Carbohydrazide Analogues: A Review of Synthesis and Biological Activities

Page: [661 - 682] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Carbohydrazides and their Schiff bases are important classes of heterocycles that are not only employed in the area of organic chemistry but also have tremendous applications in physical and inorganic chemistry. A series of potentially bioactive compounds containing carbohydrazide functionality and their hydrazone derivatives have been synthesized and screened for antibacterial, anticancer, antifungal and anti-inflammatory, etc. This brief review discloses some synthetic routes to so many reported carbohydrazides, their Schiff bases, their biological activities, and their structure-activity relationship.

Keywords: Carbohydrazide, schiff bases, hydrazone, hydrazinolysis, biological activities, structure-activity relationship.

Graphical Abstract

[1]
Hegazi, B.; Mohamed, H.A.; Dawood, K.M.; Badria, F.A. Cytotoxicity and utility of 1-indanone in the synthesis of some new heterocycles. Chem. Pharm. Bull. (Tokyo), 2010, 58(4), 479-483.
[http://dx.doi.org/10.1248/cpb.58.479] [PMID: 20410628]
[2]
Rostom, S.A.F. Pyrazole compounds with carbohydrazides moiety internalized acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem., 2010, 18, 2767-2776.
[http://dx.doi.org/10.1016/j.bmc.2010.02.006] [PMID: 20207545]
[3]
Francisco, M.E.Y.; Seltzman, H.H.; Gilliam, A.F.; Mitchell, R.A.; Rider, S.L.; Perwee, R.G.; Stevenson, L.A.; Thomas, B.F. 1-H- pyrazole derivatives 5-9 and 2,3-dihydo-1-H-pyrazole derivatives 10 that exhibit biological activities. J. Med. Chem., 2002, 45, 2708-2719.
[http://dx.doi.org/10.1021/jm010498v] [PMID: 12061874]
[4]
Padgett, L.W. Recent developments in cannabinoid ligands. Life Sci., 2005, 77(14), 1767-1798.
[http://dx.doi.org/10.1016/j.lfs.2005.05.020] [PMID: 15993427]
[5]
Das, N.P.; Mittra, A.S. J. Indian Chem. Soc., 1978, 55, 907.
[6]
Dutta, M.M.; Goswami, B.N.; Kataky, J.C.S. Studies on Biologically Active Heterocycles.Part I. Synthesis and Antifungal Activity of Some New Aroyl Hydrazones and 2,5-Disubstituted-1,3,4-oxadiazoles. J. Heterocycl. Chem., 1986, 23, 793-795.
[http://dx.doi.org/10.1002/jhet.5570230328]]
[7]
Hodnett, E.M.; Dunn, W.J. Synthesis of Novel Azo Schiff Base. J. Med. Chem., 1970, 13, 768-775.
[http://dx.doi.org/10.1021/jm00298a054] [PMID: 5452451]
[8]
Samadhiya, S.; Halve, A. Synthesis, Characterization and Antibacterial Activity of Some Halo Substituted Schiff Bases. Orient. J. Chem., 2001, 17, 119-123.
[9]
Nandi, A.K.; Chaudhri, S.; Mazumdah, S.K.; Ghosh, S. Effects of Chlorine Substitution on the Structure and Activity of 4-Phenylthiosemicarbazide. J. Chem. Soc. Perkin Trans., 1984, 2(11), 1729-1733.
[http://dx.doi.org/10.1039/p29840001729]
[10]
Modi, J.D.; Sabnis, S.S.; Deliwala, C.V. Synthesis of Schiff Base and 4-oxo-thiazolidines of 5-bromo furan-2- Carbohydrazide and their derivatives as an antimicrobial agent. J. Med. Chem., 1961, 61, 933.
[11]
Erman, P.H.; Straub, H. Heterocyclic Hydrazide Derivatives of Monocyclic γ-LactamAntibiotics. U.S. Pat. US 5,318,963, 1994.
[12]
Wu, E.S.C.; Kover, A.; Loch, J.T., III; Rosenberg, L.P.; Semus, S.F.; Verhoest, P.R.; Gordon, J.C.; Machulskis, A.C.; Mc Creedy, S.A.; Zongrone, J. Acylhydrazones as M1/M3 SelectiveMuscarinic Agonists. Bioorg. Med. Chem. Lett., 1996, 6, 2525-2530.
