The Impact of Vaccination Worldwide on SARS-CoV-2 Infection: A Review on Vaccine Mechanisms, Results of Clinical Trials, Vaccinal Coverage and Interactions with Novel Variants

Page: [2673 - 2690] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: The COVID-19 pandemic demanded a global effort towards quickly developing safe and effective vaccines against SARS-CoV-2.

Objective: This review aimed to discuss the main vaccines available, their mechanisms of action, results of clinical trials, and epidemiological behavior. The implications of viral variants were also debated.

Methods: A non-systematic literature review was performed between February and March 2021 by searching the Pubmed, Scopus, and SciELO databases, using different combinations of the following terms: "vaccines", "clinical trials" , "SARS-CoV-2", "Coronavirus", "COVID-19", "mechanisms of action". Data regarding clinical trials of SARS-CoV-2 vaccines and epidemiological information were also searched.

Results: The mechanisms of action included vector-virus, mRNA and inactivated virus vaccines. The vaccines showed positive results in phases 2/3 clinical trials. The efficacy of the mRNA 1273 and of mRNA BNT 162b2 vaccines were 94.1% and 95%, respectively. The effectiveness of the ChAdOx1 nCoV-19 vaccine varied according to the scheme, with an overall value of 70.4%. The Gam-COVID-Vac vaccine had an efficacy of 91.6%. Regarding the Ad26.COV2.S vaccine, 99% or more of seroconversion was observed in all subgroups 29 days after vaccination. The CoronaVac vaccine induced an immune response in 92% of the volunteers receiving 3ug and in 98% with 6ug, in comparison to 3% in the placebo group.

Conclusion: Global efforts have resulted in vaccines being available in record time, with good safety and immunogenicity profile. However, only long-term studies can provide more information on the duration of immunity and the need for additional doses.

Keywords: SARS-CoV-2, coronavirus, COVID-19, vaccines, new variants, immune response, vaccinal coverage, impacts of vaccination.

[1]
WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int (Accessed Feb 28, 2021).
[2]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[3]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[4]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[5]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[6]
Raoult, D.; Zumla, A.; Locatelli, F.; Ippolito, G.; Kroemer, G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress, 2020, 4(4), 66-75.
[http://dx.doi.org/10.15698/cst2020.04.216] [PMID: 32292881]
[7]
de Barcelos Ubaldo Martins, L.; Jabour, L.G.P.P.; Vieira, C.C.; Nery, L.C.C.; Dias, R.F.; Simões, E. Silva, A.C. Renin-angiotensin system (RAS) and immune system profile in specific subgroups with COVID-19. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867327666200903113117] [PMID: 32881654]
[8]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[9]
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[10]
Krause, P.R.; Gruber, M.F. Emergency use authorization of covid vaccines - safety and efficacy follow-up considerations. N. Engl. J. Med., 2020, 383(19)e107
[http://dx.doi.org/10.1056/NEJMp2031373] [PMID: 33064383]
[11]
Office of the Commissioner. COVID-19 Vaccines. Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccine (Accessed Mar 13, 2021).
[12]
Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 2021, 371(6532), 916-921.
[http://dx.doi.org/10.1126/science.abe6959] [PMID: 33479118]
[13]
Kobedi, P. COVID-19 Vaccine Rollout Strategy FAQ. https://www.nicd.ac.za/covid-19-vaccine-rollout-strategy-faq
[14]
Deutsche Welle (www. dw.com). Indonesia’s COVID vaccination campaign prioritizes workers. Available from: https://www.dw.com/en/indonesias-covid-vaccination-campaign-prioritizes-workers/a-56316852 (Accessed Jul 1, 2021).
[15]
NHS website. Who can get the coronavirus (COVID-19) vaccine. Available from: https://www.nhs.uk/conditions/coronavirus-covid-19/coronavirus-vaccination/who-can-get-the-vaccine/ (Accessed Jul 1, 2021).
[16]
Plano Nacional de Vacinação. Available from: https://www.gov.br/saude/pt-br/media/pdf/2021/marco/23/plano-nacional-de-vacinacao-covid-19-de-2021 (Accessed Jul 1, 2021).
