: e080921196291 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Liver disease is one of the major factors responsible for increased morbidity and mortality worldwide. Presently, limited therapeutic options are available to treat liver diseases. Moreover, allopathic medications are a double-edged sword due to their unfavorable side effects and exaggerated cost of therapy associated with the treatment. Transplantation of the liver is still in infancy state and is associated with staggering cost as well as non-accessibility of donors. Moreover, the cost of treatment is also a very significant hindrance in the treatment of liver disorders. Therefore, the focus is shifting to evaluate the potential of herbal drugs for the management of liver disorders. Although the course of treatment with the herbals is slow yet, the effects are more promising due to lesser side effects and reduced cost of therapy. Numerous plants have been reported to possess hepatoprotective activity due to the presence of phytochemicals like alkaloids, flavonoids, saponins, etc. Among these phytoconstituents, saponins are considered more promising candidates in the management of hepatic disorders. The present review is focused on the plants containing saponins used in the management of hepatic disorders with their underlying mechanisms.

Keywords: Hepatoprotective, saponins, phytochemicals, liver, ginsenosides, family.

Graphical Abstract

[1]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]
[2]
Lahon, K.; Das, S. Hepatoprotective activity of Ocimum sanctum alcoholic leaf extract against paracetamol-induced liver damage in Albino rats. Pharmacognosy Res., 2011, 3(1), 13-18.
[http://dx.doi.org/10.4103/0974-8490.79110] [PMID: 21731390]
[3]
Alan, F. An overview of the liver. HCSP Fact sheet, 2015, 1, 1-4.
[4]
Srivastava, R.; Srivastava, P. Hepatotoxicity and the role of some herbal plants in present scenario. G. J. Dig. Dis., 2018, 4, 1-4.
[http://dx.doi.org/10.4172/2472-1891.100034]
[5]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[6]
Mroueh, M.; Saab, Y.; Rizkallah, R. Hepatoprotective activity of Centaurium erythraea on acetaminophen-induced hepatotoxicity in rats. Phytother. Res., 2004, 18(5), 431-433.
[http://dx.doi.org/10.1002/ptr.1498] [PMID: 15174008]
[7]
Arumugam, A.; Nagarani, G.; Siddhuraju, P. Hepatoprotective effect of leaf extracts from Citrus hystrix and C. maxima against paracetamol induced liver injury in rats. Food Sci. Hum. Wellness, 2015, 4, 35-41.
[http://dx.doi.org/10.1016/j.fshw.2015.02.002]
[8]
Eidi, A.; Mortazavi, P.; Bazargan, M.; Zaringhalam, J. Hepatoprotective activity of cinnamon ethanolic extract against CCI4-induced liver injury in rats. EXCLI J., 2012, 11, 495-507.
[PMID: 27547174]
[9]
DeLeve, L.D.; Wang, X.; Kuhlenkamp, J.F.; Kaplowitz, N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology, 1996, 23(3), 589-599.
[http://dx.doi.org/10.1002/hep.510230326] [PMID: 8617441]
[10]
Pandit, A.; Sachdeva, T.; Bafna, P. Drug-induced hepatotoxicity: a review. J. Appl. Pharm. Sci., 2012, 02, 233-243.
[11]
Jain, S.; Dixit, V.K.; Malviya, N.; Ambawatia, V. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Amorphophallus campanulatus Roxb. tubers. Acta Pol. Pharm., 2009, 66(4), 423-428.
[PMID: 19702175]
[12]
Roy, S.D.; Das, S.; Shil, D.; Dutta, K.N. Herbal hepatoprotective agents: a review. World J. Pharm. Res., 2014, 1, 87-99.
[13]
Subramonium, A.; Pushpangadan, P. Development of phytomedicines for liver diseases. Indian J. Pharmacol., 1999, 31, 166-175.
[14]
Arige, S.S.; Arige, S.D.; Rao, L.A. A review on hepatoprotective activity. Int. J. Curr. Res., 2017, 9, 51876-51881.
