Alzheimer’s Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration

Article ID: e060921196185 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick’s disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aβ- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.

Keywords: Alzheimer’s disease, tauopathies, natural compounds, mechanism of action, Tau kinase inhibitors, Tau aggregation inhibitors, HSP90 chaperone modulators, autophagy enhancers.

Graphical Abstract

[1]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[2]
Ballatore, C.; Lee, V.M-Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[3]
Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging, 1995, 16(3), 271-278.
[http://dx.doi.org/10.1016/0197-4580(95)00021-6] [PMID: 7566337]
[4]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3 Pt 1), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[5]
Wilcock, G.K.; Esiri, M.M. Plaques, tangles and dementia. A quantitative study. J. Neurol. Sci., 1982, 56(2-3), 343-356.
[http://dx.doi.org/10.1016/0022-510X(82)90155-1] [PMID: 7175555]
[6]
Bloom, G.S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[7]
Gómez-Isla, T.; Hollister, R.; West, H.; Mui, S.; Growdon, J.H.; Petersen, R.C.; Parisi, J.E.; Hyman, B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol., 1997, 41(1), 17-24.
[http://dx.doi.org/10.1002/ana.410410106] [PMID: 9005861]
[8]
Selkoe, D.J.; Schenk, D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 2003, 43, 545-584.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140248] [PMID: 12415125]
[9]
Goedert, M. Tau gene mutations and their effects. Mov. Disord., 2005, 20(12), S45-S52.
[http://dx.doi.org/10.1002/mds.20539]
[10]
Strang, K.H.; Golde, T.E.; Giasson, B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest., 2019, 99(7), 912-928.
[http://dx.doi.org/10.1038/s41374-019-0197-x] [PMID: 30742061]
[11]
Hong, M.; Zhukareva, V.; Vogelsberg-Ragaglia, V.; Wszolek, Z.; Reed, L.; Miller, B.I.; Geschwind, D.H.; Bird, T.D.; McKeel, D.; Goate, A.; Morris, J.C.; Wilhelmsen, K.C.; Schellenberg, G.D.; Trojanowski, J.Q.; Lee, V.M. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 1998, 282(5395), 1914-1917.
[http://dx.doi.org/10.1126/science.282.5395.1914] [PMID: 9836646]
[12]
Spillantini, M.G.; Goedert, M.; Crowther, R.A.; Murrell, J.R.; Farlow, M.R.; Ghetti, B. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 4113-4118.
[http://dx.doi.org/10.1073/pnas.94.8.4113] [PMID: 9108114]
[13]
Bassil, F.; Brown, H.J.; Pattabhiraman, S.; Iwasyk, J.E.; Maghames, C.M.; Meymand, E.S.; Cox, T.O.; Riddle, D.M.; Zhang, B.; Trojanowski, J.Q.; Lee, V.M-Y. Amyloid-beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and tau in a mouse model of lewy body disorders with Aβ pathology. Neuron, 2020, 105(2), 260-275.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.10.010] [PMID: 31759806]
[14]
Ittner, A.; Ittner, L.M. Dendritic Tau in Alzheimer’s Disease. Neuron, 2018, 99(1), 13-27.
[http://dx.doi.org/10.1016/j.neuron.2018.06.003] [PMID: 30001506]
[15]
Binder, L.I.; Frankfurter, A.; Rebhun, L.I. The distribution of tau in the mammalian central nervous system. J. Cell Biol., 1985, 101(4), 1371-1378.
[http://dx.doi.org/10.1083/jcb.101.4.1371] [PMID: 3930508]
[16]
Andreadis, A.; Brown, W.M.; Kosik, K.S. Structure and novel exons of the human tau gene. Biochemistry, 1992, 31(43), 10626-10633.
[http://dx.doi.org/10.1021/bi00158a027] [PMID: 1420178]
[17]
Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 1989, 3(4), 519-526.
[http://dx.doi.org/10.1016/0896-6273(89)90210-9] [PMID: 2484340]
[18]
Panda, D.; Samuel, J.C.; Massie, M.; Feinstein, S.C.; Wilson, L. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9548-9553.
[http://dx.doi.org/10.1073/pnas.1633508100] [PMID: 12886013]
[19]
Hasegawa, M.; Smith, M.J.; Goedert, M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett., 1998, 437(3), 207-210.
[http://dx.doi.org/10.1016/S0014-5793(98)01217-4] [PMID: 9824291]
[20]
Arakhamia, T.; Lee, C.E.; Carlomagno, Y.; Duong, D.M.; Kundinger, S.R.; Wang, K.; Williams, D.; DeTure, M.; Dickson, D.W.; Cook, C.N.; Seyfried, N.T.; Petrucelli, L.; Fitzpatrick, A.W.P. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell, 2020, 180(4), 633-644.e12.
[http://dx.doi.org/10.1016/j.cell.2020.01.027] [PMID: 32032505]
[21]
Hinz, F.I.; Geschwind, D.H. Molecular genetics of neurodegenerative dementias. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a023705.
[http://dx.doi.org/10.1101/cshperspect.a023705] [PMID: 27940516]
[22]
Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol., 2011, 70(11), 960-969.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[23]
Wharton, S.B.; Minett, T.; Drew, D.; Forster, G.; Matthews, F.; Brayne, C.; Ince, P.G. Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study. Acta Neuropathol. Commun., 2016, 4, 11.
[http://dx.doi.org/10.1186/s40478-016-0275-x] [PMID: 26857919]
[24]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[25]
Min, S.W.; Cho, S.H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; Meyers, D.; Cole, P.A.; Ott, M.; Gan, L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 2010, 67(6), 953-966.
[http://dx.doi.org/10.1016/j.neuron.2010.08.044] [PMID: 20869593]
[26]
Wang, J.Z.; Grundke-Iqbal, I.; Iqbal, K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat. Med., 1996, 2(8), 871-875.
[http://dx.doi.org/10.1038/nm0896-871] [PMID: 8705855]
[27]
Mena, R.; Edwards, P.C.; Harrington, C.R.; Mukaetova-Ladinska, E.B.; Wischik, C.M. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol., 1996, 91(6), 633-641.
[http://dx.doi.org/10.1007/s004010050477] [PMID: 8781663]
[28]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[29]
Maeda, S.; Takashima, A. Tau oligomers. Adv. Exp. Med. Biol., 2019, 1184, 373-380.