[17]
Bouazzaoui, A.; Abdellatif, A.A.H.; Al-Allaf, F.A.; Bogari, N.M.; Al-Dehlawi, S.; Qari, S.H. Strategies for vaccination: conventional vaccine approaches versus new-generation strategies in combination with adjuvants. Pharmaceutics, 2021, 13(2), 140.
[http://dx.doi.org/10.3390/pharmaceutics13020140] [PMID: 33499096]
[18]
Li, B.; Zhang, X.; Dong, Y. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(2)e1530
[http://dx.doi.org/10.1002/wnan.1530] [PMID: 29726120]
[19]
Let’s Talk about Lipid Nanoparticles. Nat. Rev. Mater., 2021, 6, 99-99.
[http://dx.doi.org/10.1038/s41578-021-00281-4]
[20]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[21]
Jia, H. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 2016, 46(3), 239-248.
[http://dx.doi.org/10.1097/SHK.0000000000000633] [PMID: 27082314]
[22]
Uzunian, A. Coronavirus SARS-CoV-2 and Covid-19. J. Bras. Patol. Med. Lab., 2020, 56.
[http://dx.doi.org/10.5935/1676-2444.20200053]
[23]
Vieira, C.; Nery, L.; Martins, L.; Jabour, L.; Dias, R.; Simões, E.; Silva, A.C. Downregulation of membrane-bound angiotensin converting enzyme 2 (ACE2) receptor has a pivotal role in COVID-19 immunopathology. Curr. Drug Targets, 2021, 22(3), 254-281.
[http://dx.doi.org/10.2174/1389450121666201020154033] [PMID: 33081670]
[24]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), 94.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[25]
Belete, T.M. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect. Drug Resist., 2021, 14, 151-161.
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[26]
Silveira, M.M.; Moreira, G.M.S.G.; Mendonça, M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci., 2021, 267118919
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[27]
Gary, E.N.; Weiner, D.B. DNA vaccines: prime time is now. Curr. Opin. Immunol., 2020, 65, 21-27.
[http://dx.doi.org/10.1016/j.coi.2020.01.006] [PMID: 32259744]
[28]
Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; Martinez, D.R.; Loos, C.; Atyeo, C.; Fischinger, S.; Burke, J.S.; Slein, M.D.; Chen, Y.; Zuiani, A.; Lelis, F.J.N.; Travers, M.; Habibi, S.; Pessaint, L.; Van Ry, A.; Blade, K.; Brown, R.; Cook, A.; Finneyfrock, B.; Dodson, A.; Teow, E.; Velasco, J.; Zahn, R.; Wegmann, F.; Bondzie, E.A.; Dagotto, G.; Gebre, M.S.; He, X.; Jacob-Dolan, C.; Kirilova, M.; Kordana, N.; Lin, Z.; Maxfield, L.F.; Nampanya, F.; Nityanandam, R.; Ventura, J.D.; Wan, H.; Cai, Y.; Chen, B.; Schmidt, A.G.; Wesemann, D.R.; Baric, R.S.; Alter, G.; Andersen, H.; Lewis, M.G.; Barouch, D.H. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369(6505), 806-811.
[http://dx.doi.org/10.1126/science.abc6284] [PMID: 32434945]
[29]
Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines (Basel), 2014, 2(3), 624-641.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[30]
Ewer, K.J.; Lambe, T.; Rollier, C.S.; Spencer, A.J.; Hill, A.V.; Dorrell, L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr. Opin. Immunol., 2016, 41, 47-54.
[http://dx.doi.org/10.1016/j.coi.2016.05.014] [PMID: 27286566]
[31]
Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[32]
Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; Botikov, A.G.; Izhaeva, F.M.; Popova, O.; Ozharovskaya, T.A.; Esmagambetov, I.B.; Favorskaya, I.A.; Zrelkin, D.I.; Voronina, D.V.; Shcherbinin, D.N.; Semikhin, A.S.; Simakova, Y.V.; Tokarskaya, E.A.; Egorova, D.A.; Shmarov, M.M.; Nikitenko, N.A.; Gushchin, V.A.; Smolyarchuk, E.A.; Zyryanov, S.K.; Borisevich, S.V.; Naroditsky, B.S.; Gintsburg, A.L. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, 397(10275), 671-681.