[15]
Saleem, T.S.M.; Chetty, C.M.; Ramkanth, S.; Rajan, K.S.T.; Kumar, K.M.; Gautham, K. Hepatoprotective herbs- a review. Int J Res Pharm Sci., 2010, 1, 1-5.
[16]
Kumar, A. A review on hepatoprotective herbal drugs. Int. J. Res. Pharm. Chem., 2012, 2, 2231-2781.
[17]
Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev., 2013, 12, 877-893.
[http://dx.doi.org/10.1007/s11101-013-9322-4]
[18]
Oakenfull, D. Saponins in food—A review. Food Chem., 1981, 7, 19-40.
[http://dx.doi.org/10.1016/0308-8146(81)90019-4]
[19]
Nithya, T.G.; Jayanthi, J.; Ragunathan, M.G. Antioxidant activity, total phenol, flavonoid, alkaloid, tannin, and saponin contents of leaf extracts of Salvinia molesta D. S. Mitchell (1972). Asian J. Pharm. Clin. Res., 2016, 9, 200-203.
[20]
El Aziz, M.M.A.; Ashour, A.S.; Melad, A.S.G. A review on Saponins from medicinal plants: chemistry, isolation and determination. J. Nanomed. Res., 2019, 7, 282-288.
[http://dx.doi.org/10.15406/jnmr.2019.07.00199]
[21]
Desai, S.D.; Desaib, D.G.; Kaur, H. Saponins and their biological activities. Pharm. Times, 2009, 41, 13-16.
[22]
Barbosa, A.P. An overview on the biological and pharmacological activities of saponins. Int. J. Pharm. Pharm. Sci., 2014, 6, 47-50.
[23]
Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia, 2010, 81(7), 703-714.
[http://dx.doi.org/10.1016/j.fitote.2010.06.004] [PMID: 20550961]
[24]
Yu, Z.; Zhang, T.; Zhou, F.; Xiao, X.; Ding, X.; He, H.; Rang, J.; Quan, M.; Wang, T.; Zuo, M.; Xia, L. Anticancer activity of saponins from Allium chinense against the B16 melanoma and 4T1 breast carcinoma cell. Evid. Based Complement. Alternat. Med., 2015, 2015, 725023.
[http://dx.doi.org/10.1155/2015/725023] [PMID: 26146506]
[25]
Xu, X.H.; Li, T.; Fong, C.M.V.; Chen, X.; Chen, X.J.; Wang, Y.T.; Huang, M.Q.; Lu, J.J. Saponins from Chinese medicines as anticancer agents. Molecules, 2016, 21(10), 1-27.
[http://dx.doi.org/10.3390/molecules21101326] [PMID: 27782048]
[26]
Wang, D.; Huo, R.; Cui, C.; Gao, Q.; Zong, J.; Wang, Y.; Sun, Y.; Hou, R. Anticancer activity and mechanism of total saponins from the residual seed cake of Camellia oleifera Abel. in hepatoma-22 tumor-bearing mice. Food Funct., 2019, 10(5), 2480-2490.
[http://dx.doi.org/10.1039/C9FO00069K] [PMID: 30977498]
[27]
Koneri, R.B.; Samaddar, S.; Ramaiah, C.T. Antidiabetic activity of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl. Indian J. Exp. Biol., 2014, 52(1), 46-52.
[PMID: 24624483]
[28]
Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants - A review. Pathophysiology, 2015, 22(2), 95-103.
[http://dx.doi.org/10.1016/j.pathophys.2015.02.001] [PMID: 25753168]
[29]
El Barky, A.R.; Hussein, S.A.; Alm-Eldeen, A.E.; Hafez, Y.A.; Mohamed, T.M. Saponins and their potential role in diabetes mellitus. Diabetes Manag. (Lond.), 2017, 7, 148-158.
