In vitro Cholesterol Assimilation by Bifidobacterium animalis subsp. lactis (BPL1) Probiotic Bacteria Under Intestinal Conditions

Page: [433 - 439] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Hypercholesterolemia is one of the principal causes of the development of cardiovascular diseases. Recently, probiotics consumption has also been proposed as a non-pharmacological intervention to control cholesterol concentrations.

Objective: To evaluate in vitro assimilation of cholesterol by Bifidobacterium animalis subsp. lactis (BPL1) under simulated intestinal environment in anaerobic conditions and to review and discuss potential physiological mechanisms in this context.

Methods: Bacterial viability and cholesterol assimilation were evaluated in both standard MRS and Stimulated Intestinal Fluid (SIF) medium under anaerobic conditions and in the presence or absence of cholesterol. For assimilation assays, cholesterol concentrations in the different suspensions, containing the probiotic or not, were determined by chromatography coupled to mass spectrometry.

Results: The results showed that the growth of B. lactis BPL1 under intestinal conditions is favored when cholesterol is present in the culture medium. In addition, cholesterol assimilation of up to 44.4% under intestinal and anaerobic conditions was observed.

Conclusion: Taking into account the revised literature and the experimental results presented herein, the administration of functional foodstuffs together with probiotic bacteria, such as B. lactis BPL1, could be a potentially effective option to decrease hypercholesterolemia, thus preventing the development of cardiovascular diseases. Nevertheless, further studies on mechanisms of effectiveness in animals and clinical trials are still needed.

Keywords: Bifidobacterium animalis subsp. lactis, probiotic, cholesterol, anaerobiosis, SIF, functional foodstuffs.

