Assessing the Grip of Solar Energy Systems on Environmental Sustainability- A Review

Page: [133 - 143] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

A sustainable energy production system fulfills its goal while being environmentally, socially, and technically sound. The intermittent availability and viability of renewable energy makes this vision a gradual and long-suffering process. In the rapid result-oriented economy, concerns regarding the environment are treated with desperate solutions that may add fuel to the fire. Although substantial research has been going on in the development of emerging technologies and refinement of established systems, we need to be reminded of the larger goal in mind: a benign and sustainable environment. Closing a door on a problem and not opening several new ones is what we must yearn to achieve. Renewable energy systems and their utility may unintentionally harm a different subset of the ecosystem. Solar energy systems are a more recent candidate with a high annual growth rate and thus, are still in the nascent stage to realise the bruised potential of the technology. By 2050, 60 million tons of solar waste will be produced if it is not resolved efficiently. To achieve environmental sustainability, it is imperative to work towards recycling redundant systems, establishing producer responsibility, fulfilling social needs and optimising future technology. By integrating aspects of the research on solar energy systems, their environmental risks, and their potential to create a sustainable ecosystem, this review article attempts to cater to environmental decision making and direct the eventual research and analysis towards their original unified objective.

Keywords: Solar energy, PV energy, CSP systems, SWH systems, environment, sustainability.

Graphical Abstract

[1]
Demirtas, O. Evaluating the best renewable energy technology for sustainable energy planning. Int. J. Energy Econ. Policy, 2013, 3, 23.
[2]
Erickson, L.E. Reducing greenhouse gas emissions and improving air quality: Two global challenges. Environ. Prog. Sustain. Energy, 2017, 36(4), 982-988.
[http://dx.doi.org/10.1002/ep.12665] [PMID: 29238442]
[3]
Ritchie, H.; Roser, M. CO2 and greenhouse gas emissions. Renewable Energy-Stats. Our World Data, 2020. Available from: https://ourworldindata.org/renewable-energy
[4]
Venkatachary, S.K.; Samikannu, R.; Murugesan, S.; Dasari, N.R.; Subramaniyam, R.U. Economics and impact of recycling solar waste materials on the environment and health care. Environ. Technol. Innov., 2020, 20, 101130.
[http://dx.doi.org/10.1016/j.eti.2020.101130]
[5]
Bakhiyi, B.; Labrèche, F.; Zayed, J. The photovoltaic industry on the path to a sustainable future--environmental and occupational health issues. Environ. Int., 2014, 73, 224-234.
[http://dx.doi.org/10.1016/j.envint.2014.07.023] [PMID: 25168128]
[6]
Ritchie, H.; Roser, M. Statistics for renewable energy sources. Our World Data, 2020. Available from: https://ourworldindata.org/renewable-energy
[7]
Kannan, N. Solar energy for future world - A review. Renew. Sustain. Energy Rev., 2016, 62, 1092-1105.
[8]
Gangopadhyay, U.; Jana, S.; Das, S. State of art of solar photovoltaic technology. International Conference on Solar Energy Photovoltaics, 2013, 2013, Article ID 764132.
[9]
Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S.N. A review of safety, health and environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev., 2015, 41, 1190-1204.
[http://dx.doi.org/10.1016/j.rser.2014.08.086]
[10]
Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag., 2018, 75, 450-458.
[http://dx.doi.org/10.1016/j.wasman.2018.01.036] [PMID: 29472153]
[11]
Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev., 2000, 4(2), 157-175.
[http://dx.doi.org/10.1016/S1364-0321(99)00011-8]
[12]
Goodland, R. The Concept of Environmental Sustainability. Annu. Rev. Ecol. Syst., 1995, 26(1), 1-24.
[http://dx.doi.org/10.1146/annurev.es.26.110195.000245]
[13]
Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev., 2011, 15(3), 1513-1524.
