Effects of ad libitum Free-Choice Access to Freshly Squeezed Domestic White Asparagus Juice on Intestinal Microbiota Composition and Universal Bio-Markers of Immuno-Metabolic Homeostasis and General Health in Middle-Aged Female and Male C57BL/6 Mice

Page: [401 - 414] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Asparagus contains different bioactive and volatile components including pyrazines, sulphur-containing compounds, and polyphenols. Asparagus juice is a new low-calorie LAB-containing natural juice product, the usage of which is expanding. Pyrazines and sulphur-containing compounds are degraded by bacteria on one hand, but on the other hand, dietary polyphenols prevent human colorectal diseases as modulators of the composition and/or activity of gut microbiota. However, the utility of these asparagus compounds for reversal of age-associated microbial dysbiosis and the immunometabolic disorders that dysbiosis incites body inflammatory reactions was not much explored so far. Hence, using middle-aged mice, we conducted the current study to verify the effect of freshly squeezed domestic white asparagus juice on the biomarkers reflecting immuno-metabolic pathways linking age-related dysbiosis and metabolic events.

Materials and Methods: Thirty-two conventional Harlan Laboratories C57BL/6 mice aged between 11-12 months were randomly divided into two groups (n=16). Mice in control group 1 received sterile tap water. Animals in group 2 had 60 days ad libitum free-choice access to sterile tap water supplemented with 5% (v/v) freshly squeezed domestic white asparagus juice. Clinical signs of general health, hydration, and inflammation were monitored daily. Caecal content samples were analysed by qPCR for microbial composition. Histology of relevant organs was carried out on day 60 after sacrificing the mice. Universal markers of metabolic- and liver function were determined in serum samples. Caecal SCFAs contents were measured using HPLC.

Results: Overall, no significant differences in general health or clinical signs of inflammation between the two groups were observed. The liver to body weight ratio in asparagus juice-drank mice was lowered. The qPCR quantification showed that asparagus juice significantly decreased the caecal Clostridium coccoides group while causing an enhancement in Clostridium leptum, Firmicutes, and bifidobacterial groups as well as total caecal bacterial count. Asparagus juice significantly elevated the caecal contents of SCFAs. Enhanced SCFAs (acetate, butyrate, and propionate) in mice receiving asparagus juice, however, did coincide with altered lipid levels in plasma or changes in the abundance of relevant bacteria for acetate-, butyrate-, and propionate production.

Discussion: To the best of our knowledge, this is the first study aiming at evaluating the effect of freshly squeezed German domestic white asparagus juice on universal markers of metabolic- and liver function in middle- aged mice and the role of gut microbiota in this regard. The effectiveness of asparagus juice to improve metabolism in middle-aged mice was associated with alterations in intestinal microbiota but maybe also due to uptake of higher amounts of SCFAs.

Conclusion: Hence, the key signal pathways corresponding to improved immune-metabolic homeostasis will be an important research scheme in the future.

Keywords: Asparagus, dysbiosis, microbiome metabolites, short-chain fatty acids (SCFA), polyphenols, bifidobacteria.

