Surface Modification of Polybenzimidazole (PBI) with Microwave Generated Vacuum Ultraviolet (VUV) Photo-oxidation

Page: [10 - 17] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Polybenzimidazole (PBI) is used in high temperature proton exchange membrane fuel cells (HT-PEMFCs) and redox flow batteries, where proton transfer occurs with the nitrogen-containing groups in PBI, and in aerospace applications exposed to oxygen and radiation.

Objective: The objective is to investigate VUV photo-oxidation of PBI for the first time in order to incorporate polar functional groups on the surface to potentially enhance proton conductivity in HT-PEMFCs.

Methods: A low-pressure microwave discharge of Ar generated 104.8 and 106.7 nm Vacuum UV (VUV) radiation to treat PBI with VUV photo-oxidation. Analysis was done with X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Water Contact Angle (WCA) and Thermal Gravimetric Analysis (TGA) to detect changes in chemistry, surface roughness, hydrophilicity, and adhesion, respectively.

Results: XPS showed: an increase in the O concentration up to a saturation level of 15 ± 1 at %; a decrease of the C concentration by about the same amount; and little change in the N concentration. With increasing treatment time, there were significant decreases in the concentrations of C-C sp2, C-C sp3 and C=N groups, and increases in the concentration of C=O, O-C=O, O-(C=O)-O, CN, and N-C=O containing moieties. The water contact angle decreased from 83° for pristine PBI down to 43°, making the surface more hydrophilic, primarily due to the oxidation, since AFM detected no significant changes in surface roughness. TGA analysis showed an improvement of water adhesion to the treated surface.

Conclusion: Microwave generated VUV photo-oxidation is an effective technique for oxidizing the surface of PBI and increasing hydrophilicity.

Keywords: Microwave, vacuum UV (VUV), photo-oxidation, polybenzimidazole (PBI), X-ray photoelectron spectroscopy (XPS), water contact angle.

