Molecular Cloning, Functional and Biophysical Characterization of an Antimicrobial Peptide from Rhizosphere Soil

Page: [1312 - 1322] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aim: This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet, the study was further aimed at corroborating structural and functional studies using biophysical tools.

Background: Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offer the best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil.

Objective: Objectives of this study include construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide against MRSA strains.

Methods: In this study, we used an array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC (minimum inhibitory concentration) and IC50 values of antimicrobial peptide. To establish the structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out.

Results: Screening of metagenomic library resulted in the identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE, which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in a broad range of pH and temperature. MIC determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas, in the case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8μM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at a wide range of temperature and pH.

Conclusion: Altogether, the peptide discovered from rhizosphere metagenome holds potential in inhibiting the growth of both gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).

Keywords: Antimicrobial peptide, protein expression, biophysical characterization, rhizosphere, circular dicroism spectroscopy, MRSA, molecular cloning.

Graphical Abstract

[1]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[2]
Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ., 2020, 98(7), 442-442.
[http://dx.doi.org/10.2471/BLT.20.268573] [PMID: 32742026]
[3]
Alonso-Hernando, A.; Prieto, M.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. Food Control, 2012, 23(1), 37-41.
[http://dx.doi.org/10.1016/j.foodcont.2011.06.006]
[4]
Cantón, R.; Akóva, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; Samuelsen, Ø.; Seifert, H.; Woodford, N.; Nordmann, P. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect., 2012, 18(5), 413-431.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03821.x] [PMID: 22507109]
[5]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[6]
Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis., 2016, 3(1), 23-42.
[http://dx.doi.org/10.1177/2049936115622891] [PMID: 26862400]
[7]
Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; Merkens, W.; Mielke, M.; Oltmanns, P.; Ross, B.; Rotter, M.; Schmithausen, R.M.; Sonntag, H.G.; Trautmann, M. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control, 2017, 12, PMC 5388835.
[http://dx.doi.org/10.3205/dgkh000290] [PMID: 28451516]
[8]
Lee, L.A.; Puhr, N.D.; Maloney, E.K.; Bean, N.H.; Tauxe, R.V. Increase in antimicrobial-resistant Salmonella infections in the United States, 1989-1990. J. Infect. Dis., 1994, 170(1), 128-134.
[http://dx.doi.org/10.1093/infdis/170.1.128] [PMID: 8014487]
[9]
Kavanagh, N.; Ryan, E.J.; Widaa, A.; Sexton, G.; Fennell, J.; O’Rourke, S.; Cahill, K.C.; Kearney, C.J.; O’Brien, F.J.; Kerrigan, S.W. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev., 2018, 31(2), e00084-17.
[http://dx.doi.org/10.1128/CMR.00084-17] [PMID: 29444953]
[10]
Unemo, M.; Jensen, J.S. Antimicrobial-resistant sexually transmitted infections: Gonorrhoea and Mycoplasma genitalium. Nat. Rev. Urol., 2017, 14(3), 139-152.
[http://dx.doi.org/10.1038/nrurol.2016.268] [PMID: 28072403]
[11]
Denning, D.W.; Perlin, D.S.; Muldoon, E.G.; Colombo, A.L.; Chakrabarti, A.; Richardson, M.D.; Sorrell, T.C. Delivering on antimicrobial resistance agenda not possible without improving fungal diagnostic capabilities. Emerg. Infect. Dis., 2017, 23(2), 177-183.
[http://dx.doi.org/10.3201/eid2302.152042] [PMID: 27997332]
