Nanoscience & Nanotechnology-Asia

Author(s): Fatima Rasheed J.* and V. Suresh Babu

DOI: 10.2174/2210681211666210908141441

Impact of Band-gap Graded Intrinsic Layer on Single-junction Band-gap Tailored Solar Cells

Article ID: e080921196279 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objectives: The work investigates the performance of intrinsic layers with and without band-gap tailoring in single-junction amorphous silicon-based photovoltaic cells. The work proposes single-junction amorphous silicon solar cells in which band-gap grading has been done between layers as well as within each layer for the first time.

Materials & Methods: The samples of hydrogenated amorphous silicon-germanium with different mole fractions are fabricated, and their band-gaps are validated through optical characterization and material characterization. A single-junction solar cell with an intrinsic layer made up of hydrogenated amorphous silicon (aSi:H) having a band-gap of 1.6 eV is replaced by continuously graded hydrogenated amorphous silicon-germanium (aSi1-xGexH) intrinsic bottom layers having band-gaps ranging from 0.9 eV to 1.5 eV. The proposed structure has been considered as a variant of previously designed single-junction band-gap tailored structures.

Results: The suitable utilization of band-gap tailoring on the intrinsic absorber layer aids more incident photons in energy conversion and thereby attain a better short circuit current density of 19.89 mA/cm2.

Keywords: Band-gap tailoring, intrinsic, layer, mole fraction, hydrogenated amorphous silicon-germanium, short circuit, current density, conversion efficiency.