[http://dx.doi.org/10.1016/0960-894X(96)00471-4]
[13]
Markham, P. N.; Klyachko, E. A.; Crich, D.; Jaber, M. R.; Johnson, M. E.; Mulhearn, D. C.; Neyfakh, A. A. Bactericidal Antimicrobial Methods and Compositions Using Acyl Hydrazides, Oxyamides, and 8- Hydroxyquinolines as Antibiotic Potentiators for Treatment of Gram-Postive Infections. PCT Int. Appl., WO 01 70, 213,, 2001.
[14]
El-masry, A.H.; Fahmy, H.H.; Abdelwahed, S.H. Synthesis and Antimicrobial Activity of Some Benzimidazole Derivatives. Molecules, 2000, 5, 1429-1433.
[http://dx.doi.org/10.3390/51201429]
[15]
Broadhurst, M.J.; Johnson, W.H.; Walter, D.S. Preparation of Hydroxycarbamoylalkylcarboxylic Acid Azacyclic Hydrazides as TNF-α Inhibitors. PTC Int. Appl. WO, 2000, 00, 35,885.
[16]
Milyutin, A.V.; Safonva, N.V.; Chesnokov, V.P.; Nazmetdinov, F.Y.; Voronina, E.V.; Krylora, I.V.; Andreichikov, Y.S.; Kolla, V.E.; Kozhevnikov, Y.V. Synthesis, Properties, and Biological Activity of β-Aroylpyruvylhydrazides of N-Methyl and N-Phenylanthranilic Acids. Khim.-. Farm. Zh., 1996, 30, 26-28.
[17]
Muslin, L.; Roth, W.; Erlenmeyer, H. Helv. Chim. Acta, 1953, 36, 886.
[http://dx.doi.org/10.1002/hlca.19530360419]
[18]
Sengupta, A.K.; Bhatnagar, A. Synthesis and Antimicrobial Screening of [[1-(4-Methyl/chlorophenyl)-1H-tetrazolo-5-yl]thio]acetic Acid [N-Substituted-phenyl)methylene]-hydrazides] J. Indian Chem. Soc., 1987, LXIV, 616-619.
[19]
Baseer, M.A.; Jadhav, V.D.; Phule, R.M.; Archana, Y.V.; Vibhute, Y.B. Synthesis and Antibacterial Activity of Some New Schiff Bases. Orient. J. Chem., 2000, 16, 553-557.
[20]
Tomotaki, Y.; Kamiya, K.; Abe, Y. Deodorant Compositions. PTC Int. Appl. WO, 2001, 01, 62,309.
[21]
Xia, Y.; Fan, X.D.; Zhao, B.X.; Zhao, J.; Shin, D.S.; Miao, J.Y. Synthesis and structure activity derivatives as potential agents against A549 lung cancer cells. Eur. J. Med. Chem., 2008, 43, 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.021] [PMID: 18313806]
[22]
Xia, Y.; Dong, Z.W.; Zhao, B.X.; Ge, X.; Meng, N.; Shin, D.S.; Miao, J.Y. Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg. Med. Chem., 2007, 15(22), 6893-6899.
[http://dx.doi.org/10.1016/j.bmc.2007.08.021] [PMID: 17804244]
[23]
Fan, C.D.; Zhao, B.X.; Wei, F.; Zhang, G.H.; Dong, W.L.; Miao, J.Y. Synthesis and discovery of autophagy inducers for A549 and H460 lung cancer cells, novel 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carbohydrazide derivatives. Bioorg. Med. Chem. Lett., 2008, 18(14), 3860-3864.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.058] [PMID: 18595694]
[24]
Fan, C.; Zhao, J.; Zhao, B.; Zhang, S.; Miao, J. Novel complex of copper and a salicylaldehyde pyrazole hydrazone derivative induces apoptosis through up-regulating integrin beta 4 in vascular endothelial cells. Chem. Res. Toxicol., 2009, 22(9), 1517-1525.