[http://dx.doi.org/10.1007/978-981-32-9358-8_27] [PMID: 32096050]
[30]
Crowther, R.A.; Goedert, M. Abnormal tau-containing filaments in neurodegenerative diseases. J. Struct. Biol., 2000, 130(2-3), 271-279.
[http://dx.doi.org/10.1006/jsbi.2000.4270] [PMID: 10940231]
[31]
Falcon, B.; Zhang, W.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Ghetti, B.; Scheres, S.H.W.; Goedert, M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature, 2018, 561(7721), 137-140.
[http://dx.doi.org/10.1038/s41586-018-0454-y] [PMID: 30158706]
[32]
Calcul, L.; Zhang, B.; Jinwal, U.K.; Dickey, C.A.; Baker, B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem., 2012, 4(13), 1751-1761.
[http://dx.doi.org/10.4155/fmc.12.124] [PMID: 22924511]
[33]
Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 898(898), 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[34]
Iqbal, K.; Liu, F.; Gong, C.X. Recent developments with tau-based drug discovery. Expert Opin. Drug Discov., 2018, 13(5), 399-410.
[http://dx.doi.org/10.1080/17460441.2018.1445084] [PMID: 29493301]
[35]
Matsuo, E.S.; Shin, R.W.; Billingsley, M.L.; Van deVoorde, A.; O’Connor, M.; Trojanowski, J.Q.; Lee, V.M. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron, 1994, 13(4), 989-1002.
[http://dx.doi.org/10.1016/0896-6273(94)90264-X] [PMID: 7946342]
[36]
Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat. Immunol., 2009, 10(4), 356-360.
[http://dx.doi.org/10.1038/ni.1701] [PMID: 19295632]
[37]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[38]
Johnson, G.V.W.; Stoothoff, W.H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci., 2004, 117(Pt 24), 5721-5729.
[http://dx.doi.org/10.1242/jcs.01558] [PMID: 15537830]
[39]
Gong, C-X.; Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem., 2008, 15(23), 2321-2328.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[40]
Lucas, J.J.; Hernández, F.; Gómez-Ramos, P.; Morán, M.A.; Hen, R.; Avila, J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J., 2001, 20(1-2), 27-39.
[http://dx.doi.org/10.1093/emboj/20.1.27] [PMID: 11226152]
[41]
Lee, K.Y.; Clark, A.W.; Rosales, J.L.; Chapman, K.; Fung, T.; Johnston, R.N. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci. Res., 1999, 34(1), 21-29.
[http://dx.doi.org/10.1016/S0168-0102(99)00026-7] [PMID: 10413323]
[42]
Tseng, H.C.; Zhou, Y.; Shen, Y.; Tsai, L.H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett., 2002, 523(1-3), 58-62.
[http://dx.doi.org/10.1016/S0014-5793(02)02934-4] [PMID: 12123804]
[43]
Comstock, M.J.; Comstock, M.J. Human Medicinal Agents from Plants, Copyright, 1993 Advisory Board, Foreword. In Human Medicinal Agents from Plants ACS Symposium series Acs symposium series, 1993, 534, pp. i-vi.
[44]
Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D.; Ruiz, D.; Saleda, J.; Martinez, M.; Carillo, L.; Walker, K.; Kuhlman, A.; Townesmith, A. Toxicity of medicinal plants used in traditional medicine in Northern Peru. J. Ethnopharmacol., 2011, 137(1), 121-140.
[http://dx.doi.org/10.1016/j.jep.2011.04.071] [PMID: 21575699]
[45]
Lee, K-H. Antineoplastic Agents and Their Analogues from Chinese Traditional Medicine. In: Human Medicinal Agents from Plants; ACS Symp. Ser; , 1993; 534, pp. 170-190.
[http://dx.doi.org/10.1021/bk-1993-0534.ch012]
[46]
Han, J. Traditional Chinese medicine and the search for new antineoplastic drugs. J. Ethnopharmacol., 1988, 24(1), 1-17.
[http://dx.doi.org/10.1016/0378-8741(88)90135-3] [PMID: 3059066]
[47]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[48]
Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Wu, Y.Z.; Mandelkow, E-M.; Eisenbrand, G.; Meijer, L. Indirubins inhibit glycogen synthase kinase-3 β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem., 2001, 276(1), 251-260.
[http://dx.doi.org/10.1074/jbc.M002466200] [PMID: 11013232]
[49]
Patrick, G.N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402(6762), 615-622.
[http://dx.doi.org/10.1038/45159] [PMID: 10604467]
[50]
Zhang, S.G.; Wang, X.S.; Zhang, Y.D.; Di, Q.; Shi, J.P.; Qian, M.; Xu, L.G.; Lin, X.J.; Lu, J. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen. Res., 2016, 11(6), 988-993.
[http://dx.doi.org/10.4103/1673-5374.184500] [PMID: 27482230]
[51]
Martin, L.; Magnaudeix, A.; Wilson, C.M.; Yardin, C.; Terro, F. The new indirubin derivative inhibitors of glycogen synthase kinase-3, 6-BIDECO and 6-BIMYEO, prevent tau phosphorylation and apoptosis induced by the inhibition of protein phosphatase-2A by okadaic acid in cultured neurons. J. Neurosci. Res., 2011, 89(11), 1802-1811.
[http://dx.doi.org/10.1002/jnr.22723] [PMID: 21826701]
[52]
Chen, L.; Huang, C.; Shentu, J.; Wang, M.; Yan, S.; Zhou, F.; Zhang, Z.; Wang, C.; Han, Y.; Wang, Q.; Cui, W. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio) attenuates aβ oligomer-induced cognitive impairments in mice. Front. Mol. Neurosci., 2017, 10, 393.
[http://dx.doi.org/10.3389/fnmol.2017.00393] [PMID: 29234273]
[53]
Durairajan, S.S.K.; Huang, Y.Y.; Yuen, P.Y.; Chen, L.L.; Kwok, K.Y.; Liu, L.F.; Song, J.X.; Han, Q.B.; Xue, L.; Chung, S.K.; Huang, J.D.; Baum, L.; Senapati, S.; Li, M. Effects of Huanglian-Jie-Du-Tang and its modified formula on the modulation of amyloid-β precursor protein processing in Alzheimer’s disease models. PLoS One, 2014, 9(3), e92954.