Graphical Abstract

[1]
Meier, J.; Spitznagel, J.; Kroll, U.; Bucher, C.; Fay, S.; Moriarty, T.; Shah, A. Potential of amorphous and microcystalline silicon solar cells. Thin Solid Films, 2004, 451, 518-524.
[http://dx.doi.org/10.1016/j.tsf.2003.11.014]
[2]
Arai, Y.; Ishii, M.; Shinohara, H.; Yamazaki, S. A single pin junction amorphous-silicon solar cell with conversion efficiency of 12.65%. IEEE Electron Device Lett., 1991, 12(8), 460-461.
[http://dx.doi.org/10.1109/55.119165]
[3]
Dharmadasa, I.; Chaure, N.; Tolan, G.; Samantilleke, A. Development of p[sup+], p, i, n, and n[sup+]- type CuInGase2 layers for applications in graded bandgap multilayer thin-film solar cells. J. Electrochem. Soc., 2007, 154(6), H466-H471.
[http://dx.doi.org/10.1149/1.2718401]
[4]
Carlson, D.E.; Wronski, C.R. Amorphous silicon solar cell. Appl. Phys. Lett., 1976, 28(11), 671-673.
[http://dx.doi.org/10.1063/1.88617]
[5]
Shah, A.; Schade, H.; Vanecek, M.; Meier, J.E. VallatSauvain, N.; Wyrsch, U.; Kroll, C.; Droz, J. Bailat, thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl., 2004, 12(2-3), 113-142.
[6]
Gupta, N.; Alapatt, G.; Podila, R.; Singh, R.; Poole, K. Prospects of nanostructure-based solar cells for manufacturing future generations of photovoltaic modules. Int. J. Photoenergy, 2009, 2009154059
[http://dx.doi.org/10.1155/2009/154059]
[7]
Candelise, C.; Winskel, M.; Gross, R. Implications for cdte and cigs technologies production costs of indium and tellurium scarcity. Prog. Photovolt. Res. Appl., 2012, 20(6), 816-831.
[http://dx.doi.org/10.1002/pip.2216]
[8]
Chopra, K.; Paulson, P.; Dutta, V. Thin-film solar cells: An overview. Prog. Photovolt. Res. Appl., 2004, 12(2-3), 69-92.
[http://dx.doi.org/10.1002/pip.541]
[9]
Rasheed, J.F.; Babu, V.S. Analysis, optimisation and experimental validation of n+ aSi:H/i-aSi:H/p+aSiGe:H graded band gap single junction solar cell. Results Phys., 2020, 16102940
[http://dx.doi.org/10.1016/j.rinp.2020.102940]
[10]
Rasheed, J.F.; Babu, V.S. p+ aSixC1-x: H/i-aSi: H/n+ aSi1-xGex: H graded band gap single junction solar cell with composition graded amorphous silicon carbon alloy as window layer. Mater. Today Proc., 2021, 39, 1910-1915.
[11]
Rasheed, J.F.; Babu, V.S. Performance enhancement by the introduction of additional narrow band gap bottom layer of aSi0. 64Ge0. 36: H on proposed p+ aSi: H/i-aSi: H/n+ aSi0. 73Ge0. 27: H thin film solar cells. J. Nanoelectroni. Optoelectron., 2020, 15(4), 487-497.
[12]
Babu, V.S. Investigations on optical, material and electrical properties of aSi: H and aSiGe: H in making proposed n+ aSi: H/i-aSi: H/p+ aSiGe: H graded bandgap single-junction solar cell.Nanosci. Nanotechnol. Asia,, 2020, 10(5), 709-718.
[http://dx.doi.org/10.2174/2210681209666190627152852]
[13]
Wang, G.; Shi, C.; Zhao, L.; Diao, H.; Wang, W. Fabrication of amorphous silicon-germanium thin film solar cell toward broadening long wavelength response. J. Alloys Compd., 2016, 658, 543-547.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.235]
[14]
Krajangsang, T.; Inthisang, S.; Dousse, A.; Moollakorn, A.; Hongsingthong, A.; Kittisontirak, S.; Chinnavornrungsee, P.; Limmanee, A.; Sritharathikhun, J.; Sriprapha, K. Band gap profiles of intrinsic amorphous silicon germanium films and their application to amorphous silicon germanium heterojunction solar cells. Opt. Mater., 2016, 51, 245-249.
[http://dx.doi.org/10.1016/j.optmat.2015.11.012]
[15]
Son, W.H.; Lee, S.K.; Moon, Y.S.; Lee, T.Y.; Choi, S.Y. Characteristics of amorphous silicon thin-film solar cells of a-Si: H/a-SiGe: H superlattices in different thickness for barrier and well layers. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2013, 586(1), 61-68.
[http://dx.doi.org/10.1080/15421406.2013.851502]
[16]
Matsuda, A.; Tanaka, K. Guiding principle for preparing highly photosensitive Si-based amorphous alloys. J. Non-Cryst. Solids, 1987, 97, 1367-1374.
[http://dx.doi.org/10.1016/0022-3093(87)90328-0]
[17]
Matsuda, A.; Koyama, M.; Ikuchi, N.; Imanishi, Y.; Tanaka, K. Guiding principle in the preparation of high-photosensitive hydrogenated amorphous Si–Ge alloys from glow-discharge plasma. Jpn. J. Appl. Phys., 1986, 25(1A), L54.
[http://dx.doi.org/10.1143/JJAP.25.L54]
[18]
Perrin, J.; Takeda, Y.; Hirano, N.; Matsuura, H.; Matsuda, A. Effect of ion bombardment on the growth and properties of hydrogenated amorphous silicon-germanium alloys. Jpn. J. Appl. Phys., 1989, 28(1R), 5.
[http://dx.doi.org/10.1143/JJAP.28.5]
[19]
Perrin, J.; Schmitt, J.; Hollenstein, C.; Howling, A.; Sansonnens, L. The physics of plasma-enhanced chemical vapour deposition for large-area coating: Industrial application to flat panel displays and solar cells. Plasma Phys. Contr. Fusion, 2000, 42(12B), B353.
[http://dx.doi.org/10.1088/0741-3335/42/12B/326]
[20]
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 1968, 3(1), 137-146.
[http://dx.doi.org/10.1016/0025-5408(68)90023-8]
[21]
Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 1966, 15(2), 627-637.
[22]
Sun, X.; Liu, Y.; Li, Z.; Hwang, H.L. Double p-SiO x layers to improve the efficiency of p–i–n a-SiGe: H thin film solar cells. J. Mater. Sci. Mater. Electron., 2019, 30(3), 1993-1997.
[http://dx.doi.org/10.1007/s10854-018-0470-6]
[23]
Pham, D.P.; Kim, S.; Park, J.; Le, A.H.T.; Cho, J.; Jung, J.; Iftiquar, S.M.; Yi, J. Reduction in photocurrent loss and improvement in performance of single junction solar cell due to multistep grading of hydrogenated amorphous silicon germanium active layer. Silicon, 2018, 10(3), 759-767.
[http://dx.doi.org/10.1007/s12633-016-9527-4]
[24]
Qarony, W.; Hossain, M.I.; Hossain, M.K.; Uddin, M.J.; Haque, A.; Saad, A.R.; Tsang, Y.H. Efficient amorphous silicon solar cells: Characterization, optimization, and optical loss analysis. Results Phys., 2017, 7, 4287-4293.