[http://dx.doi.org/10.1021/tx900111y] [PMID: 19621939]
[25]
Fan, C.; Su, H.; Zhao, J.; Zhao, B.; Zhang, S.; Miao, J. A novel copper complex of salicylaldehyde pyrazole hydrazone induces apoptosis through up-regulating integrin beta4 in H322 lung carcinoma cells. Eur. J. Med. Chem., 2010, 45(4), 1438-1446.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.048] [PMID: 20089331]
[26]
Li, Z.M.; Chen, H.S.; Zhao, W.G.; Zhang, K.; Huang, X.S. Synthesis and biological activity of pyrazole derivatives. Chem. J. Chin. Univ., 1997, 18, 1794-1799.
[27]
Chen, H.S.; Li, Z.M. Synthesis of some heteroaryl pyrazole derivatives and their biological activities. Chin. J. Chem., 2002, 18, 596-602.
[28]
(a) Kidwai, M.; Kumar, R.; Goel, Y. Main Group Met. Chem., 1997, 20, 367-372.
(b) Kidwai, M.; Mishra, P.; Kumar, R.; Saxena, R.K.; Gupta, R.; Bradoo, S. Monatsh. Chem., 1998, 129, 961-965.
(c) Fuqiang, L.; Palmer, D.C.; Sorgi, K.L. Tetrahedron Lett., 2004, 45, 1877-1880.
[29]
Lau, K.Y.; Mayr, A.; Cheung, K.K. Inorg. Chim. Acta, 1999, 285, 223.
[http://dx.doi.org/10.1016/S0020-1693(98)00352-1]
[30]
Shawali, A.S.; Harb, N.M.; Badahdah, S.K.O. J. Heterocycl. Chem., 1985, 22, 1397.
[http://dx.doi.org/10.1002/jhet.5570220555]
[31]
Kim, H.J.; Kim, W.; Lough, A.J.; Kim, B.M.; Chin, J. A cobalt(III)-salen complex with an axial substituent in the diamine backbone: Stereoselective recognition of amino alcohols. J. Am. Chem. Soc., 2005, 127(48), 16776-16777.
[http://dx.doi.org/10.1021/ja0557785] [PMID: 16316210]
[32]
May, J.P.; Ting, R.; Lermer, L.; Thomas, J.M.; Roupioz, Y.; Perrin, D.M. Covalent Schiff base catalysis and turnover by a DNAzyme: A M2+ -independent AP-endonuclease mimic. J. Am. Chem. Soc., 2004, 126(13), 4145-4156.
[http://dx.doi.org/10.1021/ja037625s] [PMID: 15053604]
[33]
Cline, S.J.; Wasson, J.R.; Hatfield, W.E.; Hodgson, D.J. J. Chem. Soc., Dalton Trans., 1978, 1051-1057.
[http://dx.doi.org/10.1039/dt9780001051]
[34]
Jian, F.F.; Zhu, C.Y.; Xiao, H.L.; Xu, L.Z. Z. Anorg. Allg. Chem., 2005, 631, 769-772.
[http://dx.doi.org/10.1002/zaac.200400414]
[35]
Chen, X.H.; Liu, S.X. Chin. J. Struct. Chem., 2004, 23, 33-37.
[36]
Xue, Z.M.; Zhang, X.J.; Tian, Y.P.; Wu, J.Y.; Jiang, M.H.; Fun, H.K. Chin. J. Struct. Chem., 2003, 22, 265-269.
[37]
Layer, R.W. The Chemistry of Imines. Chem. Rev., 1963, 63, 489-510.
[http://dx.doi.org/10.1021/cr60225a003]
[38]
Renaud, J.L.; Brueau, C. Ruthenium-Bisimine: A New Catalytic Precursor for Regio selective Allylic Alkylation. ChemInform, 2003, 34, 408-412.
[http://dx.doi.org/10.1002/chin.200323063]
[39]
Correa, W.H.; Papadopoulos, C.; Radnidge, P.; Roberts, B.A.; Scott, J.L. Direct, efficient, solvent-free synthesis of 2-aryl-1,2,3,4 tetrahydro quinazolines. Green Chem., 2002, 4, 245-251.
[http://dx.doi.org/10.1039/b202729c]
[40]
Johnson, C.P.; Atwood, J.L.; Steed, J.W.; Bauer, C.B.; Rogers, R.D. Transition Metal Complexes of p-Sulfonatocalix[5]arene. Inorg. Chem., 1996, 35(9), 2602-2610.
[http://dx.doi.org/10.1021/ic950862e] [PMID: 11666475]
[41]
Sprung, M.M. A summary of the reactions of aldehydes with amines. Chem. Rev., 1940, 26, 297-338.