[http://dx.doi.org/10.1016/j.rser.2010.11.037]
[14]
United Nations Sustainable Development Goals., Available from: https://www.un.org/sustainabledevelopment/sustainabledevelopment-goals/
[15]
Sukhatme, S.P.; Nayak, J.K. Solar Energy; McGraw-Hill Education: New York, 2017.
[16]
Tschopp, D.; Tian, Z.; Berberich, M.; Fan, J.; Perers, B.; Furbo, S. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Appl. Energy, 2020, 270, 114997.
[http://dx.doi.org/10.1016/j.apenergy.2020.114997]
[17]
Kwak, J.I.; Nam, S-H.; Kim, L.; An, Y-J. Potential environmental risk of solar cells: Current knowledge and future challenges. J. Hazard. Mater., 2020, 392, 122297.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122297]
[18]
Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of Perovskite solar cells. J. Phys. Chem. Lett., 2015, 6(9), 1543-1547.
[http://dx.doi.org/10.1021/acs.jpclett.5b00504] [PMID: 26263309]
[19]
Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater., 2016, 15(3), 247-251.
[http://dx.doi.org/10.1038/nmat4572] [PMID: 26906955]
[20]
Tewnion, S. Determining the Sustainability of Second Generation Photovoltaic Solar Panels: Metal Production and Recycling. Undergraduate Honours Theses; College of Sustainability, Dalhousie University: Halifax, 2019.
[21]
A solar panel diagram is worth 1000 words. Available from: http://www.solarpowerbeginner.com/solar-panel-diagram.html
[22]
Mohammad, B.A. Types of solar cells and application. Am. J. Opt. Photonics, 2015, 3(5), 94.
[http://dx.doi.org/10.11648/j.ajop.20150305.17]
[23]
Vigil-Galán, O.; Courel, M.; Andrade Arvizu, J.; Sánchez, Y.; Espindola, M.; Saucedo, E.; Seuret-Jimenez, D.; Titsworth, M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. J. Mater. Sci. Mater. Electron., 2014, 26(8), 5562-5573.
[http://dx.doi.org/10.1007/s10854-014-2196-4]
[24]
Brooks, A.E. Solar Energy-Future Energy; Elsevier: Amsterdam, 2014, pp. 383-404.
[http://dx.doi.org/10.1016/B978-0-08-099424-6.00018-1]
[25]
Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K-J.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar energy systems: A review. Sci. Total Environ., 2021, 754, 141989.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141989] [PMID: 32920388]
[26]
Chen, W.; Hong, J.; Yuan, X.; Liu, J. Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production a case study in China. J. Clean. Prod., 2015, 112, 1025-1032.
[27]
Qi, L. Effects of solar photovoltaic technology on the environment in China. Env. Sci. Pollut. Res., 2017, 24(28), 22133-22142.
[http://dx.doi.org/10.1007/s11356-017-9987-0]
[28]
Ratner, S.V.; Lychev, A.V. Evaluating environmental impacts of photovoltaic technologies using data envelopment analysis. Adv. Syst. Sci. Appl., 2019, 19(1), 12-30.
[29]
Best research-cell efficiency chart. Photovoltaic Research. Available from: https://www.nrel.gov/pv/cell-efficiency.html
[30]
Tammaro, M.; Salluzzo, A.; Rimauro, J.; Schiavo, S.; Manzo, S. Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. J. Hazard. Mater., 2016, 306, 395-405.
[31]
Panthi, G.; Bajagain, R.; An, Y-J.; Jeong, S-W. Leaching potential of chemical species from real perovskite and silicon solar cells. Process Saf. Environ. Prot., 2021, 149, 115-122.
[http://dx.doi.org/10.1016/j.psep.2020.10.035]
[32]
Meng, F.; Zhou, Y.; Gao, L.; Li, Y.; Liu, A.; Li, Y.; Zhang, C.; Fan, M.; Wei, G.; Ma, T. Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Mater. Today Energy, 2021, 19, 100590.
[http://dx.doi.org/10.1016/j.mtener.2020.100590]
[33]
Pitz-Paal, R. Solar energy- concentrating solar power. Future Energy; Elsevier: Amsterdam, 2014, pp. 405-431.