Graphical Abstract

[1]
Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.H.; Hall, R.D. Green and white asparagus (asparagus officinalis): A source of developmental, chemical and urinary intrigue. Metabolites, 2019, 10(1), 17.
[http://dx.doi.org/10.3390/metabo10010017]
[2]
Kulczyński, B.; Kobus-Cisowska, J.; Kmiecik, D.; Gramza-Michałowska, A.; Golczak, D.; Korczak, J. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under different sunlight conditions. Acta Sci. Pol. Technol. Aliment., 2016, 15(3), 267-279.
[http://dx.doi.org/10.17306/J.AFS.2016.3.26]
[3]
Valiya Nadakkakath, A.; Kumar, A.; Eapen, S.J.; Sheoran, N.; Suseelabhai, R. Broad-spectrum antimicrobial activity of volatile organic compounds from endophytic Pseudomonas putida BP25 against diverse plant pathogens. Biocontrol Sci. Technol., 2019, 29(11), 1069-1089.
[4]
Majumder, D.; Mamun, A.A.; Akter, S.; Begam, S.; Sazzad Hossain, A.N. Md.; Bin Kayes, I. The influence of asparagus on the growth of probiotic bacteria in orange juice. J. Microbiol. Exp., 2017, 5(1), 00135.
[5]
Brueckner, B.; Ruppel, S. Microbial status of white asparagus spears during storage in moist packages. J. Food Prot., 2019, 82(9), 1479-1483.
[http://dx.doi.org/10.4315/0362-028X.JFP-18-528]
[6]
Osuna, J.J.; Zurera, G.; Garcia, R.M. Microbial growth in packaged fresh Asparagus. J. Food Qual., 1995, 18(3), 203-214.
[http://dx.doi.org/10.1111/j.1745-4557.1995.tb00375.x]
[7]
McEligot, A.J.; Rock, C.L.; Shanks, T.G.; Flatt, S.W.; Newman, V.; Faerber, S.; Pierce, J.P. Comparison of serum carotenoid responses between women consuming vegetable juice and women consuming raw or cooked vegetables. Cancer Epidemiol. Biomarkers Prev., 1999, 8(3), 227-231.
[8]
Sun, T.; Powers, J.R.; Tang, J. Evaluation of the antioxidant activity of asparagus,broccoli and their juices. Food Chem., 2007, 105(1), 101-106.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.048]
[9]
Srivastava, S.; Singh, K. Changes occur on nutritional value of beetroot (“beta vulgaris”) after pickling. Curr. Res. Nutr. Food Sci., 2016, 4(3), 8.
[http://dx.doi.org/10.12944/CRNFSJ.4.3.08]
[10]
Chen, X.; Qin, W.; Ma, L.; Xu, F.; Jin, P.; Zheng, Y. Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. Lebensm. Wiss. Technol., 2015, 62(1), 927-933.
[http://dx.doi.org/10.1016/j.lwt.2014.10.068]
[11]
Schiraldi, C.; De Rosa, M. Mesophilic organisms. Encyclopedia of membranes; Drioli, E., 2014,
[12]
Chen, X.; Xu, F.; Qin, W.; Ma, L.; Zheng, Y. Optimization of enzymatic clarification of green asparagus juice using response surface methodology. J. Food Sci., 2012, 77(6), C665-C670.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02738.x]
[13]
Myhrstad, M.C.W.; Tunsjø, H.; Charnock, C.; Telle-Hansen, V.H. Dietary fiber, gut microbiota, and metabolic regulation-current status in human randomized trials. Nutrients, 2020, 12(3), 859.
[http://dx.doi.org/10.3390/nu12030859]
[14]
Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; Khazaie, K.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Dietary fiber treatment corrects the composition of gut microbiota, promotes scfa production, and suppresses colon carcinogenesis. Genes (Basel), 2018, 9(2), 102.
[http://dx.doi.org/10.3390/genes9020102]
[15]
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7(3), 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082]
[16]
Willemsen, L.E.; Koetsier, M.A.; van Deventer, S.J.; van Tol, E.A. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut, 2003, 52(10), 1442-1447.