[http://dx.doi.org/10.1016/S0140-6736(21)00234-8] [PMID: 33545094]
[33]
Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; Berghmans, P-J.; Kimmel, M.; Van Damme, P.; de Hoon, J.; Smith, W.; Stephenson, K.E.; De Rosa, S.C.; Cohen, K.W.; McElrath, M.J.; Cormier, E.; Scheper, G.; Barouch, D.H.; Hendriks, J.; Struyf, F.; Douoguih, M.; Van Hoof, J.; Schuitemaker, H. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med., 2021, 384(19), 1824-1835.
[http://dx.doi.org/10.1056/NEJMoa2034201] [PMID: 33440088]
[34]
Tatsis, N.; Ertl, H.C.J. Adenoviruses as vaccine vectors. Mol. Ther., 2004, 10(4), 616-629.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.013] [PMID: 15451446]
[35]
Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune responses to viral gene therapy vectors. Mol. Ther., 2020, 28(3), 709-722.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.001] [PMID: 31968213]
[36]
Pollard, A.J.; Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol., 2021, 21(2), 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[37]
Guo, J.; Mondal, M.; Zhou, D. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Hum. Vaccin. Immunother., 2018, 14(7), 1679-1685.
[http://dx.doi.org/10.1080/21645515.2017.1419108] [PMID: 29300685]
[38]
Atasheva, S.; Yao, J.; Shayakhmetov, D.M. Innate immunity to adenovirus: lessons from mice. FEBS Lett., 2019, 593(24), 3461-3483.
[http://dx.doi.org/10.1002/1873-3468.13696] [PMID: 31769012]
[39]
Kathryn, M. MD: Coronavirus disease 2019 (COVID-19): Vaccines to prevent SARS-CoV-2 infection. 2019. Available from: https://www.uptodate.com/contents/covid-19-vaccines-to-prevent-sars-cov-2-infection (Accessed Mar 31, 2021).
[40]
CALENDÁRIO Nacional de Vacinação/2020/PNI/MS. 2020. Available from: https://www.saude.go.gov.br/files/imunizacao/calendario/Calendario.Nacional.Vacinacao2020.atualizado.pdf (Accessed Jul 1, 2021).
[41]
[42]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[43]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[44]
Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med., 2021, 384(15), 1412-1423.
[http://dx.doi.org/10.1056/NEJMoa2101765] [PMID: 33626250]
[45]
A Study of a Candidate COVID-19 Vaccine (COV001). Available from: https://clinicaltrials.gov/ct2/show/NCT04324606 (Accessed Mar 13, 2021).
[46]
Investigating a Vaccine Against COVID-19. Available from: https://clinicaltrials.gov/ct2/show/NCT04400838 (Accessed Mar 13, 2021).
[47]
A Study of a Candidate COVID-19 Vaccine (COV003). Available from: https://clinicaltrials.gov/ct2/show/ NCT04536051 (Accessed Mar 13, 2021).
[48]
COVID-19 Vaccine. Available from: https://clinicaltrials. gov/ct2/show/NCT04444674 (Accessed Mar 13, 2021).
[50]
Barouch, D.H.; Kik, S.V.; Weverling, G.J.; Dilan, R.; King, S.L.; Maxfield, L.F.; Clark, S.; Ng’ang’a, D.; Brandariz, K.L.; Abbink, P.; Sinangil, F.; de Bruyn, G.; Gray, G.E.; Roux, S.; Bekker, L-G.; Dilraj, A.; Kibuuka, H.; Robb, M.L.; Michael, N.L.; Anzala, O.; Amornkul, P.N.; Gilmour, J.; Hural, J.; Buchbinder, S.P.; Seaman, M.S.; Dolin, R.; Baden, L.R.; Carville, A.; Mansfield, K.G.; Pau, M.G.; Goudsmit, J. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine, 2011, 29(32), 5203-5209.
[http://dx.doi.org/10.1016/j.vaccine.2011.05.025] [PMID: 21619905]
[51]
Janssen Investigational COVID-19 Vaccine: Interim Analysis of Phase 3 Clinical Data Released. Available from: https://www.nih.gov/news-events/news-releases/jansseninvestigational-covid-19-vaccine-interim-analysis-phase-3-clinical-data-released (Accessed Mar 13, 2021).