[30]
Xu, J.; Wang, S.; Feng, T.; Chen, Y.; Yang, G. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J. Cell. Mol. Med., 2018, 22(12), 6026-6038.
[http://dx.doi.org/10.1111/jcmm.13876] [PMID: 30324705]
[31]
Amoros, M.; Fauconnier, B.; Girre, R.L. In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antiviral Res., 1987, 8(1), 13-25.
[http://dx.doi.org/10.1016/0166-3542(87)90084-2] [PMID: 2825589]
[32]
Simões, C.M.; Amoros, M.; Girre, L. Mechanism of antiviral activity of triterpenoid saponins. Phytother. Res., 1999, 13(4), 323-328.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C] [PMID: 10404540]
[33]
Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother. Res., 2006, 20(6), 454-457.
[http://dx.doi.org/10.1002/ptr.1876] [PMID: 16619355]
[34]
Mandal, P.; Sinha Babu, S.P.; Mandal, N.C. Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia, 2005, 76(5), 462-465.
[http://dx.doi.org/10.1016/j.fitote.2005.03.004] [PMID: 15951137]
[35]
Yassin, N.Z.; Selim, M.A.; Melek, F.S.; Kassem, I. Pharmacological activities of saponin-containing fraction derived from Gleditsia caspica Desf. methanolic fruit extract. Pharm. Lett., 2013, 5, 247-253.
[36]
Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G.A. Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules, 2016, 21(10), 1-20.
[http://dx.doi.org/10.3390/molecules21101404] [PMID: 27775618]
[37]
Liu, L.; Wang, N.; Ma, Y.; Liu, Y.; Wen, D. Saponins from Boussingaultia gracilis prevent obesity and related metabolic impairments in diet-induced obese mice. Food Funct., 2018, 9(11), 5660-5673.
[http://dx.doi.org/10.1039/C8FO01264D] [PMID: 30302474]
[38]
Jang, K.J.; Kim, H.K.; Han, M.H.; Oh, Y.N.; Yoon, H.M.; Chung, Y.H.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.; Choi, Y.H. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Med., 2013, 31(6), 1357-1366.
[http://dx.doi.org/10.3892/ijmm.2013.1330] [PMID: 23563392]
[39]
Hassan, H.S.; Sule, M.I.; Musa, A.M.; Musa, K.Y.; Abubakar, M.S.; Hassan, A.S. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants. Afr. J. Tradit. Complement. Altern. Med., 2011, 9(2), 250-255.
[PMID: 23983342]
[40]
Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J. Food Sci., 2014, 79(5), H1018-H1023.
[http://dx.doi.org/10.1111/1750-3841.12425] [PMID: 24712559]
[41]
Grabowska, K.; Wróbel, D.; Żmudzki, P.; Podolak, I. Anti-inflammatory activity of saponins from roots of Impatiens parviflora DC. Nat. Prod. Res., 2020, 34(11), 1581-1585.
[http://dx.doi.org/10.1080/14786419.2018.1519708] [PMID: 30445861]
[42]
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[43]
Reyes-Gordillo, K.; Shah, R.; Muriel, P. Oxidative stress and inflammation in hepatic diseases: Current and future therapy. Oxid. Med. Cell. Longev., 2017, 2017, 3140673.
[http://dx.doi.org/10.1155/2017/3140673] [PMID: 28203318]
[44]
Jadeja, R.N.; Devkar, R.V.; Nammi, S. Oxidative stress in liver diseases: Pathogenesis, prevention, and therapeutics. Oxid. Med. Cell. Longev., 2017, 2017, 8341286.
[http://dx.doi.org/10.1155/2017/8341286] [PMID: 28529677]
[45]
Jingjing, S.; Xueqing, W.; Wenjun, S.; Xiaoli, B.; Changwen, L. Reducing oxidative stress and hepatoprotective effect of water extracts from Pu-erh tea on rats with high-fat diet. Food Sci. Hum. Wellness, 2016, 5, 199-206.