[http://dx.doi.org/10.1136/gut.52.10.1442]
[17]
Kumar, M.; Babaei, P.; Ji, B.; Nielsen, J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr. Healthy Aging, 2016, 4(1), 3-16.
[http://dx.doi.org/10.3233/NHA-150002]
[18]
Salazar, N.; Arboleya, S.; Fernández-Navarro, T.; de Los Reyes-Gavilán, C.G.; Gonzalez, S.; Gueimonde, M. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: A cross-sectional study. Nutrients, 2019, 11(8), 1765.
[http://dx.doi.org/10.3390/nu11081765]
[19]
Bhatnagar, M.; Sisodia, S.S. Antisecretory and antiulcer activity of Asparagus racemosus Willd. against indomethacin plus phyloric ligation-induced gastric ulcer in rats. J. Herb. Pharmacother., 2006, 6(1), 13-20.
[http://dx.doi.org/10.1080/J157v06n01_02]
[20]
Flurkey, K.; Currer, J.M.; Harrison, D.E. Mouse models in aging research. In the mouse in biomedical research. 2007, pp. 637-672.
[21]
Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.; Jury, J.; Foley, K.P.; Schertzer, J.D.; Larché, M.J.; Davidson, D.J.; Verdú, E.F.; Surette, M.G.; Bowdish, D.M.E. Age-Associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe, 2017, 21(4), 455-466.e4.
[http://dx.doi.org/10.1016/j.chom.2017.03.002]
[22]
Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol., 2018, 14(10), 576-590.
[http://dx.doi.org/10.1038/s41574-018-0059-4]
[23]
Ghadimi, D.; de Vrese, M.; Ebsen, M.; Röcken, C.; Olaf Frahm, S.; Zahlten, J.; Fölster-Holst, R.; Heller, K.J.; Bockelmann, W. Study on the additive protective effect of PGLYRP3 and Bifidobacterium adolescentis Reuter 1963 on severity of DSS-induced colitis in Pglyrp3 knockout (Pglyrp3 -/-) and wild-type (WT) mice. Immunobiology, 2021, 226(1), 152028.
[http://dx.doi.org/10.1016/j.imbio.2020.152028]
[24]
Burgueño, J.F.; Lang, J.K.; Santander, A.M.; Fernández, I.; Fernández, E.; Zaias, J.; Abreu, M.T. Fluid supplementation accelerates epithelial repair during chemical colitis. PLoS One, 2019, 14(4), e0215387.
[http://dx.doi.org/10.1371/journal.pone.0215387]
[25]
Ghadimi, D.; Nielsen, A.; Yoness Hassan, M.F.; Fölster-Holst, R.; de Vrese, M.; Heller, K.J. Modulation of GSK - 3β/β - catenin cascade by commensal bifidobacteria plays an important role for the inhibition of metaflammation-related biomarkers in response to LPS or non-physiological concentrations of fructose: An in vitro study. PharmaNutrition, 2019, 8, 100145.
[http://dx.doi.org/10.1016/j.phanu.2019.100145]
[26]
Burkholder, T.; Foltz, C.; Karlsson, E.; Linton, C.G.; Smith, J.M. Health evaluation of experimental laboratory mice. Curr. Protoc. Mouse Biol., 2012, 2, 145-165.
[http://dx.doi.org/10.1002/9780470942390.mo110217]
[27]
Cordula, K. Validierung fluoreszierender Peptidkonjugate für die optische Bildgebung gastrointestinaler Tumormodelle in der Nacktmaus., 2012.
[28]
Goltstein, P.M.; Reinert, S.; Glas, A.; Bonhoeffer, T.; Hübener, M. Food and water restriction lead to differential learning behaviors in a head-fixed two-choice visual discrimination task for mice. PLoS One, 2018, 13(9), e0204066.
[http://dx.doi.org/10.1371/journal.pone.0204066]
[29]
Ge, X.; Zhao, W.; Ding, C.; Tian, H.; Xu, L.; Wang, H.; Ni, L.; Jiang, J.; Gong, J.; Zhu, W.; Zhu, M.; Li, N. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci. Rep., 2017, 7(1), 441.
[http://dx.doi.org/10.1038/s41598-017-00612-y]
[30]