[http://dx.doi.org/10.1371/journal.pone.0092954] [PMID: 24671102]
[54]
Durairajan, S.S.K.; Iyaswamy, A.; Shetty, S.G.; Kammella, A.K.; Malampati, S.; Shang, W.; Yang, C.; Song, J.; Chung, S.; Huang, J.; Ilango, K.; Han, Q.B.; Li, M. A modified formulation of Huanglian-Jie-Du-Tang reduces memory impairments and β-amyloid plaques in a triple transgenic mouse model of Alzheimer’s disease. Sci. Rep., 2017, 7(1), 6238.
[http://dx.doi.org/10.1038/s41598-017-06217-9] [PMID: 28740171]
[55]
Durairajan, S.S.K.; Li, M.; Chung, S.K.; Han, Q.B.; Iyaswamy, A.; Sreenivasmurthy, S.G.; Malampati, S.; Kammala, A.K. Modified Huang-Lian-Jie-Du-Tang and its combination with memantine for Alzheimer disease: an in vivo study (Abridged Secondary Publication), 2020, Suppl 7(6), 33-36.
[PMID: 33229617]
[56]
Pang, B.; Zhao, L-H.; Zhou, Q.; Zhao, T.Y.; Wang, H.; Gu, C-J.; Tong, X.L. Application of berberine on treating type 2 diabetes mellitus. Int. J. Endocrinol., 2015, 2015, 905749.
[http://dx.doi.org/10.1155/2015/905749] [PMID: 25861268]
[57]
Durairajan, S.S.K.; Liu, L.F.; Lu, J-H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X-S.; Huang, J-D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.016] [PMID: 22459600]
[58]
Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670] [PMID: 31810131]
[59]
Wang, S.; He, B.; Hang, W.; Wu, N.; Xia, L.; Wang, X.; Zhang, Q.; Zhou, X.; Feng, Z.; Chen, Q.; Chen, J. Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring pi3 k/akt/gsk3β pathway. J. Alzheimers Dis., 2018, 65(4), 1385-1400.
[http://dx.doi.org/10.3233/JAD-180497] [PMID: 30175975]
[60]
Frost, D.; Meechoovet, B.; Wang, T.; Gately, S.; Giorgetti, M.; Shcherbakova, I.; Dunckley, T. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One, 2011, 6(5), e19264.
[http://dx.doi.org/10.1371/journal.pone.0019264] [PMID: 21573099]
[61]
Kimura, R.; Kamino, K.; Yamamoto, M.; Nuripa, A.; Kida, T.; Kazui, H.; Hashimoto, R.; Tanaka, T.; Kudo, T.; Yamagata, H.; Tabara, Y.; Miki, T.; Akatsu, H.; Kosaka, K.; Funakoshi, E.; Nishitomi, K.; Sakaguchi, G.; Kato, A.; Hattori, H.; Uema, T.; Takeda, M. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet., 2007, 16(1), 15-23.
[http://dx.doi.org/10.1093/hmg/ddl437] [PMID: 17135279]
[62]
Park, J.; Yang, E.J.; Yoon, J.H.; Chung, K.C. Dyrk1A overexpression in immortalized hippocampal cells produces the neuropathological features of Down syndrome. Mol. Cell. Neurosci., 2007, 36(2), 270-279.
[http://dx.doi.org/10.1016/j.mcn.2007.07.007] [PMID: 17720532]
[63]
Mandelkow, E.M.; Schweers, O.; Drewes, G.; Biernat, J.; Gustke, N.; Trinczek, B.; Mandelkow, E. Structure, microtubule interactions, and phosphorylation of tau protein. Ann. N. Y. Acad. Sci., 1996, 777, 96-106.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb34407.x] [PMID: 8624133]
[64]
Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J. Biol. Chem., 2010, 285(40), 30851-30860.
[http://dx.doi.org/10.1074/jbc.M110.110957] [PMID: 20663882]
[65]
Augustinack, J.C.; Schneider, A.; Mandelkow, E.M.; Hyman, B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol., 2002, 103(1), 26-35.
[http://dx.doi.org/10.1007/s004010100423] [PMID: 11837744]
[66]
Jin, F.; Wu, Q.; Lu, Y.F.; Gong, Q-H.; Shi, J.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. J. Pharm. (Cairo), 2008, 600(1-3), 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[67]
Parker, J.A.; Arango, M.; Abderrahmane, S.; Lambert, E.; Tourette, C.; Catoire, H.; Néri, C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet., 2005, 37(4), 349-350.
[http://dx.doi.org/10.1038/ng1534] [PMID: 15793589]
[68]
Barber, S.C.; Higginbottom, A.; Mead, R.J.; Barber, S.; Shaw, P.J. An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic. Biol. Med., 2009, 46(8), 1127-1138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.019] [PMID: 19439221]
[69]
Schweiger, S.; Matthes, F.; Posey, K.; Kickstein, E.; Weber, S.; Hettich, M.M.; Pfurtscheller, S.; Ehninger, D.; Schneider, R.; Krauß, S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci. Rep., 2017, 7(1), 13753.
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[70]
Trockenbacher, A.; Suckow, V.; Foerster, J.; Winter, J.; Krauss, S.; Ropers, H.H.; Schneider, R.; Schweiger, S. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat. Genet., 2001, 29(3), 287-294.
[http://dx.doi.org/10.1038/ng762] [PMID: 11685209]
[71]
Shati, A.A.; Alfaifi, M.Y. Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced-inhibition of GSK3β. Neurochem. Res., 2019, 44(2), 357-373.
[http://dx.doi.org/10.1007/s11064-018-2683-8] [PMID: 30478674]
[72]
Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2017, 1403(1), 142-149.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[73]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[74]
Rajput, S.A.; Wang, X.Q.; Yan, H.C. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed. Pharmacother., 2021, 138, 111511.
[http://dx.doi.org/10.1016/j.biopha.2021.111511] [PMID: 33744757]
[75]
Gong, E.J.; Park, H.R.; Kim, M.E.; Piao, S.; Lee, E.; Jo, D.G.; Chung, H.Y.; Ha, N.C.; Mattson, M.P.; Lee, J. Morin attenuates tau hyperphosphorylation by inhibiting GSK3β. Neurobiol. Dis., 2011, 44(2), 223-230.
[http://dx.doi.org/10.1016/j.nbd.2011.07.005] [PMID: 21782947]
[76]
Yang, C.C.; Kuai, X.X.; Gao, W.B.; Yu, J.C.; Wang, Q.; Li, L.; Zhang, L. Morroniside-induced PP2A activation antagonizes tau hyperphosphorylation in a cellular model of neurodegeneration. J. Alzheimers Dis., 2016, 51(1), 33-44.