[http://dx.doi.org/10.1016/B978-0-08-099424-6.00019-3]
[34]
Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev., 2011, 15(6), 3261-3270.
[http://dx.doi.org/10.1016/j.rser.2011.04.023]
[35]
Otieno, G.A.; Loosen, A.E. An analysis of key environmental and social risks in the development of concentrated solar power projects. AIP Conference Proceedings, 2016, 1734(1), pp. 160012.
[http://dx.doi.org/10.1063/1.4949253]
[36]
Jeal, C.; Perold, V.; Ralston-Paton, S.; Ryan, P.G. Impacts of a concentrated solar power trough facility on birds and other wildlife in South Africa. Ostrich, 2019, 90(2), 129-137.
[http://dx.doi.org/10.2989/00306525.2019.1581296]
[37]
Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ., 2021, 759, 143528.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143528] [PMID: 33234276]
[38]
Hoffacker, M.K.; Allen, M.F.; Hernandez, R.R. Land-sparing opportunities for solar energy development in agricultural landscapes: A case study of the great central Valley, CA, United States. Environ. Sci. Technol., 2017, 51(24), 14472-14482.
[http://dx.doi.org/10.1021/acs.est.7b05110] [PMID: 29254337]
[39]
Gray, A.; Boehm, R.; Stone, K.W. Modeling a passive cooling system for photovoltaic cells under concentration. ASME/JSME 2007Thermal Engineering Heat Transfer Summer Conference, ASMEDC Vancouver, British Columbia, Canada, 2007, pp. 447- 454.
[http://dx.doi.org/10.1115/HT2007-32693]
[40]
McCormick, P.G.; Suehrcke, H. The effect of intermittent solar radiation on the performance of PV systems. Sol. Energy, 2018, 171, 667-674.
[http://dx.doi.org/10.1016/j.solener.2018.06.043]
[41]
Hudon, K. Solar Energy - Water Heating. Future Energy: Improved, Sustainable and Clean Options; Elsevier: Amsterdam, 2014, pp. 433-451.
[http://dx.doi.org/10.1016/B978-0-08-099424-6.00020-X]
[42]
EGEE 102: Energy conservation for environmental protection. Available from: https://www.eeducation. psu.edu/egee102/node/2097
[43]
Chen, X.; Wang, W.; Luo, D.; Zhu, C. Performance evaluation and optimization of a building-integrated photovoltaic/thermal solar water heating system for exterior shading: a case study in South China. Appl. Sci. (Basel), 2019, 9(24), 5395.
[http://dx.doi.org/10.3390/app9245395]
[44]
Soloha, R.; Pakere, I.; Blumberga, D. Solar energy use in district heating systems. A case study in Latvia. Energy, 2017, 137, 586-594.
[http://dx.doi.org/10.1016/j.energy.2017.04.151]
[45]
Kylili, A.; Fokaides, P.A.; Ioannides, A.; Kalogirou, S. Environmental assessment of solar thermal systems for the industrial sector. J. Clean. Prod., 2018, 176, 99-109.
[http://dx.doi.org/10.1016/j.jclepro.2017.12.150]
[46]
Weckend, S.; Wade, A.; Heath, G.A. End of Life Management: Solar Photovoltaic Panels; International Energy Agency; IEA: Paris, France, 2016.
[http://dx.doi.org/10.2172/1561525]
[47]
Latunussa, C.E.L.; Ardente, F.; Blengini, G.A.; Mancini, L. Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells, 2016, 156, 101-111.
[http://dx.doi.org/10.1016/j.solmat.2016.03.020]
[48]
Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A review of recycling processes for photovoltaic modules. Solar Panels and Photovoltaic Materials; Zaidi, B., Ed.; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.74390]
[49]
Gönen, Ç.; Kaplanoğlu, E. Environmental and economic evaluation of solar panel wastes recycling. Waste Manag. Res., 2019, 37(4), 412-418.