[http://dx.doi.org/10.1016/j.fshw.2016.09.002]
[46]
Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med., 2020, 152, 116-141.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.025] [PMID: 32156524]
[47]
Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2018, 2018, 9547613.
[http://dx.doi.org/10.1155/2018/9547613] [PMID: 29991976]
[48]
Li, R.Y.; Zhang, W.Z.; Yan, X.T.; Hou, J.G.; Wang, Z.; Ding, C.B.; Liu, W.C.; Zheng, Y.N.; Chen, C.; Li, Y.R.; Li, W. Arginyl-fructosyl-glucose, a major maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor kappab and phosphatidylinositol 3-kinase/protein kinase b signaling pathways. J. Agric. Food Chem., 2019, 67(20), 5754-5763.
[http://dx.doi.org/10.1021/acs.jafc.9b00540] [PMID: 31045365]
[49]
Ren, S.; Leng, J.; Xu, X.Y.; Jiang, S.; Wang, Y.P.; Yan, X.T.; Liu, Z.; Chen, C.; Wang, Z.; Li, W. Ginsenoside Rb1, a major saponin from Panax ginseng, exerts protective effects against acetaminophen-induced hepatotoxicity in mice. Am. J. Chin. Med., 2019, 47(8), 1815-1831.
[http://dx.doi.org/10.1142/S0192415X19500927] [PMID: 31786947]
[50]
Zardi, E.M.; Navarini, L.; Sambataro, G.; Piccinni, P.; Sambataro, F.M.; Spina, C.; Dobrina, A. Hepatic PPARs: their role in liver physiology, fibrosis and treatment. Curr. Med. Chem., 2013, 20(27), 3370-3396.
[http://dx.doi.org/10.2174/09298673113209990136] [PMID: 23746272]
[51]
Wang, N.; Kong, R.; Luo, H.; Xu, X.; Lu, J. Peroxisome proliferator-activated receptors associated with nonalcoholic fatty liver disease. PPAR Res., 2017, 2017, 6561701.
[http://dx.doi.org/10.1155/2017/6561701] [PMID: 29358945]
[52]
Liss, K.H.; Finck, B.N. PPARs and nonalcoholic fatty liver disease. Biochimie, 2017, 136, 65-74.
[http://dx.doi.org/10.1016/j.biochi.2016.11.009] [PMID: 27916647]
[53]
Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci., 2020, 21(6), 1-15.
[http://dx.doi.org/10.3390/ijms21062061] [PMID: 32192216]
[54]
Anusha, M.; Venkateswarlu, M.; Prabhakaran, V.; Taj, S.S.; Kumari, B.P.; Ranganayakulu, D. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats. Indian J. Pharmacol., 2011, 43(5), 563-567.
[http://dx.doi.org/10.4103/0253-7613.84973] [PMID: 22022001]
[55]
Xu, X.Y.; Hu, J.N.; Liu, Z.; Zhang, R.; He, Y.F.; Hou, W.; Wang, Z.Q.; Yang, G.; Li, W. Saponins (Ginsenosides) from the leaves of Panax quinquefolius ameliorated acetaminophen-induced hepatotoxicity in mice. J. Agric. Food Chem., 2017, 65(18), 3684-3692.
[http://dx.doi.org/10.1021/acs.jafc.7b00610] [PMID: 28429935]
[56]
Ning, C.; Gao, X.; Wang, C.; Huo, X.; Liu, Z.; Sun, H.; Yang, X.; Sun, P.; Ma, X.; Meng, Q.; Liu, K. Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice. Environ. Toxicol., 2018, 33(10), 1050-1060.
[http://dx.doi.org/10.1002/tox.22616] [PMID: 29964319]
[57]
Li, Y.G.; Ji, D.F.; Zhong, S.; Shi, L.G.; Hu, G.Y.; Chen, S. Saponins from Panax japonicus protect against alcohol-induced hepatic injury in mice by up-regulating the expression of GPX3, SOD1 and SOD3. Alcohol Alcohol., 2010, 45(4), 320-331.