[http://dx.doi.org/10.1021/cr60085a001]
[42]
Naeimi, H.; Safari, J.; Heidarnezhad, A. Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine. Dyes Pigments, 2007, 73, 251-253.
[http://dx.doi.org/10.1016/j.dyepig.2005.12.009]
[43]
Ambroziak, K.; Pelech, R.; Milchert, E.; Dziembowska, T.; Rozwadowski, Z. New dioxo molybdenum(VI) complexes of tetradentate Schiff base as catalystsfor epoxidation of olefins. J. Mol. Catal. Chem., 2004, 211, 9-16.
[http://dx.doi.org/10.1016/j.molcata.2003.09.023]
[44]
Suga, H.; Fudo, T.; Ibata, T. Cu(I)-Binaphthyldiimine Catalyzed Asymmetric Cyclo propanation of Olefin with Diazoacetate. Synlett, 1998, 8, 933-935.
[http://dx.doi.org/10.1055/s-1998-1824]
[45]
Yang, Z.H.; Wang, L.X.; Zhou, Z.H.; Zhou, Q.L.; Tang, C.C. Synthesis of new chiral Schiff bases and their application in the asymmetric trimethylsilylcyanation of aromatic aldehydes. Tetrahedron Asymmetry, 2001, 12, 1579-1582.
[http://dx.doi.org/10.1016/S0957-4166(01)00252-X]
[46]
Tony, K.M. Ring-selective synthesis of O-heterocycles from acyclic 3-O-allyl-monosaccharides via intramolecular-nitrone–alkenecycloaddition. Tetrahedron Asymmetry, 2001, 12, 1573-1579.
[47]
Kim, G.J.; Shin, J.H. Application of new unsymmetrical chiral Mn(III),Co(II,III) and Ti(IV) salen complexes in enantioselective catalytic reactions. Catal. Lett., 1999, 63, 83-90.
[http://dx.doi.org/10.1023/A:1019040215323]
[48]
Sasaki, C.; Nakajima, K.; Kojima, M. Preparation and Characterization of Optically Active Quadridentate Schiff Base-Titanium(IV) Complexes and the Catalytic Properties of These Complexes on Asymmetric Oxidation of MethylPhenyl Sulfide with Organic Hydroperoxides. Bull. Chem. Soc. Jpn., 1991, 64, 1318-1324.
[http://dx.doi.org/10.1246/bcsj.64.1318]
[49]
Casella, L.; Ibers, J.A. Synthesis, characterization, and reactivity of copper(I) and copper(II) complexes of N,N′-bis(3-(2-thenylideneimino)propyl) piperazine (tipp) and N,N′-bis(3-(2-thenylamino)propyl)piperazine (tapp).Crystal structure of [Cu(tapp)][ClO4]2. Inorg. Chem., 1981, 20, 2438-2448.
[http://dx.doi.org/10.1021/ic50222a016]
[50]
Zoubi, W.A.; Kandil, F.; Chebani, M.K. The synthesis of (N2O2S2)-Schiff base ligands and investigation of their ion extraction capability from aqueous media. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1909-1914.
[http://dx.doi.org/10.1016/j.saa.2011.05.087] [PMID: 21700490]
[51]
Waldemar, A.; Rainer, R.S. Synthesis of Optically Active a-Hydroxy Carbonyl Compounds by the Catalytic, Enantio selective Oxidation of SilylEnol Ethers and Ketene Acetals with (Salen) manganese(III). Complexes. J. Am. Chem. Soc., 1998, 120, 708-714.
[http://dx.doi.org/10.1021/ja9726668]
[52]
Schmeyers, J.; Toda, F.; Boy, J.; Kaupp, G. Quantitative solid–solid synthesis of azomethines. J. Chem. Soc., Perkin Trans. 2, 1998, 989-994.
[http://dx.doi.org/10.1039/a704633b]
[53]
Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim, 2003.
[http://dx.doi.org/10.1002/3527601821]
[54]
Sans, D.; Perona, A.; Claramunt, R.M.; Elquero, J. Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-pyridinecarboxaldehyde. Tetrahedron, 2005, 61, 145-154.