[http://dx.doi.org/10.3233/JAD-150728] [PMID: 26836014]
[77]
Medina, M.; Avila, J.; Villanueva, N. Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. Mar. Drugs, 2013, 11(5), 1656-1668.
[http://dx.doi.org/10.3390/md11051656] [PMID: 23697949]
[78]
Zhang, Z-R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: a review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 919616.
[http://dx.doi.org/10.1155/2015/919616] [PMID: 26246843]
[79]
Yao, Y.; Wang, Y.; Kong, L.; Chen, Y.; Yang, J. Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci., 2019, 217, 16-24.
[http://dx.doi.org/10.1016/j.lfs.2018.11.038] [PMID: 30471283]
[80]
Wang, M.; Zhang, Q.; Hua, W.; Huang, M.; Zhou, W.; Lou, K.; Peng, Y. Pharmacokinetics, safety and tolerability of l-3-n-butylphthalide tablet after single and multiple oral administrations in healthy Chinese volunteers. Braz. J. Pharm. Sci., 2015, 51(3), 525-531.
[http://dx.doi.org/10.1590/S1984-82502015000300004]
[81]
Peng, Y.; Hu, Y.; Xu, S.; Li, P.; Li, J.; Lu, L.; Yang, H.; Feng, N.; Wang, L.; Wang, X. L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J. Alzheimers Dis., 2012, 29(2), 379-391.
[http://dx.doi.org/10.3233/JAD-2011-111577] [PMID: 22233765]
[82]
Iqbal, K.; Liu, F.; Gong, C-X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[83]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P.R. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[84]
Alonso, A.C.; Grundke-Iqbal, I.; Iqbal, K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med., 1996, 2(7), 783-787.
[http://dx.doi.org/10.1038/nm0796-783] [PMID: 8673924]
[85]
Necula, M.; Kuret, J. Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J. Biol. Chem., 2004, 279(48), 49694-49703.
[http://dx.doi.org/10.1074/jbc.M405527200] [PMID: 15364924]
[86]
Cai, Y.; Sun, M.; Xing, J.; Corke, H. Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: structure-radical scavenging activity relationships. J. Agric. Food Chem., 2004, 52(26), 7884-7890.
[http://dx.doi.org/10.1021/jf0489116] [PMID: 15612771]
[87]
Thomson, R.H. Naturally occurring quinones IV: Recent Advances, 4th ed; Springer: Netherlands, 1997.
[88]
Pickhardt, M.; Gazova, Z.; von Bergen, M.; Khlistunova, I.; Wang, Y.; Hascher, A.; Mandelkow, E-M.; Biernat, J.; Mandelkow, E. Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem., 2005, 280(5), 3628-3635.
[http://dx.doi.org/10.1074/jbc.M410984200] [PMID: 15525637]
[89]
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res., 2020, 34(2), 270-281.
[http://dx.doi.org/10.1002/ptr.6532] [PMID: 31680350]
[90]
Li, X.; Chu, S.; Liu, Y.; Chen, N. Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid. Based Complement. Alternat. Med., 2019, 2019, 3790728.
[http://dx.doi.org/10.1155/2019/3790728] [PMID: 31223328]
[91]
Li, Y.; Xu, Q.Q.; Shan, C.S.; Shi, Y.H.; Wang, Y.; Zheng, G.Q. Combined use of emodin and ginsenoside rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats. Front. Pharmacol., 2018, 9, 943.
[http://dx.doi.org/10.3389/fphar.2018.00943] [PMID: 30233364]
[92]
Sun, Y.P.; Liu, J.P. Blockade of emodin on amyloid-β 25-35-induced neurotoxicity in AβPP/PS1 mice and PC12 cells through activation of the class III phosphatidylinositol 3-kinase/Beclin-1/B- cell lymphoma 2 pathway. Planta Med., 2015, 81(2), 108-115.
[http://dx.doi.org/10.1055/s-0034-1383410] [PMID: 25590369]
[93]
Teng, Z.H.; Zhou, S.Y.; Yang, R.T.; Liu, X.Y.; Liu, R.W.; Yang, X.; Zhang, B.L.; Yang, J.Y.; Cao, D.Y.; Mei, Q.B. Quantitation assay for absorption and first-pass metabolism of emodin in isolated rat small intestine using liquid chromatography-tandem mass spectrometry. Biol. Pharm. Bull., 2007, 30(9), 1628-1633.
[http://dx.doi.org/10.1248/bpb.30.1628] [PMID: 17827711]
[94]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[95]
Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 2017, 60(3), 999-1014.
[http://dx.doi.org/10.3233/JAD-170351] [PMID: 28984591]
[96]
Berhanu, W.M.; Masunov, A.E. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J. Biomol. Struct. Dyn., 2015, 33(7), 1399-1411.
[http://dx.doi.org/10.1080/07391102.2014.951689] [PMID: 25093402]
[97]
Mohorko, N.; Bresjanac, M. Curcumin, a curry spice ingredient, detects and diff erentiates between pathological tau inclusions in human histological brain sections. Sloven. Med. J., 2009, 78(12), 735-743.
[98]
Pasinetti, G.M.; Ksiezak-Reding, H.; Santa-Maria, I.; Wang, J.; Ho, L. Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J. Neurochem., 2010, 114(6), 1557-1568.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06875.x] [PMID: 20569300]
[99]
Wobst, H.J.; Sharma, A.; Diamond, M.I.; Wanker, E.E.; Bieschke, J. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett., 2015, 589(1), 77-83.
[http://dx.doi.org/10.1016/j.febslet.2014.11.026] [PMID: 25436420]
[100]
Landau, M.; Sawaya, M.R.; Faull, K.F.; Laganowsky, A.; Jiang, L.; Sievers, S.A.; Liu, J.; Barrio, J.R.; Eisenberg, D. Towards a pharmacophore for amyloid. PLoS Biol., 2011, 9(6), e1001080.
[http://dx.doi.org/10.1371/journal.pbio.1001080] [PMID: 21695112]
[101]
Sonawane, S.K.; Chidambaram, H.; Boral, D.; Gorantla, N.V.; Balmik, A.A.; Dangi, A.; Ramasamy, S.; Marelli, U.K.; Chinnathambi, S. EGCG impedes human tau aggregation and interacts with tau. Sci. Rep., 2020, 10(1), 12579.