[52]
Office of the Commissioner. FDA Issues Emergency Use Authorization for Third COVID-19 Vaccine., Available from: fda-issues-emergency-use-authorization-third-covid-19-vaccine (Accessed Mar 13, 2021).
[53]
COVID-19 vaccine status global information portal. Available from: https://www.janssen.com/covid-19-vaccine (Accessed Mar 13, 2021).
[54]
Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; Chen, X.; Hu, Y.; Liu, X.; Jiang, C.; Li, J.; Yang, M.; Song, Y.; Wang, X.; Gao, Q.; Zhu, F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 2021, 21(2), 181-192.
[http://dx.doi.org/10.1016/S1473-3099(20)30843-4] [PMID: 33217362]
[55]
Coronavirus (COVID-19) vaccinations. Available from: https://ourworldindata.org/covid-vaccinations (Accessed Mar 13, 2021).
[56]
Vacinas. Available from: https://www.gov.br/anvisa/ptbr/assuntos/paf/coronavirus/vacinas/vacinas (Accessed Mar 13, 2021).
[57]
van Dorp, L.; Acman, M.; Richard, D.; Shaw, L.P.; Ford, C.E.; Ormond, L.; Owen, C.J.; Pang, J.; Tan, C.C.S.; Boshier, F.A.T.; Ortiz, A.T.; Balloux, F. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect. Genet. Evol., 2020, 83104351
[http://dx.doi.org/10.1016/j.meegid.2020.104351] [PMID: 32387564]
[58]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[59]
Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Zhang, L.; Li, X.; Huang, W.; Wang, Y. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell, 2020, 182(5), 1284-1294.e9.
[http://dx.doi.org/10.1016/j.cell.2020.07.012] [PMID: 32730807]
[60]
Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol., 2011, 8(2), 270-279.
[http://dx.doi.org/10.4161/rna.8.2.15013] [PMID: 21593585]
[61]
Lauring, A.S.; Hodcroft, E.B. Genetic variants of SARS-CoV-2-what do they mean? JAMA, 2021, 325(6), 529-531.
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[62]
Mascola, J.R.; Graham, B.S.; Fauci, A.S. SARS-CoV-2 viral variants-tackling a moving target. JAMA, 2021, 325(13), 1261-1262.
[http://dx.doi.org/10.1001/jama.2021.2088] [PMID: 33571363]
[63]
Rees-Spear, C.; Muir, L.; Griffith, S.A.; Heaney, J.; Aldon, Y.; Snitselaar, J.L.; Thomas, P.; Graham, C.; Seow, J.; Lee, N.; Rosa, A.; Roustan, C.; Houlihan, C.F.; Sanders, R.W.; Gupta, R.K.; Cherepanov, P.; Stauss, H.J.; Nastouli, E.; Doores, K.J.; van Gils, M.J.; McCoy, L.E. The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep., 2021, 34(12)108890
[http://dx.doi.org/10.1016/j.celrep.2021.108890] [PMID: 33713594]
[64]
Yurkovetskiy, L.; Wang, X.; Pascal, K.E.; Tomkins-Tinch, C.; Nyalile, T.P.; Wang, Y.; Baum, A.; Diehl, W.E.; Dauphin, A.; Carbone, C.; Veinotte, K.; Egri, S.B.; Schaffner, S.F.; Lemieux, J.E.; Munro, J.B.; Rafique, A.; Barve, A.; Sabeti, P.C.; Kyratsous, C.A.; Dudkina, N.V.; Shen, K.; Luban, J. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell, 2020, 183(3), 739-751.e8.
[http://dx.doi.org/10.1016/j.cell.2020.09.032] [PMID: 32991842]
[65]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; Hastie, K.M.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; de Silva, T.I.; McDanal, C.; Perez, L.G.; Tang, H.; Moon-Walker, A.; Whelan, S.P.; LaBranche, C.C.; Saphire, E.O.; Montefiori, D.C. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020, 182(4), 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[66]
Hou, Y.J.; Chiba, S.; Halfmann, P.; Ehre, C.; Kuroda, M.; Dinnon, K.H., III; Leist, S.R.; Schäfer, A.; Nakajima, N.; Takahashi, K.; Lee, R.E.; Mascenik, T.M.; Graham, R.; Edwards, C.E.; Tse, L.V.; Okuda, K.; Markmann, A.J.; Bartelt, L.; de Silva, A.; Margolis, D.M.; Boucher, R.C.; Randell, S.H.; Suzuki, T.; Gralinski, L.E.; Kawaoka, Y.; Baric, R.S. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370(6523), 1464-1468.