[http://dx.doi.org/10.1016/j.tet.2004.10.036]
[55]
Fernandez-G, J.M.; Del Rio-Portilla, F.; Quiroz-Garcia, B.; Toscano, R.A.; Salcedo, R. The structures of some ortho-hydroxy Schiff base ligands. J. Mol. Struct., 2001, 561, 197-207.
[http://dx.doi.org/10.1016/S0022-2860(00)00915-7]
[56]
Shelke, V.A.; Jadhav, S.M.; Shankarwar, S.G.; Munde, A.S.; Chondhekar, T.K. Synthesis, Spectroscopic Characterization and Antimicrobial Activities of Some Rare Earth Metal Complexes of Biologically Active Asymmetrical Tetradentate Ligand. J. Korean Chem. Soc., 2011, 55, 436.
[http://dx.doi.org/10.5012/jkcs.2011.55.3.436]
[57]
Mane, P.S.; Salunka, S.M.; More, B.S.; Chougule, A.M. Synthesis and structural studies of transition metal complexes with bidentate Schiff base derived from 3-acetyl-6-methyl-(2H)- pyran-2,4(3H)-dione. Int. J. Basic Appl. Res., 2011, 01, 24.
[http://dx.doi.org/10.1155/2011/763915]
[58]
Munde, A.S.; Shelke, V.A.; Jadhav, S.M.; Kirdant, A.S.; Vaidya, S.R.; Shankarwar, S.G.; Chondhekar, T.K. Synthesis, Characterization and Antimicrobial Activities of some Transition Metal Complexes of Activities of some Transition Metal Complexes of Biologically Active Asymmetrical Tetradentate Ligands. Adv. Appl. Sci. Res., 2012, 3, 175.
[59]
Gihsoy, A.; Terzioglu, N.; Otuk, G. Synthesis of some new hydrazidehydrazones, thiosemicarbazides and thiazolidinones as possible anti-microbials. Eur. J. Med. Chem., 1997, 32, 753-757.
[http://dx.doi.org/10.1016/S0223-5234(97)88918-0]
[60]
Rollas, S; Gulerman, N; Erdeniz, H Synthesis and antimicrobial activity of some new hydrazones of 4-ß uorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. Farmaco, 2002, 57, 171.4..
[61]
Hoshina, G.; Tsuchimoto, M.; Ohba, S.; Nakajima, K.; Uekusa, H.; Ohashi, Y.; Ishida, H.; Kojima, M. Thermal Dehydrogenation of Oxovanadium(IV) Complexes with Schiff Base Ligands Derived from meso-1,2-Diphenyl-1,2-ethanediamine in the Solid State. Inorg. Chem., 1998, 37(1), 142-145.
[http://dx.doi.org/10.1021/ic9705958] [PMID: 11670274]
[62]
Canali, L.; Sherrington, D.C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev., 1999, 28, 85.
[http://dx.doi.org/10.1039/a806483k]
[63]
Sears, J.K.; Darby, J.R. The Technology of Plasticizers; Wiley: New York, USA, 1982.
[64]
Massarani, E.; Nardi, D.; Tajana, A.; Degen, L. Antibacterial nitrofuran derivatives. 2. 5-Nitro-2-furaldehyde aminoacethydrazones. J. Med. Chem., 1971, 14(17), 633-635.
[http://dx.doi.org/10.1021/jm00289a019] [PMID: 5005988]
[65]
Arapov, O.V.; Alferova, O.F.; Levocheskaia, E.I.; Krasil’nikov, I.I. Radioprotective efficacy of acyl hydrazones. Radiobiologiia, 1987, 27(6), 843-846.
[PMID: 3423241]
[66]
Richardson, D.R.; Bernhardt, P.V. Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(III) complex: An iron chelator with anti-tumour activity. J. Biol. Inorg. Chem., 1999, 4(3), 266-273.
[http://dx.doi.org/10.1007/s007750050312] [PMID: 10439071]
[67]
Yadawe, M.S.; Patil, S.A. Synthesis, characterization and biological studies of cobalt(II) and nickel(II) complexes with new Schiff bases. Transition Met Chem, 1997, 22, 220-224.
[http://dx.doi.org/10.1023/A:1018400121316]
[68]
Patole, J.; Shingnapurkar, D.; Padhye, S.; Ratledge, C. Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(6), 1514-1517.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.035] [PMID: 16413184]
[69]
Schraufnagel, D.E. Tuberculosis treatment for the beginning of the next century. Int. J. Tuberc. Lung Dis., 1999, 3(8), 651-662.