[http://dx.doi.org/10.1038/s41598-020-69429-6] [PMID: 32724104]
[102]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[103]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[104]
Peterson, D.W.; George, R.C.; Scaramozzino, F.; LaPointe, N.E.; Anderson, R.A.; Graves, D.J.; Lew, J. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s disease in vitro. J. Alzheimers Dis., 2009, 17(3), 585-597.
[http://dx.doi.org/10.3233/JAD-2009-1083] [PMID: 19433898]
[105]
George, R.C.; Lew, J.; Graves, D.J. Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimers Dis., 2013, 36(1), 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[106]
Wang, J.; Santa-Maria, I.; Ho, L.; Ksiezak-Reding, H.; Ono, K.; Teplow, D.B.; Pasinetti, G.M. Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2010, 22(2), 653-661.
[http://dx.doi.org/10.3233/JAD-2010-101074] [PMID: 20858961]
[107]
Santa-Maria, I.; Diaz-Ruiz, C.; Ksiezak-Reding, H.; Chen, A.; Ho, L.; Wang, J.; Pasinetti, G.M. GSPE interferes with tau aggregation in vivo: Implication for treating tauopathy. Neurobiol. Aging, 2012, 33(9), 2072-2081.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.027] [PMID: 22054871]
[108]
Hattori, M.; Sugino, E.; Minoura, K.; In, Y.; Sumida, M.; Taniguchi, T.; Tomoo, K.; Ishida, T. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem. Biophys. Res. Commun., 2008, 374(1), 158-163.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.001] [PMID: 18619417]
[109]
Solfrizzi, V.; Panza, F.; Torres, F.; Mastroianni, F.; Del Parigi, A.; Venezia, A.; Capurso, A. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology, 1999, 52(8), 1563-1569.
[http://dx.doi.org/10.1212/WNL.52.8.1563] [PMID: 10331679]
[110]
Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Rizzo, C.; Capurso, A.; Panza, F. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol. Aging, 2006, 27(11), 1694-1704.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.026] [PMID: 16256248]
[111]
Panza, F.; Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Del Parigi, A.; Capurso, S.; Capurso, A. Mediterranean diet and cognitive decline. Public Health Nutr., 2004, 7(7), 959-963.
[http://dx.doi.org/10.1079/PHN2004561] [PMID: 15482625]
[112]
Daccache, A.; Lion, C.; Sibille, N.; Gerard, M.; Slomianny, C.; Lippens, G.; Cotelle, P. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem. Int., 2011, 58(6), 700-707.
[http://dx.doi.org/10.1016/j.neuint.2011.02.010] [PMID: 21333710]
[113]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87(1), 172-181.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[114]
Monti, M.C.; Margarucci, L.; Tosco, A.; Riccio, R.; Casapullo, A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct., 2011, 2(7), 423-428.
[http://dx.doi.org/10.1039/c1fo10064e] [PMID: 21894330]
[115]
Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P.E. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr., 2008, 3(3-4), 115-126.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[116]
Lu, J-H.; Ardah, M.T.; Durairajan, S.S.K.; Liu, L-F.; Xie, L-X.; Fong, W-F.D.; Hasan, M.Y.; Huang, J-D.; El-Agnaf, O.M.A.; Li, M. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. ChemBioChem, 2011, 12(4), 615-624.
[http://dx.doi.org/10.1002/cbic.201000604] [PMID: 21271629]
[117]
Zhu, M.; Rajamani, S.; Kaylor, J.; Han, S.; Zhou, F.; Fink, A.L. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J. Biol. Chem., 2004, 279(26), 26846-26857.
[http://dx.doi.org/10.1074/jbc.M403129200] [PMID: 15096521]
[118]
Sonawane, S.K.; Balmik, A.A.; Boral, D.; Ramasamy, S.; Chinnathambi, S. Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers. Arch. Biochem. Biophys., 2019, 675, 108119.
[http://dx.doi.org/10.1016/j.abb.2019.108119] [PMID: 31568753]
[119]
Cornejo, A.; Aguilar Sandoval, F.; Caballero, L.; Machuca, L.; Muñoz, P.; Caballero, J.; Perry, G.; Ardiles, A.; Areche, C.; Melo, F. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 945-953.
[http://dx.doi.org/10.1080/14756366.2017.1347783] [PMID: 28701064]
[120]
Shan, Y.; Wang, D-D.; Xu, Y-X.; Wang, C.; Cao, L.; Liu, Y-S.; Zhu, C-Q. Aging as a precipitating factor in chronic restraint stress-induced tau aggregation pathology, and the protective effects of rosmarinic Acid. J. Alzheimers Dis., 2016, 49(3), 829-844.
[http://dx.doi.org/10.3233/JAD-150486] [PMID: 26577520]
[121]
Nedelsky, N.B.; Todd, P.K.; Taylor, J.P. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim. Biophys. Acta, 2008, 1782(12), 691-699.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.002] [PMID: 18930136]
[122]
Jimenez-Sanchez, M.; Thomson, F.; Zavodszky, E.; Rubinsztein, D.C. Autophagy and polyglutamine diseases. Prog. Neurobiol., 2012, 97(2), 67-82.
[http://dx.doi.org/10.1016/j.pneurobio.2011.08.013] [PMID: 21930185]
[123]
Nixon, R.A. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci., 2006, 29(9), 528-535.
[http://dx.doi.org/10.1016/j.tins.2006.07.003] [PMID: 16859759]
[124]
Nixon, R.A.; Wegiel, J.; Kumar, A.; Yu, W.H.; Peterhoff, C.; Cataldo, A.; Cuervo, A.M. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol., 2005, 64(2), 113-122.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[125]
Myung, J.; Kim, K.B.; Crews, C.M. The ubiquitin-proteasome pathway and proteasome inhibitors. Med. Res. Rev., 2001, 21(4), 245-273.
[http://dx.doi.org/10.1002/med.1009] [PMID: 11410931]
[126]
Chesser, A.S.; Pritchard, S.M.; Johnson, G.V.W. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front. Neurol., 2013, 4, 122.
[http://dx.doi.org/10.3389/fneur.2013.00122] [PMID: 24027553]
[127]
Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. (Berl.), 2004, 82(8), 488-499.
[http://dx.doi.org/10.1007/s00109-004-0549-9] [PMID: 15168026]
[128]
Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem., 2006, 75, 271-294.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142738] [PMID: 16756493]
[129]
Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J., 2008, 410(3), 439-453.