[12]
Limmathurotsakul, D.; Dunachie, S.; Fukuda, K.; Feasey, N.A.; Okeke, I.N.; Holmes, A.H.; Moore, C.E.; Dolecek, C.; van Doorn, H.R.; Shetty, N.; Lopez, A.D.; Peacock, S.J. Improving the estimation of the global burden of antimicrobial resistant infections. Lancet Infect. Dis., 2019, 19(11), e392-e398.
[http://dx.doi.org/10.1016/S1473-3099(19)30276-2] [PMID: 31427174]
[13]
Aro, T.; Kantele, A. High rates of meticillin-resistant Staphylococcus aureus among asylum seekers and refugees admitted to Helsinki University Hospital, 2010 to 2017. Euro Surveill., 2018, 23(45), 1700797.
[http://dx.doi.org/10.2807/1560-7917.ES.2018.23.45.1700797] [PMID: 30424828]
[14]
Röhrig, C.; Huemer, M.; Lorgé, D.; Luterbacher, S.; Phothaworn, P.; Schefer, C.; Sobieraj, A.M.; Zinsli, L.V.; Mairpady Shambat, S.; Leimer, N.; Keller, A.P.; Eichenseher, F.; Shen, Y.; Korbsrisate, S.; Zinkernagel, A.S.; Loessner, M.J.; Schmelcher, M. Targeting hidden pathogens: Cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. MBio, 2020, 11(2), e00209-20.
[http://dx.doi.org/10.1128/mBio.00209-20] [PMID: 32291298]
[15]
Gayathri, D.; Eramma, N.K.; Devaraja, T.N. New Delhi metallo beta-Lactamase-1; incidence and threats. Int. J. Biol. Med. Res., 2012, 3(2), 1870-1874.
[16]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[17]
Lee, H.T.; Lee, C.C.; Yang, J.R.; Lai, J.Z.; Chang, K.Y. A large-scale structural classification of antimicrobial peptides. BioMed Res. Int., 2015, 2015, 475062.
[http://dx.doi.org/10.1155/2015/475062] [PMID: 26000295]
[18]
Fox, M.A.; Thwaite, J.E.; Ulaeto, D.O.; Atkins, T.P.; Atkins, H.S. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides, 2012, 33(2), 197-205.
[http://dx.doi.org/10.1016/j.peptides.2012.01.013] [PMID: 22289499]
[19]
Neshani, A.; Zare, H.; Eidgahi, M.R.A.; Kakhki, R.K.; Safdari, H.; Khaledi, A.; Ghazvini, K. LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep., 2019, 17, 100519.
[http://dx.doi.org/10.1016/j.genrep.2019.100519]
[20]
Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 2009, 10(6), 585-606.
[http://dx.doi.org/10.2174/138920309789630589] [PMID: 19751192]
[21]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[22]
Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol., 2010, 135(1), 1-11.
[http://dx.doi.org/10.1016/j.clim.2009.12.004] [PMID: 20116332]
[23]
Acosta, J.; Roa, F.; González-Chavarría, I.; Astuya, A.; Maura, R.; Montesino, R.; Muñoz, C.; Camacho, F.; Saavedra, P.; Valenzuela, A.; Sánchez, O.; Toledo, J.R. In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish Immunol., 2019, 88, 587-594.
[http://dx.doi.org/10.1016/j.fsi.2019.03.034] [PMID: 30885741]
[24]
Torres, M.D.T.; Pedron, C.N.; Higashikuni, Y.; Kramer, R.M.; Cardoso, M.H.; Oshiro, K.G.N.; Franco, O.L.; Silva Junior, P.I.; Silva, F.D.; Oliveira Junior, V.X.; Lu, T.K.; de la Fuente-Nunez, C. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun. Biol., 2018, 1(1), 221.
[http://dx.doi.org/10.1038/s42003-018-0224-2] [PMID: 30534613]
[25]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[26]
Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun., 2019, 10(1), 4538.
[http://dx.doi.org/10.1038/s41467-019-12364-6] [PMID: 31586049]
[27]
Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[28]
Liu, J.; Xiao, S.; Li, J.; Yuan, B.; Yang, K.; Ma, Y. Molecular details on the intermediate states of melittin action on a cell membrane. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2234-2241.
[http://dx.doi.org/10.1016/j.bbamem.2018.09.007] [PMID: 30409519]
[29]
Yasir, M.; Dutta, D.; Willcox, M.D.P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One, 2019, 14(7), e0215703.
[http://dx.doi.org/10.1371/journal.pone.0215703] [PMID: 31356627]
[30]
Matsuzaki, K. Membrane permeabilization mechanisms. In: Antimicrobial Peptides. Advances in Experimental Medicine and Biology; Matsuzaki, K., Ed.; Springer: Singapore, 2019; 1117, pp. 9-16.