[http://dx.doi.org/10.1177/0734242X19826331] [PMID: 30786832]
[50]
Mahmoudi, S.; Huda, N.; Alavi, Z.; Islam, M.T.; Behnia, M. Endof-life photovoltaic modules: a systematic quantitative literature review. Resour. Conserv. Recycling, 2019, 146, 1-16.
[http://dx.doi.org/10.1016/j.resconrec.2019.03.018]
[51]
Maani, T.; Celik, I.; Heben, M.J.; Ellingson, R.J.; Apul, D. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Sci. Total Environ., 2020, 735, 138827.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138827] [PMID: 32464407]
[52]
Tsanakas, J.A.; van der Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a circular supply chain for PV modules: Review of today’s challenges in PV recycling, refurbishment and re-certification. Prog. Photovolt. Res. Appl., 2020, 28(6), 454-464.
[53]
Tao, M.; Fthenakis, V.; Ebin, B.; Steenari, B.; Butler, E.; Sinha, P.; Corkish, R.; Wambach, K.; Simon, E.S. Major challenges and opportunities in silicon solar module recycling. Prog. Photovolt. Res. Appl., 2020, 28(10), 1077-1088.
[http://dx.doi.org/10.1002/pip.3316]
[54]
Shin, J.; Park, J.; Park, N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Sol. Energy Mater. Sol. Cells, 2017, 162, 1-6.
[http://dx.doi.org/10.1016/j.solmat.2016.12.038]
[55]
Wang, T.; Hsiao, J.; Du, C. Recycling of materials from silicon base solar cell module. 38th IEEE Photovolt. Spec. Conf., 2012.
[http://dx.doi.org/10.1109/PVSC.2012.6318071]
[56]
Doni, A.; Dughiero, F. Electrothermal heating process applied to C-Si PV recycling. 38th IEEE Photovolt. Spec. Conf., 2012.
[http://dx.doi.org/10.1109/PVSC.2012.6317715]
[57]
Marwede, M.; Berger, W.; Schlummer, M.; Mäurer, A.; Reller, A. Recycling paths for thin-film chalcogenide photovoltaic waste - current feasible processes. Renew. Energy, 2013, 55, 220-229.
[http://dx.doi.org/10.1016/j.renene.2012.12.038]
[58]
Augustine, B.; Remes, K.; Lorite, G.S.; Varghese, J.; Fabritius, T. Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment. Sol. Energy Mater. Sol. Cells, 2019, 194, 74-82.
[http://dx.doi.org/10.1016/j.solmat.2019.01.041]
[59]
Huang, L.; Xu, J.; Sun, X.; Xu, R.; Du, Y.; Ni, J.; Cai, H.; Li, J.; Hu, Z.; Zhang, J. New films on old substrates: toward green and sustainable energy production via recycling of functional components from degraded perovskite solar cells. ACS Sustain. Chem. & Eng., 2017, 5.
[http://dx.doi.org/10.1021/acssuschemeng.6b03089]
[60]
Islam, M.T.; Nizami, M.S.H.; Mahmoudi, S.; Huda, N. Reverse logistics network design for waste solar photovoltaic panels: A case study of New South Wales councils in Australia. Waste Manag. Res., 2021, 39(2), 386-395.
[61]
Hansen, U.E.; Nygaard, I.; Dal Maso, M. The dark side of the sun: solar e-waste and environmental upgrading in the off-grid solar PV value chain. Ind. Innov., 2021, 28(1), 58-78.
[http://dx.doi.org/10.1080/13662716.2020.1753019 ]
[62]
Vicente, A.; Águas, H.; Mateus, T.; Araújo, A.; Lyubchyk, A.; Siitonen, S.; Fortunato, E.; Martins, R. Solar cells for selfsustainable intelligent packaging. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(25), 13226-13236.
[http://dx.doi.org/10.1039/C5TA01752A ]
[63]
Filson, P.B.; Dawson-Andoh, B.E.; Schwegler-Berry, D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem., 2009, 11(11), 1808-1814.