[http://dx.doi.org/10.1042/BJ20071640] [PMID: 18290764]
[130]
Wandinger, S.K.; Richter, K.; Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem., 2008, 283(27), 18473-18477.
[http://dx.doi.org/10.1074/jbc.R800007200] [PMID: 18442971]
[131]
Mohan, R.; Hammers, H.J.; Bargagna-Mohan, P.; Zhan, X.H.; Herbstritt, C.J.; Ruiz, A.; Zhang, L.; Hanson, A.D.; Conner, B.P.; Rougas, J.; Pribluda, V.S. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis, 2004, 7(2), 115-122.
[http://dx.doi.org/10.1007/s10456-004-1026-3] [PMID: 15516832]
[132]
Misra, L.; Mishra, P.; Pandey, A.; Sangwan, R.S.; Sangwan, N.S.; Tuli, R. Withanolides from Withania somnifera roots. Phytochemistry, 2008, 69(4), 1000-1004.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.024] [PMID: 18061221]
[133]
Sinadinos, C.; Quraishe, S.; Sealey, M.; Samson, P.B.; Mudher, A.; Wyttenbach, A. Low endogenous and chemical induced heat shock protein induction in a 0N3Rtau-expressing Drosophila larval model of Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(4), 1117-1133.
[http://dx.doi.org/10.3233/JAD-2012-121534] [PMID: 23114515]
[134]
Gandhi, P.N.; Chen, S.G.; Wilson-Delfosse, A.L. Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson’s disease. J. Neurosci. Res., 2009, 87(6), 1283-1295.
[http://dx.doi.org/10.1002/jnr.21949] [PMID: 19025767]
[135]
Narayan, M.; Zhang, J.; Braswell, K.; Gibson, C.; Zitnyar, A.; Lee, D.C.; Varghese-Gupta, S.; Jinwal, U.K. Withaferin A regulates LRRK2 levels by interfering with the Hsp90- Cdc37 chaperone complex. Curr. Aging Sci., 2015, 8(3), 259-265.
[http://dx.doi.org/10.2174/1874609808666150520111109] [PMID: 25989799]
[136]
Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 2000, 17(5), 483-504.
[http://dx.doi.org/10.1039/a904424h] [PMID: 11072895]
[137]
Ngassapa, O.; Soejarto, D.D.; Pezzuto, J.M.; Farnsworth, N.R. Quinone-methide triterpenes and salaspermic acid from Kokoona ochracea. J. Nat. Prod., 1994, 57(1), 1-8.
[http://dx.doi.org/10.1021/np50103a001] [PMID: 8158155]
[138]
Spivey, A.C.; Weston, M.; Woodhead, S. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem. Soc. Rev., 2002, 31(1), 43-59.
[http://dx.doi.org/10.1039/b000678p] [PMID: 12108982]
[139]
Westerheide, S.D.; Bosman, J.D.; Mbadugha, B.N.A.; Kawahara, T.L.A.; Matsumoto, G.; Kim, S.; Gu, W.; Devlin, J.P.; Silverman, R.B.; Morimoto, R.I. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem., 2004, 279(53), 56053-56060.
[http://dx.doi.org/10.1074/jbc.M409267200] [PMID: 15509580]
[140]
Chow, A.M.; Brown, I.R. Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones, 2007, 12(3), 237-244.
[http://dx.doi.org/10.1379/CSC-269.1] [PMID: 17915556]
[141]
Peng, B.; Xu, L.; Cao, F.; Wei, T.; Yang, C.; Uzan, G.; Zhang, D. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol. Cancer, 2010, 9(1), 79.
[http://dx.doi.org/10.1186/1476-4598-9-79] [PMID: 20398364]
[142]
Powers, M.V.; Jones, K.; Barillari, C.; Westwood, I.; van Montfort, R.L.M.; Workman, P. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle, 2010, 9(8), 1542-1550.
[http://dx.doi.org/10.4161/cc.9.8.11204] [PMID: 20372081]
[143]
Cao, F.; Wang, Y.; Peng, B.; Zhang, X.; Zhang, D.; Xu, L. Effects of celastrol on Tau hyperphosphorylation and expression of HSF-1 and HSP70 in SH-SY5Y neuroblastoma cells induced by amyloid-β peptides. Biotechnol. Appl. Biochem., 2018, 65(3), 390-396.
[http://dx.doi.org/10.1002/bab.1633] [PMID: 29274099]
[144]
Zhang, T.; Li, Y.; Yu, Y.; Zou, P.; Jiang, Y.; Sun, D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J. Biol. Chem., 2009, 284(51), 35381-35389.
[http://dx.doi.org/10.1074/jbc.M109.051532] [PMID: 19858214]
[145]
Allison, A.C.; Cacabelos, R.; Lombardi, V.R.; Alvarez, X.A.; Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(7), 1341-1357.
[http://dx.doi.org/10.1016/S0278-5846(01)00192-0] [PMID: 11513350]
[146]
Gracia, L.; Lora, G.; Blair, L.J.; Jinwal, U.K. Therapeutic potential of the Hsp90/Cdc37 interaction in neurodegenerative diseases. Front. Neurosci., 2019, 13, 1263.
[http://dx.doi.org/10.3389/fnins.2019.01263] [PMID: 31824256]
[147]
Rousaki, A.; Miyata, Y.; Jinwal, U.K.; Dickey, C.A.; Gestwicki, J.E.; Zuiderweg, E.R. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol., 2011, 411(3), 614-632.
[http://dx.doi.org/10.1016/j.jmb.2011.06.003] [PMID: 21708173]
[148]
Jinwal, U.K.; Miyata, Y.; Koren, J., III; Jones, J.R.; Trotter, J.H.; Chang, L.; O’Leary, J.; Morgan, D.; Lee, D.C.; Shults, C.L.; Rousaki, A.; Weeber, E.J.; Zuiderweg, E.R.P.; Gestwicki, J.E.; Dickey, C.A. Chemical manipulation of hsp70 ATPase activity regulates tau stability. J. Neurosci., 2009, 29(39), 12079-12088.
[http://dx.doi.org/10.1523/JNEUROSCI.3345-09.2009] [PMID: 19793966]
[149]
Jones, J.R.; Lebar, M.D.; Jinwal, U.K.; Abisambra, J.F.; Koren, J., III; Blair, L.; O’Leary, J.C.; Davey, Z.; Trotter, J.; Johnson, A.G.; Weeber, E.; Eckman, C.B.; Baker, B.J.; Dickey, C.A. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. J. Nat. Prod., 2011, 74(1), 38-44.