[http://dx.doi.org/10.1126/science.abe8499] [PMID: 33184236]
[67]
Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Peng, H.; Quinlan, B.D.; Rangarajan, E.S.; Pan, A.; Vanderheiden, A.; Suthar, M.S.; Li, W.; Izard, T.; Rader, C.; Farzan, M.; Choe, H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun., 2020, 11(1), 6013.
[http://dx.doi.org/10.1038/s41467-020-19808-4] [PMID: 33243994]
[68]
Groves, D.C.; Rowland-Jones, S.L.; Angyal, A. The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem. Biophys. Res. Commun., 2021, 538, 104-107.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.109] [PMID: 33199022]
[69]
Galloway, S.E.; Paul, P.; MacCannell, D.R.; Johansson, M.A.; Brooks, J.T.; MacNeil, A.; Slayton, R.B.; Tong, S.; Silk, B.J.; Armstrong, G.L.; Biggerstaff, M.; Dugan, V.G. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(3), 95-99.
[http://dx.doi.org/10.15585/mmwr.mm7003e2] [PMID: 33476315]
[70]
Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; Amato, R.; Ragonnet-Cronin, M.; Harrison, I.; Jackson, B.; Ariani, C.V.; Boyd, O.; Loman, N.J.; McCrone, J.T.; Gonçalves, S.; Jorgensen, D.; Myers, R.; Hill, V.; Jackson, D.K.; Gaythorpe, K.; Groves, N.; Sillitoe, J.; Kwiatkowski, D.P.; Flaxman, S.; Ratmann, O.; Bhatt, S.; Hopkins, S.; Gandy, A.; Rambaut, A.; Ferguson, N. N.M Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. bioRxiv, 2021. Available at: https://www.medrxiv.org/content/10.1101/2020
[71]
Yadav, P.D.; Gupta, N.; Nyayanit, D.A.; Sahay, R.R.; Shete, A.M.; Majumdar, T.; Patil, S.; Kaur, H.; Nikam, C.; Pethani, J.; Patil, D.Y.; Aggarwal, N.; Vijay, N.; Narayan, J. Imported SARS-CoV-2 V501Y.V2 variant (B.1.351) detected in travelers from South Africa and Tanzania to India. Travel Med. Infect. Dis., 2021, 41102023
[http://dx.doi.org/10.1016/j.tmaid.2021.102023] [PMID: 33727176]
[72]
Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; Graham, B.S.; Mascola, J.R.; Chang, J.Y.; Yin, M.T.; Sobieszczyk, M.; Kyratsous, C.A.; Shapiro, L.; Sheng, Z.; Huang, Y.; Ho, D. D Increased resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 to antibody neutralization. bioRxiv, 2021.
[73]
Cele, S.; Gazy, I.; Jackson, L.; Hwa, S-H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pillay, S.; Wilkinson, E.; Naidoo, Y.; Karim, F.; Ganga, Y.; Khan, K.; Balazs, A.B.; Gosnell, B.I.; Hanekom, W.; Moosa, M-Y.S.; Lessells, R.J.; de Oliveira, T.; Sigal, A. Escape of SARS-CoV-2 501Y. bioRxiv, 2021.
[74]
Wibmer, C.K.; Ayres, F.; Hermanus, T.; Madzivhandila, M.; Kgagudi, P.; Oosthuysen, B.; Lambson, B.E.; de Oliveira, T.; Vermeulen, M.; van der Berg, K.; Rossouw, T.; Boswell, M.; Ueckermann, V.; Meiring, S.; von Gottberg, A.; Cohen, C.; Morris, L.; Bhiman, J.N.; Moore, P.L. SARS-CoV-2 501Y. bioRxiv, 2021.