[http://dx.doi.org/10.1039/b915746h]
[64]
Zhou, Y.; Fuentes-Hernandez, C.; Khan, T.M.; Liu, J-C.; Hsu, J.; Shim, J.W.; Dindar, A.; Youngblood, J.P.; Moon, R.J.; Kippelen, B. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep., 2013, 3, 1536.
[http://dx.doi.org/10.1038/srep01536] [PMID: 23524333]
[65]
Lindhqvist, T. Extended producer responsibility in cleaner production: policy principle to promote environmental improvements of product systems, Doctoral Dissertation, International Institute for Industrial Environmental Economics, Lund, May 2000.
[66]
Organisation for Economic Co-operation and Development (OECD). Available from: https://www.oecd.org/development/extendedproducer-responsibility-9789264256385-en.htm
[67]
Tao, J.; Yu, S. Review on Feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells, 2015, 141, 108-124.
[http://dx.doi.org/10.1016/j.solmat.2015.05.005]
[68]
Khetriwal, D.S.; Kraeuchi, P.; Widmer, R. Producer responsibility for e-waste management: key issues for consideration – learning from the Swiss experience. J. Environ. Manage., 2009, 90(1), 153-165.
[http://dx.doi.org/10.1016/j.jenvman.2007.08.019] [PMID: 18162284]
[69]
Lu, L-T. Photovoltaic Waste Management and Implementing Extended Producer Responsibility in the Solar Industry in California. Master of Science Dissertation, San Jose State University: San Jose, 2019.
[http://dx.doi.org/10.31979/etd.hqkv-9v4q]
[70]
Yu, M.; Halog, A. Solar photovoltaic development in Australia-a life cycle sustainability assessment study. Sustainability, 2015, 7(2), 1213-1247.
[http://dx.doi.org/10.3390/su7021213]
[71]
Stiftung, E.A.R. National register for waste electric equipment., Available from: https://www.stiftung-ear.de/en/https://www.stiftung-ear.de/de/startseite
[72]
PV Waste & Legislation. Solar Waste / European WEEE Directive. Available from: http://www.solarwaste.eu/pv-waste-legislation/
[73]
McDonald, N.C.; Pearce, J.M. Producer responsibility and recycling solar photovoltaic modules. Energy Policy, 2010, 38(11), 7041-7047.
[http://dx.doi.org/10.1016/j.enpol.2010.07.023]
[74]
Parris, T.M.; Kates, R.W. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour., 2003, 28(1), 559-586.
[http://dx.doi.org/10.1146/annurev.energy.28.050302.105551]
[75]
United Nations Department of Economic and Social Affairs Sustainable Development. Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all. Available from: https://sdgs.un.org/goals/goal7
[76]
United Nations Development Programme. Goal 7: Affordable and Clean Energy. Available from: https://www.undp.org/content/undp/en/home/sustainabledevelopment-goals/goal-7-affordable-and-clean-energy.html
[77]
Corona, B.; Bozhilova‐Kisheva, K.P.; Olsen, S.I.; Miguel, G.S. Social Life Cycle Assessment of a concentrated solar power plant in spain: a methodological proposal. J. Ind. Ecol., 2017, 21(6), 1566-1577.
[http://dx.doi.org/10.1111/jiec.12541]
[78]
Council on Energy, Environment and Water. Powering Jobs Census 2019: Focus on India, July 2019. Available from: https://www.ceew.in/publications/powering-jobs-census-2019-focus-india
[79]
Caldés, N.; Rodriguez-Serrano, I. Potential contribution of concentrated solar power in meeting the sustainable development goals. AIP Conf. Proc., 2018, 2033(1), 120001.
[http://dx.doi.org/10.1063/1.5067130]
[80]
Kumar, A.; Ferdous, R.; Luque-Ayala, A.; McEwan, C.; Power, M.; Turner, B.; Bulkeley, H. Solar energy for all? Understanding the successes and shortfalls through a critical comparative assessment of Bangladesh, Brazil, India, Mozambique, Sri Lanka and South Africa. Energy Res. Soc. Sci., 2019, 48, 166-176.
[http://dx.doi.org/10.1016/j.erss.2018.10.005]