[http://dx.doi.org/10.1021/np100572z] [PMID: 21141876]
[150]
Patil, S.P.; Tran, N.; Geekiyanage, H.; Liu, L.; Chan, C. Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci. Lett., 2013, 554, 121-125.
[http://dx.doi.org/10.1016/j.neulet.2013.09.008] [PMID: 24035895]
[151]
Carrettiero, D.C.; Hernandez, I.; Neveu, P.; Papagiannakopoulos, T.; Kosik, K.S. The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J. Neurosci., 2009, 29(7), 2151-2161.
[http://dx.doi.org/10.1523/JNEUROSCI.4660-08.2009] [PMID: 19228967]
[152]
Shytle, R.D.; Tan, J.; Bickford, P.C.; Rezai-Zadeh, K.; Hou, L.; Zeng, J.; Sanberg, P.R.; Sanberg, C.D.; Alberte, R.S.; Fink, R.C.; Roschek, B., Jr Optimized turmeric extract reduces β-Amyloid and phosphorylated Tau protein burden in Alzheimer’s transgenic mice. Curr. Alzheimer Res., 2012, 9(4), 500-506.
[http://dx.doi.org/10.2174/156720512800492459] [PMID: 21875408]
[153]
Ma, Q-L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P-P.; Maiti, P.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem., 2013, 288(6), 4056-4065.
[http://dx.doi.org/10.1074/jbc.M112.393751] [PMID: 23264626]
[154]
Villaflores, O.B.; Chen, Y-J.; Chen, C-P.; Yeh, J-M.; Wu, T-Y. Effects of curcumin and demethoxycurcumin on amyloid-β precursor and tau proteins through the internal ribosome entry sites: a potential therapeutic for Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2012, 51(4), 554-564.
[http://dx.doi.org/10.1016/j.tjog.2012.09.010] [PMID: 23276558]
[155]
Cook, C.; Gendron, T.F.; Scheffel, K.; Carlomagno, Y.; Dunmore, J.; DeTure, M.; Petrucelli, L. Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum. Mol. Genet., 2012, 21(13), 2936-2945.
[http://dx.doi.org/10.1093/hmg/dds125] [PMID: 22492994]
[156]
Lee, M.J.; Lee, J.H.; Rubinsztein, D.C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol., 2013, 105, 49-59.
[http://dx.doi.org/10.1016/j.pneurobio.2013.03.001] [PMID: 23528736]
[157]
Cook, C.; Carlomagno, Y.; Gendron, T.F.; Dunmore, J.; Scheffel, K.; Stetler, C.; Davis, M.; Dickson, D.; Jarpe, M.; DeTure, M.; Petrucelli, L. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet., 2014, 23(1), 104-116.
[http://dx.doi.org/10.1093/hmg/ddt402] [PMID: 23962722]
[158]
Whitehouse, A.; Doherty, K.; Yeh, H.H.; Robinson, A.C.; Rollinson, S.; Pickering-Brown, S.; Snowden, J.; Thompson, J.C.; Davidson, Y.S.; Mann, D.M.A. Histone deacetylases (HDACs) in frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol., 2015, 41(2), 245-257.
[http://dx.doi.org/10.1111/nan.12153] [PMID: 24861260]
[159]
Selenica, M-L.; Benner, L.; Housley, S.B.; Manchec, B.; Lee, D.C.; Nash, K.R.; Kalin, J.; Bergman, J.A.; Kozikowski, A.; Gordon, M.N.; Morgan, D. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res. Ther., 2014, 6(1), 12.
[http://dx.doi.org/10.1186/alzrt241] [PMID: 24576665]
[160]
Han, Y.; Jiang, L.D. Randomized paralleled controlled study on the analgesic effects of neurotropin in different TCM syndromes. Chinese Clinical Trail Registry (ChiCTR-TRC-10001155), 2011.
[161]
Durairajan, S.S.K.; Li, M.; Malampatti, S.; Zhang, Y.; Liu, L.F.; Song, J.X.; Chen, L.L.; Zeng, Y.; Senapati, S. Protopine, a promising novel histone deacetylase 6 inhibitor reduces tauopathy in in vitro and in vivo. in: Neurodegener. Dis. Proceedings of the 12th International Conference on Alzheimer’s and Parkinson’s Diseases, Nice, France 2015, 15(Suppl. 1), p. 157.
[162]
Iyaswamy, A.; Krishnamoorthi, S.K.; Song, J.X.; Yang, C.B.; Kaliyamoorthy, V.; Zhang, H.; Sreenivasmurthy, S.G.; Malampati, S.; Wang, Z.Y.; Zhu, Z.; Tong, B.C.; Cheung, K.H.; Lu, J.H.; Durairajan, S.S.K.; Li, M. NeuroDefend, a novel Chinese medicine, attenuates amyloid-β and tau pathology in experimental Alzheimer’s disease models. J. Food Drug Anal., 2020, 28(1), 132-146.
[http://dx.doi.org/10.1016/j.jfda.2019.09.004] [PMID: 31883601]
[163]
Durairajan, S.S.K.; Reddy, R.; Shetty, S.G.; Iyaswamy, A.; Li, M. Bromo-protopine, a novel derivative of protopine with improved bioavailability and bioactivity, degrades tau aggregation through modulation of HDAC6-Hsp90 chaperonic activity and improves memory via stimulation of the Ras-Grf1/Erk Pathway. In: Alzh & Demen Proceedings of the Alzheimer’s Association International Conference 2017 (AAIC2017), London, UK July 16–202017, p. 1576.
[164]
Iyaswamy, A.; Krishnamoorthi, S.K.; Liu, Y-W.; Song, J.X.; Kammala, A.K.; Sreenivasmurthy, S.G.; Malampati, S.; Tong, B.C.K.; Selvarasu, K.; Cheung, K-H.; Lu, J.H.; Tan, J.Q.; Huang, C-Y.; Durairajan, S.S.K.; Li, M. Yuan-Hu Zhi Tong Prescription mitigates tau pathology and alleviates memory deficiency in the preclinical models of alzheimer’s disease. Front. Pharmacol., 2020, 11, 584770.
[http://dx.doi.org/10.3389/fphar.2020.584770] [PMID: 33192524]
[165]
Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci., 2008, 28(27), 6926-6937.