Graphical Abstract

[1]
Santhanam, K.S.V.; Press, R.P.; Miri, M.J.; Bailey, A.V.; Takacs, G.A. Introduction to Hydrogen Technology, 2nd ed; John Wiley & Sons: Hoboken, NJ, 2018.
[2]
Santhanam, K.S.V.; Takacs, G.A.; Miri, M.J.; Bailey, A.V.; Allston, T.D.; Press, R.J. Clean Energy: Hydrogen/Fuel Cells Laboratory Manual; World Scientific Publishing Co.: Singapore, 2016.
[http://dx.doi.org/10.1142/9938]
[3]
Bailey, A.; Andrews, L.; Khot, A.; Rubin, L.; Young, J.; Allston, T.D.; Takacs, G.A. Hydrogen storage experiments for an undergraduate laboratory course-Clean energy: Hydrogen/fuel cells. J. Chem. Educ., 2015, 92(4), 688-692.
[http://dx.doi.org/10.1021/ed5006294]
[5]
Haider, R.; Wen, Y.; Ma, Z-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev., 2021, 50(2), 1138-1187.
[http://dx.doi.org/10.1039/D0CS00296H] [PMID: 33245736]
[6]
Li, Q.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci., 2009, 34(5), 449-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.12.003]
[7]
Wainright, J.S.; Wang, J-T.; Savinell, R.F.; Litt, M. Acid-doped polybenzimidazoles: A new polymer electrolyte. J. Electrochem. Soc., 1995, 142(7), L121-L123.
[http://dx.doi.org/10.1149/1.2044337]
[8]
Quartarone, E.; Mustarelli, P. Polymer fuel cells based on polybenzimidazole/H3PO4. Energy Environ. Sci., 2012, 5(4), 6436-6444.
[http://dx.doi.org/10.1039/c2ee03055a]
[9]
Kondratenko, M.S.; Gallyamov, M.O.; Khokhlov, A.R. Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. Int. J. Hydrogen Energy, 2012, 37(3), 2596-2602.
[http://dx.doi.org/10.1016/j.ijhydene.2011.10.087]
[10]
Seel, D.C.; Benicewicz, B.C.; Xiao, L.; Schmidt, T.J. High-temperature polybenzimidazole-based membranes. In: Handbook of Fuel Cells – Fundamentals, Technology and Applications; Vielstich, W.; Lamm, A.; Gasteiger, H.A., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2009, pp. 300-313.
[11]
Yu, S.; Xiao, L.; Benicewicz, B.C. Durability studies of PBI‐based high temperature PEMFCs. Fuel Cells (Weinh.), 2008, 8(3-4), 165-174.
[http://dx.doi.org/10.1002/fuce.200800024]
[12]
Kim, J-R.; Yi, J.S.; Song, T-W. Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy. J. Power Sources, 2012, 220, 54-64.
[http://dx.doi.org/10.1016/j.jpowsour.2012.07.129]
[13]
Jakobsen, M.T.D.; Jensen, J.O.J.; Cleemann, L.N.; Li, Q. Durability issues and status of PBI-based fuel cells. In: High Temperature Polymer Electrolyte Membrane Fuel Cells; Li, Q.; Aili, D.; Hjuler, H.A.; Jensen, J.O., Eds.; Springer International Publishing: Switzerland, 2016, pp. 487-501.
[http://dx.doi.org/10.1007/978-3-319-17082-4_22]
[14]
Davis, R.; Chin, J.; Lin, C-C.; Petit, S. Accelerated weathering of polyaramid and polybenzimidazole firefighter protective clothing fabrics. Polym. Degrad. Stabil., 2010, 95(9), 1642-1654.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.029]
[15]
Bhatnagar, N.; Pyngrope, D.; Pradhan, R.; Jha, S.; Bhowmik, S.; Poulis, H.; Bui, V.T.; Bonin, H. Electron beam modification of space durable polymeric nano-adhesive bonding of ultra-high temperature resistant polymer. J. Polym. Eng., 2011, 31(4), 381-386.
[http://dx.doi.org/10.1515/polyeng.2011.007]
[16]
Ye, R.; Henkensmeier, D.; Yoon, S.J.; Huang, Z.; Kim, D.K.; Chang, Z.; Kim, S.; Chen, R. Redox flow batteries for energy storage: A technology review. J. Electrochem. Energy Conversion Storage, 2018, 15, 010801-010821.
[http://dx.doi.org/10.1115/1.4037248]
[17]
Bulbul, E.; Atanasov, V.; Mehlhorn, M.; Burger, M.; Chromik, A.; Haring, T.; Kerres, J. High phosphonated polypentafluorostyrene blended with polybenzimidazole: Application in vanadium redox flow battery. J. Membr. Sci., 2019, 570-571, 194-203.
[http://dx.doi.org/10.1016/j.memsci.2018.10.027]
[18]
Jung, M.; Lee, W.; Noh, C.; Konovalova, A.; Yi, G.S.; Kim, S.; Kwon, Y.; Henkensmeier, D. Blending polybenzimidazole with an anion exchange polymer increases the efficiency of vanadium redox flow batteries. J. Membr. Sci., 2019, 580, 110-116.
[http://dx.doi.org/10.1016/j.memsci.2019.03.014]
[19]
Gubler, L.; Scherer, C.G. A proton-conducting polymer membrane as solid electrolyte – function and required properties. Adv. Polym. Sci., 2008, 215, 1-14.
[http://dx.doi.org/10.1007/12_2008_156]
[20]
Chandan, A.; Hattenberger, M.; El-kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High Temperature (HT) Polymer Electrolyte Membrane Fuel Cells (PEMFC) – A Review. J. Power Sources, 2013, 231, 264-278.
[http://dx.doi.org/10.1016/j.jpowsour.2012.11.126]
[21]
Takacs, G.A.; Miri, M.J.; Kovach, T. Vacuum UV surface photo-oxidation of polymeric and other materials for improving adhesion: A critical review. Rev. Adhesion Adhesives, 2020, 8(4), 555-581.
[22]
Khot, A.; Lu, F.; Debies, T.; Takacs, G.A. Surface activation of perfluorosulfonic acid membrane used in fuel cells with vacuum UV photo-oxidation. J. Adhes. Sci. Technol., 2013, 27(3), 309-323.