[PMID: 10460097]
[70]
Silvestrini, B.; Cheng, C.Y. Preparation of 3-Substituted-1-Benzyl1H-Indoles as Antifertility Agents. U.S. Pat. US 6,001,865, 1999.
[71]
Chande, M.S.; Pankhi, M.A.; Ambhaikar, S.B. Indian J. Chem., 2000, 39B, 603-605.
[72]
Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc., 1952, 65(4), 357-364.
[PMID: 14903503]
[73]
Bernstein, J.; Jambor, W.P.; Lott, W.A.; Pansy, F.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. VI. Derivatives of isoniazid. Am. Rev. Tuberc., 1953, 67(3), 354-365.
[PMID: 13031054]
[74]
Bernstein, J.; Jambor, W.P.; Lott, W.A.; Pansy, F.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. VII. Heterocyclic acid hydrazides and derivatives. Am. Rev. Tuberc., 1953, 67(3), 366-375.
[PMID: 13031055]
[75]
Dutta, M.M.; Goswami, B.N.; Kataky, J.C.S. Studies on Biologically Active Heterocycles. Part I. Synthesis and Antifungal Activity of Some New Aroyl Hydrazones and 2,5-Disubstituted-1,3,4-oxadiazoles. J. Heterocycl. Chem., 1986, 23, 793-795. [and references cited therein].
[http://dx.doi.org/10.1002/jhet.5570230328]
[76]
Troeberg, L.; Chen, X.; Flaherty, T.M.; Morty, R.E.; Cheng, M.; Hua, H.; Springer, C.; McKerrow, J.H.; Kenyon, G.L.; Lonsdale-Eccles, J.D.; Coetzer, T.H.T.; Cohen, F.E. Chalcone, acyl hydrazide, and related amides kill cultured Trypanosoma brucei brucei. Mol. Med., 2000, 6(8), 660-669.
[http://dx.doi.org/10.1007/BF03402046] [PMID: 11055585]
[77]
Opie, T. R. Preparation of Benzodioxincarboxylic Acid Hydrazides as insecticides. Eur. Pat. Appl. EP 984,009,, 2000.
[78]
Darnell, G.; Richardson, D.R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: The effect of the ligands on molecular targets involved in proliferation. Blood, 1999, 94(2), 781-792.
[http://dx.doi.org/10.1182/blood.V94.2.781] [PMID: 10397746]
[79]
Murukan, B.; Mohanan, K. Synthesis, characterization and antibacterial properties of some trivalent metal complexes with [(2-hydroxy-1-naphthaldehyde)-3-isatin]-bishydrazone. J. Enzyme Inhib. Med. Chem., 2007, 22(1), 65-70.
[http://dx.doi.org/10.1080/14756360601027373] [PMID: 17373549]
[80]
Singh, V.P.; Katiyar, A.; Singh, S. Synthesis, characterization of some transition metal(II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti microbial activity. Biometals, 2008, 21(4), 491-501.
[http://dx.doi.org/10.1007/s10534-008-9136-9] [PMID: 18305909]
[81]
Pandeya, S.N.; Sriram, D.; Nath, G. Biological activities of Isatin and Its derivatives Eur. J. Pharmacol. Sci., 1999, 9, 25.
[82]
Karthikeyan, M.S.; Prasad, D.J.; Poojary, B.; Subrahmanya Bhat, K.; Holla, B.S.; Kumari, N.S. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg. Med. Chem., 2006, 14(22), 7482-7489.
[http://dx.doi.org/10.1016/j.bmc.2006.07.015] [PMID: 16879972]
[83]
Naegeli, C.; Stefanovich, G. Helv. Chim. Acta, 1928, 11, 609-656.
[http://dx.doi.org/10.1002/hlca.19280110176]
[84]
Yale, H.L.; Losee, K.; Martins, J.; Holsing, M.; Perry, F.M.; Bernstein, J. Chemotherapy of Experimental Tuberculosis. VIII. The Synthesis of Acid Hydrazides, Their Derivatives and Related Compounds. J. Am. Chem. Soc., 1953, 75, 1933-1942.