[http://dx.doi.org/10.1093/alcalc/agq034] [PMID: 20554696]
[58]
Prasain, J.K.; Kadota, S.; Basnet, P.; Hase, K.; Namba, T. Hepatoprotective effects of Panax notoginseng: Ginsenosides -Re and -Rg(1) as its active constituents in D-galactosamine/lipopolysaccharide-induced liver injury. Phytomedicine, 1996, 2(4), 297-303.
[http://dx.doi.org/10.1016/S0944-7113(96)80072-9] [PMID: 23194765]
[59]
Tran, Q.L.; Adnyana, I.K.; Tezuka, Y.; Harimaya, Y.; Saiki, I.; Kurashige, Y.; Tran, Q.K.; Kadota, S. Hepatoprotective effect of majonoside R2, the major saponin from Vietnamese ginseng (Panax vietnamensis). Planta Med., 2002, 68(5), 402-406.
[http://dx.doi.org/10.1055/s-2002-32069] [PMID: 12058314]
[60]
Weia, X.; Gaoa, D.F.; Abec, Y.; Tanakac, Y.; Zhua, H.T.; Wanga, D. Triterpenoid saponins with hepatoprotective effects from the fresh leaves of Metapanax delavayi. Nat. Prod. Res., 2020, 34(10), 1373-1379.
[PMID: 30445878]
[61]
Wang, Y.; Zhang, C.L.; Liu, Y.F.; Liang, D.; Luo, H.; Hao, Z.Y.; Chen, R.Y.; Yu, D.Q. Hepatoprotective triterpenoids and saponins of Schefflera kwangsiensis. Planta Med., 2014, 80(2-3), 215-222.
[PMID: 24356907]
[62]
Arao, T.; Udayama, M.; Kinjo, J.; Nohara, T.; Funakoshi, T.; Kojima, S. Preventive effects of saponins from puerariae radix (the root of Pueraria lobata Ohwi) on in vitro immunological injury of rat primary hepatocyte cultures. Biol. Pharm. Bull., 1997, 20(9), 988-991.
[http://dx.doi.org/10.1248/bpb.20.988] [PMID: 9331982]
[63]
Arao, T.; Udayama, M.; Kinjo, J.; Nohara, T. Preventive effects of saponins from the Pueraria lobata root on in vitro immunological liver injury of rat primary hepatocyte cultures. Planta Med., 1998, 64(5), 413-416.
[http://dx.doi.org/10.1055/s-2006-957471] [PMID: 9690342]
[64]
Udayama, M.; Ohkawa, M.; Yoshida, N.; Kinjo, J.; Nohara, T. Structures of three new oleanene glucuronides isolated from Lathyrus palustris var. pilosus and hepatoprotective activity. Chem. Pharm. Bull. (Tokyo), 1998, 46(9), 1412-1415.
[http://dx.doi.org/10.1248/cpb.46.1412] [PMID: 9775436]
[65]
Kinjo, J.; Imagire, M.; Udayama, M.; Arao, T.; Nohara, T. Structure-hepatoprotective relationships study of soyasaponins I-IV having soyasapogenol B as aglycone. Planta Med., 1998, 64(3), 233-236.
[http://dx.doi.org/10.1055/s-2006-957416] [PMID: 9581521]
[66]
Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev., 2015, 14, 577-605.
[http://dx.doi.org/10.1007/s11101-015-9394-4]
[67]
Kokanova-Nedialkova, Z.; Nedialkov, P.T.; Momekov, G. Saponins from the roots of Chenopodium bonus-henricus L. Nat. Prod. Res., 2019, 33(14), 2024-2031.