[http://dx.doi.org/10.1080/01694243.2012.705525]
[23]
Shedden, D.; Atkinson, K.M.; Cisse, I.; Lutondo, S.; Roundtree, T.; Teixeira, M.; Shertok, J.; Mehan, M.; Thompson, G.K.; Gupta, S.K.; Takacs, G.A. UV photo-oxidation of polybenzimidazole (PBI). Technologies (Basel), 2020, 8(4), 52-61.
[http://dx.doi.org/10.3390/technologies8040052]
[24]
Li, X.; Toro, M.; Lu, F.; On, J.; Bailey, A.; Debies, T.; Mehan, M.; Gupta, S.K.; Takacs, G.A. Vacuum UV photo-oxidation of polystyrene. J. Adhes. Sci. Technol., 2016, 30(20), 2212-2223.
[http://dx.doi.org/10.1080/01694243.2016.1178026]
[25]
Badey, J.P.; Urbaczewski-Espunche, E.; Jugnet, Y.; Sage, D.; Minh Duc, T.; Chabert, B. Surface modification of poly(tetrafluoroethylene) by microwave plasma downstream treatment. Polymer (Guildf.), 1994, 35, 2472.
[http://dx.doi.org/10.1016/0032-3861(94)90365-4]
[26]
Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J. Mechanism of the immobilization of surfactants on polymer surfaces by means of an argon plasma treatment: influence of UV radiation. Plasmas and Polymers, 1999, 4, 159.
[http://dx.doi.org/10.1023/A:1021801009780]
[27]
Samson, J.A.R. Techniques of Vacuum Ultraviolet Spectroscopy; John Wiley & Sons: New York, 1967.
[28]
Calvert, J.G.; Pitts, J.N., Jr Photochemistry; John Wiley & Sons: New York, 1966, p. 206.
[29]
Okabe, H. Photochemistry of Small Molecules; John Wiley & Sons: New York, 1978, p. 179.
[30]
Vega, K.; Cocca, M.; Le, H.; Toro, M.; Garcia, A.; Fleischer, A.; Bailey, A.; Shertok, J.; Mehan, M.; Gupta, S.K.; Takacs, G.A. Enhancing the wettability of polybenzimidazole (PBI) to improve fuel cell performance. In: Advances in Contact Angle, Wettability and Adhesion; Mittal, K.L., Ed.; Scrivener Publishing,, 2019, 4, pp. 179-193.
[http://dx.doi.org/10.1002/9781119593294.ch9]
[31]
Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers; John Wiley & Sons: Chichester, West Sussex, UK, 1991.
[32]
Losito, L.; Malitesta, C.; De Bari, I.; Calvano, C-D. X-ray photoelectron spectroscopy characterization of poly(2,3-diaminophenazine) films electrosynthesized on platinum. Thin Solid Films, 2005, 473, 104-113.
[http://dx.doi.org/10.1016/j.tsf.2004.07.059]
[33]
Calvert, J.G.; Pitts, J.N. Photochemistry; John Wiley & Sons: New York, NY, 1966, p. 452.
[34]
Weir, N.A. Photo and photooxidation reactions of polystyrene and of ring substituted polystyrenes. Dev. Polym. Degrad, 1982, 4, 143-188.
[35]
Geuskens, G.; Baeyens-Volant, D.; Delaunois, G.; Lu-Vinh, Q.; Piret, W.; David, C. Photo-oxidation of polymers I. A quantitative study of the chemical reactions resulting from irradiation of polystyrene at 253.7 nm in the presence of oxygen. Eur. Polym. J., 1978, 14, 291-297.
[http://dx.doi.org/10.1016/0014-3057(78)90051-4]
[36]
Partridge, R.H. Vacuum-ultraviolet absorption spectrum of polystyrene. J. Chem. Phys., 1967, 47(10), 4223-4227.
[http://dx.doi.org/10.1063/1.1701603]
[37]
Truica-Marasescu, F.; Ruiz, J-C.; Wertheimer, M.R. Vacuum-ultraviolet (VUV) photo-polymerization of amine-rich thin films from ammonia-hydrocarbon gas mixtures. Plasma Process. Polym., 2012, 9(5), 473-484.
[http://dx.doi.org/10.1002/ppap.201100154]
[38]
Wells, R.K.; Royston, A.; Badyal, J.P.S. Direct evidence for the generation of phenyl radicals and crosslinking during the photolysis of a polystyrene film. Macromolecules, 1994, 27, 7465-7468.
[http://dx.doi.org/10.1021/ma00103a033]
[39]
Moss, S.J.; Jolly, A.M.; Tight, B.J. Plasma oxidation of polymers. Plasma Chem. Plasma Process., 1986, 6(4), 401-415.
[http://dx.doi.org/10.1007/BF00565552]
[40]
Finlayson-Pitts, B.J.; Pitts, J.N. Atmospheric Chemistry; John Wiley & Sons: New York, NY, 1986, pp. 459-469.
[41]
Finlayson-Pitts, B.J.; Pitts, J.N. Atmospheric Chemistry; John Wiley & Sons: New York, NY, 1986, pp. 1036-1038.
[42]
McMillen, D.F.; Golden, D.M. Hydrocarbon bond dissociation energies. Annu. Rev. Phys. Chem., 1982, 33, 493.
[http://dx.doi.org/10.1146/annurev.pc.33.100182.002425]
[43]
Slagle, I.R.; Dudich, J.F.; Gutman, D. Direct identification of reaction routes in the reaction of oxygen atoms with dimethylamine. Chem. Phys. Lett., 1979, 61(3), 620-624.
[http://dx.doi.org/10.1016/0009-2614(79)87187-0]
[44]
Davis, D.D.; Bolinger, W.; Fischer, S. Kinetic studies of the reaction of the hydroxyl free radical with aromatic compounds. I. Absolute rate constants for reaction with benzene and toluene at 300°K. J. Phys. Chem., 1975, 79(3), 293-294.
[http://dx.doi.org/10.1021/j100570a021]
[45]
Lianos, L.; Parrat, D.; Hoc, T.Q.; Duc, T.M. Secondary ion mass spectrometry time of flight and in situ X-ray photoelectron spectroscopy studies of polymer surface modifications by remote oxygen plasma treatment. J. Vac. Sci. Technol. A, 1994, 12, 2491-2498.
[http://dx.doi.org/10.1116/1.579199]