[75]
Fujino, T.; Nomoto, H.; Kutsuna, S.; Ujiie, M.; Suzuki, T.; Sato, R.; Fujimoto, T.; Kuroda, M.; Wakita, T.; Ohmagari, N. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg. Infect. Dis., 2021, 27(4), 27.
[http://dx.doi.org/10.3201/eid2704.210138] [PMID: 33567247]
[76]
Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D. da S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.; Hawryluk, I.; McCrone, J.T.; Hulswit, R.J.G.; Franco, L.A.M.; Ramundo, M.S.; de Jesus, J.G.; Andrade, P.S.; Coletti, T.M.; Ferreira, G.M.; Silva, C.A.M.; Manuli, E.R.; Pereira, R.H.M.; Peixoto, P.S.; Kraemer, M.U.; Gaburo, N., Jr; Camilo, C. da C.; Hoeltgebaum, H.; Souza, W.M.; Rocha, E.C.; de Souza, L.M.; de Pinho, M.C.; Araujo, L.J.T.; Malta, F.S.V.; de Lima, A.B.; Silva, J. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv, 2021.
[77]
Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; Myers, R.; Campbell, C.; Amirthalingam, G.; Edmunds, M.; Zambon, M.; Brown, K.; Hopkins, S.; Chand, M. Ramsay, M Effectiveness of COVID-19 Vaccines against the B.1.617.2 Variant. bioRxiv, 2021.
[78]
Threat Assessment Brief: Emergence of SARS-CoV-2 B.1.617 variants in India and situation in the EU/EEA. Available from: https://www.ecdc.europa.eu/en/publications-data/threat-assessment-emergence-sars-cov-2-b1617-variants (Accessed Jun 29, 2021).
[79]
Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; Briner, C.; Kwatra, G.; Ahmed, K.; Aley, P.; Bhikha, S.; Bhiman, J.N.; Bhorat, A.E.; du Plessis, J.; Esmail, A.; Groenewald, M.; Horne, E.; Hwa, S-H.; Jose, A.; Lambe, T.; Laubscher, M.; Malahleha, M.; Masenya, M.; Masilela, M.; McKenzie, S.; Molapo, K.; Moultrie, A.; Oelofse, S.; Patel, F.; Pillay, S.; Rhead, S.; Rodel, H.; Rossouw, L.; Taoushanis, C.; Tegally, H.; Thombrayil, A.; van Eck, S.; Wibmer, C.K.; Durham, N.M.; Kelly, E.J.; Villafana, T.L.; Gilbert, S.; Pollard, A.J.; de Oliveira, T.; Moore, P.L.; Sigal, A.; Izu, A. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N. Engl. J. Med., 2021, 384(20), 1885-1898.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[80]
Liu, Y.; Liu, J.; Xia, H.; Zhang, X.; Fontes-Garfias, C.R.; Swanson, K.A.; Cai, H.; Sarkar, R.; Chen, W.; Cutler, M.; Cooper, D.; Weaver, S.C.; Muik, A.; Sahin, U.; Jansen, K.U.; Xie, X.; Dormitzer, P.R.; Shi, P-Y. Neutralizing activity of BNT162b2-elicited serum. N. Engl. J. Med., 2021, 384(15), 1466-1468.
[http://dx.doi.org/10.1056/NEJMc2102017] [PMID: 33684280]
[81]
Muik, A.; Wallisch, A-K.; Sänger, B.; Swanson, K.A.; Mühl, J.; Chen, W.; Cai, H.; Maurus, D.; Sarkar, R.; Türeci, Ö.; Dormitzer, P.R.; Şahin, U. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science, 2021, 371(6534), 1152-1153.
[http://dx.doi.org/10.1126/science.abg6105] [PMID: 33514629]
[82]
Wang, P.; Casner, R.G.; Nair, M.S.; Wang, M.; Yu, J.; Cerutti, G.; Liu, L.; Kwong, P.D.; Huang, Y.; Shapiro, L.; Ho, D. D Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. bioRxiv, 2021.
[83]
Yin, C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics, 2020, 112(5), 3588-3596.
[http://dx.doi.org/10.1016/j.ygeno.2020.04.016] [PMID: 32353474]
[84]
Holder, J. Tracking Coronavirus Vaccinations Around the World. The New York Times, 2021.