[http://dx.doi.org/10.1021/ja01104a046]
[85]
Toda, F.; Hyoda, S.; Okada, K.; Hirotsu, K. J. Chem. Soc. Chem. Commun., 1995, 15, 1531-1532.
[http://dx.doi.org/10.1039/c39950001531]
[86]
Saha, A.; Kumar, R.; Kumar, R.; Devakumar, C. Indian J. Chem., 2010, 49B, 526-531.
[87]
Katritzky, A.R.; Wang, M.; Zhang, S. ARKIVOC, 2001, 2, 19-23.
[http://dx.doi.org/10.3998/ark.5550190.0002.904]
[88]
Zhang, X.; Breslav, M.; Grimm, J.; Guan, K.; Huang, A.; Liu, F.; Maryanoff, C.A.; Palmer, D.; Patel, M.; Qian, Y.; Shaw, C.; Sorgi, K.S.; Stefanick, D.X. J. Org. Chem., 2002, 67, 9471-9474.
[http://dx.doi.org/10.1021/jo026288n] [PMID: 12492358]
[89]
Elshaarawy, J.C.; Reda, F.M. A novel efficient method for the synthesis of thiophene-2-carbohydrazide. Z Naturtorsh, 2011, 6b, 1202-1208.
[90]
Shah, M.K.; Juvansinh, J.J.; Mayank, M.M.; Mitesh, B.G.; Javed, G.M. Synthesis, spectral analysis, catalytical and Biological activity studies of schiff’s base of 7-Methoxybenzofuran-2-carbohydrazide. World J. Pharm. Pharm. Sci., 2016, 5(03), 1210-1223.
[91]
Tossadis, I.A.C.A. Inorg. Chim. Acta, 1987, 133, 275.
[http://dx.doi.org/10.1016/S0020-1693(00)87779-8]
[92]
Anten, J.A.D. Polyhedron, 1987, 6, 1074.
[http://dx.doi.org/10.1016/S0277-5387(00)80958-4]
[93]
Maiti, A.; Ghosh, S. Indian J. Chem., 1989, 28A, 980.
[94]
Aggarwal, R.C.; Singh, N.K.; Singh, R.P. Inorg. Chim. Acta, 1981, 29, 2794.
[http://dx.doi.org/10.1021/ic50223a012]
[95]
Al-Amiery, A.A.; Al-Majedy, Y.K; Ibrahim, H.H Antioxidant, antimicrobial and theoretical studies of the Thiosemicarbozone derivative Schiff base 2-(,2-iminp-1-methylimidazolidine-4-yllidene)hydrazinecarbothioamide(IMHC). Org. Med. Chem let.>, 2012, 2, 4.
[96]
Muhammad, N.T.; Naghmana, K.; Aadil, A.; Shadzad, M. Synthesis, Characterization and Biological Evaluation of Schiff bases of propandihydrazide. American-Eurasian J. Agric and Environ. Sci., 2015, 15(12), 2479-2483.
[97]
Kumar, P.P.; Rani, B.L. Synthesis and characterization of new Schiff bases containing pyridine moiety and their derivatives as antioxidant agents. Pharma Chem., 2011, 3(1), 155-160.
[98]
Ranjit, K.G.K.R.; Pai, P.N.S. Synthesis and Biological Evaluation of N1-[(3z)-5-Substituted-2-Oxo-1, 2-Dihydro-3H-Indol-3-Ylidene]-5H-Dibenzo [b,f] Azepine-5-Carbohydrazides. International Journal of Biological Chemistry, 2010, 4, 19-26.
[http://dx.doi.org/10.3923/ijbc.2010.19.26]
[99]
Minijar, P.B.; Makhija, S.J. Synthesis and characterization of pyrazine-2-carbohydrazide derivatives as antimicrobial agents. J. Young Pharm., 2009, 1(2), 165-169.
[http://dx.doi.org/10.4103/0975-1483.55750]
[100]
Ahmad, M.; Hameed, S.; Tahir, M.N.; Israr, M.; Anwar, M.; Shah, M.A.; Khan, S.A.; Din, G. Synthesis, characterization and biological evaluation of some 5-methylpyrazine carbohydrazide based hydrazones. Pak. J. Pharm. Sci., 2016, 29(3), 811-817.