[http://dx.doi.org/10.1080/14786419.2018.1483928] [PMID: 29882435]
[68]
Nedialkova, Z.K.; Simeonova, R.; Burdina, M.K.; Nikolov, S.; Heilmann, J.; Nedialkov, P. Triterpene saponins from Chenopodium bonus-henricus roots. Planta Med., 2013, 79, PI57.
[69]
Sun, Z.L.; Wang, Y.; Guo, M.L.; Li, Y.X. Two new hepaprotective saponins from Semen celosiae. Fitoterapia, 2010, 81(5), 375-380.
[http://dx.doi.org/10.1016/j.fitote.2009.11.004] [PMID: 19945514]
[70]
Burdina, M.S.K.; Bratkov, V.; Simeonova, R.L.; Vitcheva, V.B.; Krasteva, I.N.; Zdraveva, P.K. Protective effects of saponin mixture isolated from Astragalus monspessulanus subsp. monspessulanus on tert-butyl hydroperoxide—induced oxidative stress in isolated rat hepatocytes. Am. J. Plant Sci., 2015, 6, 1-4.
[71]
Zheng, Y.F.; Wei, J.H.; Fang, S.Q.; Tang, Y.P.; Cheng, H.B.; Wang, T.L.; Li, C.Y.; Peng, G.P. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflata. Molecules, 2015, 20(4), 6273-6283.
[http://dx.doi.org/10.3390/molecules20046273] [PMID: 25859783]
[72]
Ibrahim, M.; Khaja, M.N.; Aara, A.; Khan, A.A.; Habeeb, M.A.; Devi, Y.P.; Narasu, M.L.; Habibullah, C.M. Hepatoprotective activity of Sapindus mukorossi and Rheum emodi extracts: In vitro and in vivo studies. World J. Gastroenterol., 2008, 14(16), 2566-2571.
[http://dx.doi.org/10.3748/wjg.14.2566] [PMID: 18442207]
[73]
Rao, M.S.; Asad, B.S.; Fazil, M.; Sudharshan, R.; Rasheed, S.; Pradeep, H.; Aboobacker, S.; Thayyil, A.; Riyaz, A.; Mansoor, M.; Aleem, M.; Zeeyauddin, K.; Narasu, M.L.; Anjum, A.; Ibrahim, M. Evaluation of protective effect of Sapindus mukorossi saponin fraction on CCl(4)-induced acute hepatotoxicity in rats. Clin. Exp. Gastroenterol., 2012, 5, 129-137.
[PMID: 22888266]
[74]
Bigoniya, P.; Rana, A.C. Protective effect of Euphorbia neriifolia saponin fraction on CCl4 induced acute hepatotoxicity. Afr. J. Biotechnol., 2010, 9, 7148-7156.
[75]
Huang, B.; Fu, H.Z.; Chen, W.K.; Luo, Y.H.; Ma, S.C. Hepatoprotective triterpenoid saponins from Callicarpa nudiflora. Chem. Pharm. Bull. (Tokyo), 2014, 62(7), 695-699.
[http://dx.doi.org/10.1248/cpb.c14-00159] [PMID: 24804828]
[76]
Lee, K.J.; Choi, J.H.; Kim, H.G.; Han, E.H.; Hwang, Y.P.; Lee, Y.C.; Chung, Y.C.; Jeong, H.G. Protective effect of saponins derived from the roots of Platycodon grandiflorum against carbon tetrachloride induced hepatotoxicity in mice. Food Chem. Toxicol., 2008, 46(5), 1778-1785.
[http://dx.doi.org/10.1016/j.fct.2008.01.017] [PMID: 18291569]
[77]
Kim, J.W.; Park, S.J.; Lim, J.H.; Yang, J.W.; Shin, J.C.; Lee, S.W.; Suh, J.W.; Hwang, S.B. Triterpenoid saponins isolated from Platycodon grandiflorum inhibits Hepatitis C virus replication. Evid. Based Complement. Alternat. Med., 2013, 1-11.