[http://dx.doi.org/10.1007/978-981-13-3588-4_2]
[31]
Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol., 1996, 62(2), 316-322.
[http://dx.doi.org/10.1128/aem.62.2.316-322.1996] [PMID: 8593035]
[32]
Sharma, P.K.; Capalash, N.; Kaur, J. An improved method for single step purification of metagenomic DNA. Mol. Biotechnol., 2007, 36(1), 61-63.
[http://dx.doi.org/10.1007/s12033-007-0015-3] [PMID: 17827539]
[33]
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
[http://dx.doi.org/10.5897/JMPR09.030]
[34]
Heatley, N.G. A method for the assay of penicillin. Biochem. J., 1944, 38(1), 61-65.
[http://dx.doi.org/10.1042/bj0380061] [PMID: 16747749]
[35]
Gomber, C.; Saxena, S. Anti-staphylococcal potential of Callistemon rigidus. Open Med., 2007, 2(1), 79-88.
[http://dx.doi.org/10.2478/s11536-007-0004-8]
[36]
European Committee for Antimicrobial Susceptibility Testing. Determination of minimum inhibitory concentrations (MIC’s) of antibacterial agents by agar dilution Clin. Microbiol. Infec., 2000, (6), 509-515.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00142.x]
[37]
Díaz-Roa, A.; Espinoza-Culupú, A.; Torres-García, O.; Borges, M.M.; Avino, I.N.; Alves, F.L.; Miranda, A.; Patarroyo, M.A.; da Silva, P.I., Jr; Bello, F.J. Sarconesin II, a new antimicrobial peptide isolated from Sarconesiopsis magellanica excretions and secretions. Molecules, 2019, 24(11), 2077.
[http://dx.doi.org/10.3390/molecules24112077] [PMID: 31159162]
[38]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[39]
Nicolas, P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J., 2009, 276(22), 6483-6496.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x] [PMID: 19817856]
[40]
Bartels, E.J.H.; Dekker, D.; Amiche, M. Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions. Front. Pharmacol., 2019, 10, 1421.
[http://dx.doi.org/10.3389/fphar.2019.01421] [PMID: 31849670]
[41]
Sanatan, P.T.; Lomate, P.R.; Giri, A.P.; Hivrale, V.K. Characterization of a chemostable serine alkaline protease from Periplaneta americana. BMC Biochem., 2013, 14(1), 32.
[http://dx.doi.org/10.1186/1471-2091-14-32] [PMID: 24229392]
[42]
Kim, H.; Beuchat, L.R. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Prot., 2005, 68(12), 2541-2552.
[http://dx.doi.org/10.4315/0362-028X-68.12.2541] [PMID: 16355824]
[43]
Zheng, S.; Liu, Q.; Zhang, G.; Wang, H.; Ng, T.B. Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Acta Biochim. Pol., 2010, 57(1), 43-48.
[http://dx.doi.org/10.18388/abp.2010_2370] [PMID: 20198215]
[44]
Brander, S.; Mikkelsen, J.D.; Kepp, K.P. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One, 2014, 9(6), e99402.
[http://dx.doi.org/10.1371/journal.pone.0099402] [PMID: 24915287]
[45]
Ciandrini, E.; Morroni, G.; Arzeni, D.; Kamysz, W.; Neubauer, D.; Kamysz, E.; Cirioni, O.; Brescini, L.; Baffone, W.; Campana, R. Antimicrobial activity of different antimicrobial peptides (AMPs) against clinical methicillin-resistant Staphylococcus aureus (MRSA). Curr. Top. Med. Chem., 2018, 18(24), 2116-2126.
[http://dx.doi.org/10.2174/1568026618666181022140348] [PMID: 30345920]
[46]
Mohamed, M.F.; Abdelkhalek, A.; Seleem, M.N. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci. Rep., 2016, 6(1), 29707.
[http://dx.doi.org/10.1038/srep29707] [PMID: 27405275]
[47]
Zouhir, A.; Jridi, T.; Nefzi, A.; Ben Hamida, J.; Sebei, K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils. Pharm. Biol., 2016, 54(12), 3136-3150.
[http://dx.doi.org/10.1080/13880209.2016.1190763] [PMID: 27246787]
[48]
Martin, R.E.; Channe, Y.R. Partial purification and characterization of antimicrobial peptide from the hemolymph of cockroach Periplaneta americana. J. Appl. Biol. Biotechnol., 2020, 8(02), 6-11.
[http://dx.doi.org/10.7324/JABB.2020.80202]
[49]
Liu, Y.; Zhang, J.W.; Li, W.; Ma, H.; Sun, J.; Deng, M.C.; Yang, L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol. Sci., 2006, 91(2), 356-364.
[http://dx.doi.org/10.1093/toxsci/kfj164] [PMID: 16547074]