Graphical Abstract

[1]
Roth, G.A.; Fihn, S.D.; Mokdad, A.H.; Aekplakorn, W.; Hasegawa, T.; Lim, S.S. High total serum cholesterol, medication coverage and therapeutic control: An analysis of national health examination survey data from eight countries. Bull. World Health Organ., 2011, 89(2), 92-101.
[http://dx.doi.org/10.2471/BLT.10.079947] [PMID: 21346920]
[2]
Donnel, C.J.; Elosua, R. Factores de riesgo cardiovascular. Perspectivas derivadas del Framingham Heart Study. Rev. Esp. Cardiol., 2008, 61, 299-310.
[http://dx.doi.org/10.1157/13116658]
[3]
Beheshti, S.O.; Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Worldwide Prevalence of Familial Hypercholesterolemia: Meta-Analyses of 11 Million Subjects. J. Am. Coll. Cardiol., 2020, 75(20), 2553-2566.
[http://dx.doi.org/10.1016/j.jacc.2020.03.057] [PMID: 32439005]
[4]
Molina, M.T.; Vázquez, C.M.; Ruiz Gutiérrez, V. Cholesterol metabolism, its regulation at the hepatic and intestinal level. Grasas Aceites, 1991, 42, 298-308.
[http://dx.doi.org/10.3989/gya.1991.v42.i4.1237]
[5]
Tabas, I. Cholesterol in health and disease. J. Clin. Invest., 2002, 110(5), 583-590.
[http://dx.doi.org/10.1172/JCI0216381] [PMID: 12208856]
[6]
Karr, S. Epidemiology and management of hyperlipidemia. Am. J. Manag. Care, 2017, 23(9)(Suppl.), S139-S148.
[PMID: 28978219]
[7]
Lee, Y.; Siddiqui, W.J. Cholesterol Levels.StatPearls; StatPearls Publishing LLC: Treasure Island, FL, 2019.
[8]
Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S.; Yadav, H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res., 2012, 2012, 902917-902917.
[http://dx.doi.org/10.1155/2012/902917] [PMID: 22611376]
[9]
Márquez-Villalobos, F.A.; López-Lemus, H.L.; Reyes- Escogido, M.L.; Ramírez-Emiliano, J. Uso de probióticos para el control de la hipercolesterolemia. Archivos de medicina del deporte, 2017, 13,4, 2.
[10]
Alvarez-Olmos, M.I.; Oberhelman, R.A. Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clin. Infect. Dis., 2001, 32(11), 1567-1576.
[http://dx.doi.org/10.1086/320518] [PMID: 11340528]
[11]
Calero, C.D.Q.; Rincón, E.O.; Marqueta, P.M. Probiotics, prebiotics and synbiotics: Useful for athletes and active individuals? A systematic review. Benef. Microbes, 2020, 11(2), 135-149.
[http://dx.doi.org/10.3920/BM2019.0076] [PMID: 32073297]
[12]
Zawistowska-Rojek, A.; Tyski, S. Are Probiotic Really Safe for Humans? Pol. J. Microbiol., 2018, 67(3), 251-258.
[http://dx.doi.org/10.21307/pjm-2018-044] [PMID: 30451441]
[13]
Sanders, M.E. Probiotics: The Concept. In: WGO Handbook on Gut Microbes; World Digestive Health Day WDHD, 2014; p. 39.
[14]
Lye, H.S.; Rusul, G.; Liong, M.T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J. Dairy Sci., 2010, 93(4), 1383-1392.
[http://dx.doi.org/10.3168/jds.2009-2574] [PMID: 20338415]
[15]
Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A.; Delgado, S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front. Physiol., 2019, 10, 185-185.
[http://dx.doi.org/10.3389/fphys.2019.00185] [PMID: 30923502]
[16]
Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ, 2018, 361, k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[17]
Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol, 2018, 68, 4689-4693.
[18]
Anila, K.; Kunzes, A.; Tc, B. In vitro Cholesterol assimilation and functional enzymatic activities of putative probiotic lactobacillus sp. isolated from fermented foods/beverages of north west india. J. Nut. Food Sci., 2018, 6, 1-5.
[19]
Tomaro-Duchesneau, C.; Jones, M.L.; Shah, D.; Jain, P.; Saha, S.; Prakash, S. Cholesterol assimilation by Lactobacillus probiotic bacteria: An In vitro investigation. BioMed Res. Int., 2014, 2014, 380316.
[http://dx.doi.org/10.1155/2014/380316] [PMID: 25295259]
[20]
Benno, P.L.; Midtvedt, K.; Alam, M.; Collinder, E.; Norin, E.; Midtvedt, T. Examination of intestinal conversion of cholesterol to coprostanol in 633 healthy subjects reveals an age- and sex-dependent pattern. Microb. Ecol. Health Dis., 2005, 17, 200-204.
[21]
Belviso, S.; Giordano, M.; Dolci, P.; Zeppa, G. In vitro cholesterol-lowering activity of Lactobacillus plantarum and Lactobacillus paracasei strains isolated from the Italian Castelmagno PDO cheese. Dairy Sci. Technol., 2009, 89, 169-176.
[http://dx.doi.org/10.1051/dst/2009004]
[22]
Bordoni, A.; Amaretti, A.; Leonardi, A.; Boschetti, E.; Danesi, F.; Matteuzzi, D.; Roncaglia, L.; Raimondi, S.; Rossi, M. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl. Microbiol. Biotechnol., 2013, 97(18), 8273-8281.
[http://dx.doi.org/10.1007/s00253-013-5088-2] [PMID: 23872958]
[23]
Amat-Bou, M.; Garcia-Ribera, S.; Climent, E.; Piquer-Garcia, I.; Corripio, R.; Sanchez-Infantes, D.; Villalta, L.; Elias, M.; Jiménez-Chillarón, J.C.; Chenoll, E.; Ramón, D.; Ibañez, L.; Ramon-Krauel, M.; Lerin, C. Effects of Bifidobacterium animalis subsp. lactis (bpl1) supplementation in children and adolescents with prader-willi syndrome: a randomized crossover trial. Nutrients, 2020, 12(10), 3123.
[http://dx.doi.org/10.3390/nu12103123] [PMID: 33066107]
[24]
Lee, Y.; Ba, Z.; Roberts, R.F.; Rogers, C.J.; Fleming, J.A.; Meng, H.; Furumoto, E.J.; Kris-Etherton, P.M. Effects of Bifidobacterium animalis subsp. lactis BB-12® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: A randomized controlled trial. Nutr. J., 2017, 16(1), 39.
[http://dx.doi.org/10.1186/s12937-017-0261-6] [PMID: 28662676]
[25]
Wang, L.; Guo, M.J.; Gao, Q.; Yang, J.F.; Yang, L.; Pang, X.L.; Jiang, X.J. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore), 2018, 97(5), e9679.
[http://dx.doi.org/10.1097/MD.0000000000009679] [PMID: 29384846]
[26]
Castorena-Alba, M.M.; Vázquez-Rodríguez, J.A.; López-Cabanillas Lomelí, M.; González-Martínez, B.E. Cholesterol assimilation, acid and bile survival of probiotic bacteria isolated from food and reference strains. CYTA J. Food, 2018, 16, 36-41.
[http://dx.doi.org/10.1080/19476337.2017.1335347]
[27]
Gilliland, S.E.; Nelson, C.R.; Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol., 1985, 49(2), 377-381.
[http://dx.doi.org/10.1128/aem.49.2.377-381.1985] [PMID: 3920964]
[28]
Cani, P.D.; Delzenne, N.M. Gut Microbiota, Obesity and Associated Metabolic Disorders.WGO Handbook on Gut Microbes; World Digestive Health Day WDHD, 2014, p. 36.
[29]
Kaur, S.; Das, M. Functional foods: An overview. Food Sci. Biotechnol., 2011, 20, 861.
[http://dx.doi.org/10.1007/s10068-011-0121-7]