[http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008] [PMID: 18596167]
[166]
Harris, H.; Rubinsztein, D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol., 2011, 8(2), 108-117.
[http://dx.doi.org/10.1038/nrneurol.2011.200] [PMID: 22187000]
[167]
Yang, D-S.; Stavrides, P.; Mohan, P.S.; Kaushik, S.; Kumar, A.; Ohno, M.; Schmidt, S.D.; Wesson, D.; Bandyopadhyay, U.; Jiang, Y.; Pawlik, M.; Peterhoff, C.M.; Yang, A.J.; Wilson, D.A.; St George-Hyslop, P.; Westaway, D.; Mathews, P.M.; Levy, E.; Cuervo, A.M.; Nixon, R.A. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain, 2011, 134(Pt 1), 258-277.
[http://dx.doi.org/10.1093/brain/awq341] [PMID: 21186265]
[168]
McBrayer, M.; Nixon, R.A. Lysosome and calcium dysregulation in Alzheimer’s disease: partners in crime. Biochem. Soc. Trans., 2013, 41(6), 1495-1502.
[http://dx.doi.org/10.1042/BST20130201] [PMID: 24256243]
[169]
Orr, M.E.; Oddo, S. Autophagic/lysosomal dysfunction in Alzheimer’s disease. Alzheimers Res. Ther., 2013, 5(5), 53.
[http://dx.doi.org/10.1186/alzrt217] [PMID: 24171818]
[170]
Tang, M.; Harrison, J.; Deaton, C.A.; Johnson, G.V.W. Tau clearance mechanisms. Adv. Exp. Med. Biol., 2019, 1184, 57-68.
[http://dx.doi.org/10.1007/978-981-32-9358-8_5] [PMID: 32096028]
[171]
Parr, C.; Carzaniga, R.; Gentleman, S.M.; Van Leuven, F.; Walter, J.; Sastre, M. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol. Cell. Biol., 2012, 32(21), 4410-4418.
[http://dx.doi.org/10.1128/MCB.00930-12] [PMID: 22927642]
[172]
Mizushima, N.; Yamamoto, A.; Matsui, M.; Yoshimori, T.; Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell, 2004, 15(3), 1101-1111.
[http://dx.doi.org/10.1091/mbc.e03-09-0704] [PMID: 14699058]
[173]
Lu, J-H.; Tan, J-Q.; Durairajan, S.S.K.; Liu, L-F.; Zhang, Z-H.; Ma, L.; Shen, H-M.; Chan, H.Y.E.; Li, M. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy, 2012, 8(1), 98-108.
[http://dx.doi.org/10.4161/auto.8.1.18313] [PMID: 22113202]
[174]
Durairajan, S.S.K.; Chen, L.L.; Liu, L.L.; Song, J.X.; Baum, L.; Li, M. Corynoxine B, a Novel Autophagy Enhancer, Promotes the Clearance of Mutant Tau Aggregation in vitro and in vivo. In: Neurodegen. Dis. Proceedings of The 11th International Congress on Alzheimer’s & Parkinson’s Diseases, Florence, ItalyMarch 9–13, 20132013, 11(Suppl.1), p. 827.
[175]
Song, J-X.; Lu, J-H.; Liu, L-F.; Chen, L-L.; Durairajan, S.S.K.; Yue, Z.; Zhang, H-Q.; Li, M. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy, 2014, 10(1), 144-154.
[http://dx.doi.org/10.4161/auto.26751] [PMID: 24178442]
[176]
Martin, M.D.; Calcul, L.; Smith, C.; Jinwal, U.K.; Fontaine, S.N.; Darling, A.; Seeley, K.; Wojtas, L.; Narayan, M.; Gestwicki, J.E.; Smith, G.R.; Reitz, A.B.; Baker, B.J.; Dickey, C.A. Synthesis, stereochemical analysis, and derivatization of myricanol provide new probes that promote autophagic tau clearance. ACS Chem. Biol., 2015, 10(4), 1099-1109.
[http://dx.doi.org/10.1021/cb501013w] [PMID: 25588114]
[177]
Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The autophagy–lysosomal pathway in neurodegeneration: a TFEB Perspective. Trends Neurosci., 2016, 39(4), 221-234.
[http://dx.doi.org/10.1016/j.tins.2016.02.002] [PMID: 26968346]
[178]
Decressac, M.; Mattsson, B.; Weikop, P.; Lundblad, M.; Jakobsson, J.; Björklund, A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. USA, 2013, 110(19), E1817-E1826.
[http://dx.doi.org/10.1073/pnas.1305623110] [PMID: 23610405]
[179]
Xiao, Q.; Yan, P.; Ma, X.; Liu, H.; Perez, R.; Zhu, A.; Gonzales, E.; Tripoli, D.L.; Czerniewski, L.; Ballabio, A.; Cirrito, J.R.; Diwan, A.; Lee, J-M. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J. Neurosci., 2015, 35(35), 12137-12151.
[http://dx.doi.org/10.1523/JNEUROSCI.0705-15.2015] [PMID: 26338325]
[180]
Polito, V.A.; Li, H.; Martini-Stoica, H.; Wang, B.; Yang, L.; Xu, Y.; Swartzlander, D.B.; Palmieri, M.; di Ronza, A.; Lee, V.M-Y.; Sardiello, M.; Ballabio, A.; Zheng, H. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med., 2014, 6(9), 1142-1160.
[http://dx.doi.org/10.15252/emmm.201303671] [PMID: 25069841]
[181]
Song, J-X.; Sun, Y-R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J-H.; Xu, Z.; Wang, M-Z.; Liu, L-F.; Huang, Y-Y.; Chen, L-L.; Durairajan, S.S.K.; Zhang, H-J.; Zhou, B.; Zhang, H-Q.; Lu, A.; Ballabio, A.; Medina, D.L.; Guo, Z.; Li, M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12(8), 1372-1389.
[http://dx.doi.org/10.1080/15548627.2016.1179404] [PMID: 27172265]
[182]
Song, J.X.; Malampati, S.; Zeng, Y.; Durairajan, S.S.K.; Yang, C.B.; Tong, B.C.; Iyaswamy, A.; Shang, W.B.; Sreenivasmurthy, S.G.; Zhu, Z.; Cheung, K.H.; Lu, J.H.; Tang, C.; Xu, N.; Li, M. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell, 2020, 19(2), e13069.
[http://dx.doi.org/10.1111/acel.13069] [PMID: 31858697]