[78]
Qu, L.; Xin, H.; Zheng, G.; Su, Y.; Ling, C. Hepatoprotective activity of the total saponins from Actinidia valvata Dunn root against carbon tetrachloride-induced liver damage in mice. Evid. Based Complement. Alternat. Med., 2012, 2012, 216061.
[http://dx.doi.org/10.1155/2012/216061] [PMID: 23243434]
[79]
Huang, Q.; Zhang, S.; Zheng, L.; He, M.; Huang, R.; Lin, X. Hepatoprotective effects of total saponins isolated from Taraphochlamys affinis against carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol., 2012, 50(3-4), 713-718.
[http://dx.doi.org/10.1016/j.fct.2011.12.009] [PMID: 22198606]
[80]
Chinonyelum, N.A.; Nwachukwu, C.O.; Chukwu, D.N.; Nyemelukwe, O.; Obianuju, A.; Steven, O.O. In vivo hepatoprotecting studies on saponin and alkaloid fractions isolated from Colocasia esculenta [L. Schott] leaves. Pharmacologyonline, 2017, 2, 66-74.
[81]
Smith, Y.R.A.; Adanlawo, I.G. Protective effect of saponin extract from the root of Garcinia kola (Bitter kola) against paracetamol induced hepatotoxicity in albino rat. Int. J. Med. Health Sci., 2015, 9, 130-134.
[82]
Sharma, V.; Paliwal, R. Chemoprotective role of Moringa oleifera and its isolated saponin against DMBA induced tissue damage in male mice: A histopathological analysis. Int J Drug Dev Res, 2012, 4, 215-228.
[83]
Ahmed Abdel-Reheim, M.; Messiha, B.A.S.; Abo-Saif, A.A.; Ali, A.; Safib, A. Quillaja saponaria bark saponin protects Wistar rats against ferrous sulphate-induced oxidative and inflammatory liver damage. Pharm. Biol., 2017, 55(1), 1972-1983.
[http://dx.doi.org/10.1080/13880209.2017.1345950] [PMID: 28728456]
[84]
Zhang, J.H.; Shi, M.Q.; Hai, B.H.; Bai, C.H.; Wang, J.H.; Cheng, F. Hepatoprotective effects of saponins from Rhizoma panacis majoris on hepatic fibrosis induced by carbon tetrachloride in rats. Appl. Mech. Mater., 2014, 56, 1915-1920.
[85]
Gupta, A.K.; Ganguly, P.; Majumder, U.K.; Ghosal, S. Hepatoprotective and antioxidant effects of total extracts and stereoidal saponins of Solanum xanthocarpum and Solanum nigrum in paracetamol induced hepatotoxicity in rat. Pharmacologyonline, 2009, 1, 581-585.
[86]
Zhao, X.; Cong, X.; Zheng, L.; Xu, L.; Yin, L.; Peng, J. Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol. Lett., 2012, 214(1), 69-80.
[http://dx.doi.org/10.1016/j.toxlet.2012.08.005] [PMID: 22939915]
[87]
Shao, S.Y.; Li, R.F.; Sun, H.; Li, S. New triterpenoid saponins from the leaves of Ilex chinensis and their hepatoprotective activity. Chin. J. Nat. Med., 2021, 19(5), 376-384.
[http://dx.doi.org/10.1016/S1875-5364(21)60036-5] [PMID: 33941342]
[88]
Han, B.; He, C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol. Res., 2021, 166, 105428-105437.
[http://dx.doi.org/10.1016/j.phrs.2021.105428] [PMID: 33540047]
[89]
Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology, 2021, 28, 250-272.
[http://dx.doi.org/10.3390/pathophysiology28020017]
[90]
Choudhary, N.; Khatik, G.L.; Suttee, A. The possible role of saponin in Type-II diabetes- A review. Curr. Diabetes Rev., 2021, 17(2), 107-121.
[http://dx.doi.org/10.2174/1573399816666200516173829] [PMID: 32416696]