[PMID: 27166526]
[101]
Riddhi, M.; Karvekar, M.D. Evalution and synthesis of 5-chloro benzofuran derivatives for antibacterial activity. Int. J. Pharm. Pharm. Sci., 2010, 2(3), 6466.
[102]
Mayank, R.M.; Satish, B. Design, synthesis and biological activities of some Benzimidazole-Benzithiazole Carbohydrazide derivatives. J. Curr. Pharm. Sc, 2015, 5(2), 75-86.
[103]
Naliapara, Y. T.; Hitesh, M. Synthesis, characterization and antimicrobial activity of N’-benzylidene-5-bromothiophene-2- carbohydrazide derivatives. International Letters of Chemistry Physics and Ast ronomy, 2014, 33, 99-105.
[104]
Gopal, K.R.; Venugopala, N. Novel schiff bases of 4-hydroxy 6-carboxhydrazino benzofuran analogs: Synthesis and pharmacological study. J Pharmacol Toxicol., 2007, 2(5), 481-488.
[http://dx.doi.org/10.3923/jpt.2007.481.488]
[105]
Ganesh, D.M.; Shantkumar, M.B.; Kalyani, D.A.; Trupti, S.C. Synthesis, docking and biological evaluation of pyrrole-2-carbohydrazide derivatives. Pharma Chem., 2015, 7(2), 153-159.
[106]
Soukhyareni, G.N.; Boja, P. Synthesis of noivel Schiff bases containing arylpyrimidines as a promising antibacterial agents. Heliyon, 2019, 433, 345.
[107]
Sumathi, R.B.; Halli, M.B. Metal (II) Complexes derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff base: Synthesis, Spectroscopic, Electrochemical and Biological Investigation; Bioinorganic Chemistry and Application, 2014, p. 942162.
[108]
Eissa, H.H. Synthesis, Characterization, Anticorrosion Activity and Antibacterial Activity of Macrocyclic Schiff Bases Based on 1,3-Dithiocarbonyl Phenyl Dihydrazide. Organic Chem Curr Res, 2015, 4, 151.
[http://dx.doi.org/10.4172/2161-0401.1000151]
[109]
Rekha, N; Avinash, N; Rajendra, S; Mansing, A. Synthesis, Characterization And Biological Studies Of N'',N'''-Bis[(E)-(4 Fluorophenyl) Methylidene] Thiocarbonohydrazide. International Journal of Engineering Science Invention : 2319 – 6726 2017, 6(9), 46-49.
[110]
Solankee and Patel. Synthesis of 4-oxo-thiazolidines of 5-bromofuran-2-carbohydrazide. Adv. Appl. Sci. Res., 2013, 4(5), 1-4.
[111]
Saritha, G.; Mane, P.K.; Ambati, P.S.; Bommalla, S.; Gamboina, J.M.; Chikoti, A. Design, Synthesis and Biological Evaluation of Benzoxazole Derivatives as new Anti-inflamatoery agents. International Journal of Biopharmaceutics, 2012, 3(1), 50-54.
[112]
Syed, S.T.; Kannappan, G. Schiff Base–Copper(II) Complexes: Synthesis, Spectral Studies and Anti-tubercular and Antimicrobial Activity. Indian Journal of Advances in Chemical Science, 2016, 4(1), 40-48.
[113]
Kidwai, M.; Kumar, R.; Goel, Y. Main Group Met. Chem., 1997, 20, 367-372.
[http://dx.doi.org/10.1515/MGMC.1997.20.6.367]
[114]
Kidwai, M.; Mishra, P.; Kumar, R.; Saxena, R.K.; Gupta, R.; Bradoo, S. Monatsh. Chem., 1998, 129, 961-965.
[115]
Fuqiang, L.; Palmer, D.; Sorgi, K.L. Tetrahedron Lett., 2004, 7, 2904-2912.
[116]
Govindkumar, R.V.; Darshansinh, A.R.; Acharya, G.D. Research and Review: Synthesis, Characterization and biological studies of novel 1,3,4-oxadiazole derivatives. J. Chem., 2018, 2319-9849.
[117]
Thorat, B.R.; Mustapha, M.; Sharda, S.; Prasad, K.; Atram, R.G.; Mahesh, B.; Yamgar, R. Synthesis of novel Schiff bases of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde and Development of HPLC Chromatographic Method for their analysis. J. Chem. Pharm. Res., 2012, 4(1), 14-17.