Mishiro, T.; Kusunoki, R.; Otani, A.; Ansary, M.M.; Tongu, M.; Harashima, N.; Yamada, T.; Sato, S.; Amano, Y.; Itoh, K.; Ishihara, S.; Kinoshita, Y. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab. Invest., 2013, 93(7), 834-843.
[http://dx.doi.org/10.1038/labinvest.2013.70]
[31]
Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; Yeh, M.; McCullough, A.J.; Sanyal, A.J. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005, 41(6), 1313-1321.
[http://dx.doi.org/10.1002/hep.20701]
[32]
Schmitz, L.; Ferrari, N.; Schwiertz, A.; Rusch, K.; Woestmann, U.; Mahabir, E.; Graf, C. Impact of endurance exercise and probiotic supplementation on the intestinal microbiota: A cross-over pilot study. Pilot Feasibility Stud., 2019, 5, 76.
[http://dx.doi.org/10.1186/s40814-019-0459-9]
[33]
Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring), 2010, 18(1), 190-195.
[http://dx.doi.org/10.1038/oby.2009.167]
[34]
Bacchetti De Gregoris, T.; Aldred, N.; Clare, A.S.; Burgess, J.G. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods, 2011, 86(3), 351-356.
[http://dx.doi.org/10.1016/j.mimet.2011.06.010]
[35]
Austad, S.N.; Kristan, D.M. Are mice calorically restricted in nature? Aging Cell, 2003, 2(4), 201-207.
[http://dx.doi.org/10.1046/j.1474-9728.2003.00053.x]
[36]
Shin, H.S.; Kindleysides, S.; Yip, W.; Budgett, S.C.; Ingram, J.R.; Poppitt, S.D. Postprandial effects of a polyphenolic grape extract (PGE) supplement on appetite and food intake: A randomised dose-comparison trial. Nutr. J., 2015, 14, 96.
[http://dx.doi.org/10.1186/s12937-015-0085-1]
[37]
Wang, H.; Hong, T.; Li, N.; Zang, B.; Wu, X. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem. Biophys. Res. Commun., 2018, 498(1), 146-151.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.017]
[38]
Li, Q.; Wu, T.; Liu, R.; Zhang, M.; Wang, R. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host ampk pathways. Mol. Nutr. Food Res., 2017, 61(12), 10.
[http://dx.doi.org/10.1002/mnfr.201700473]
[39]
Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol., 2018, 9, 1832.
[http://dx.doi.org/10.3389/fimmu.2018.01832]
[40]
Burton-Freeman, B. Dietary fiber and energy regulation. J. Nutr., 2000, 130(2), 272S-275S.
[41]
Hervik, A.K.; Svihus, B. The role of fiber in energy balance. J. Nutr. Metab., 2019, 2019, 4983657.
[http://dx.doi.org/10.1155/2019/4983657]
[42]
Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients, 2010, 2(12), 1266-1289.
[http://dx.doi.org/10.3390/nu2121266]
[43]
Carvalho, D.V.; Santos, F.A.; de Lima, R.P.; Seraine, A.F.; Vianab, C.; Fonseca, S.G.C.; Nunes, P.I.G.; Melo, T.S.; Gallão, M.I.; de Brito, E.S. Influence of low molecular weight compounds associated to cashew (Anacardium occidentale L.) fiber on lipid metabolism, glycemia andinsulinemia of normal mice. Bioact. Carbohydr. Dietary Fibre., 2018, 13, 1-6.
[http://dx.doi.org/10.1016/j.bcdf.2017.12.001]
[44]
Platania, A.; Castiglione, D.; Sinatra, D.; Urso, M.; Marranzano, M. Fluid intake and beverage consumption description and their association with dietary vitamins and antioxidant compounds in italian adults from the mediterranean healthy rating, sging and lifestyles (MEAL) dtudy. Antioxidants, 2018, 7(4), 56.
[http://dx.doi.org/10.3390/antiox7040056]
[45]
Kumar, M.C.; Udupa, A.L.; Sammodavardhana, K.; Rathnakar, U.P.; Shvetha, U.; Kodancha, G.P. Acute toxicity and diuretic studies of the roots of Asparagus racemosus Willd in rats. West Indian Med. J., 2010, 59(1), 3-6.
[http://dx.doi.org/10.4103/0019-5359.13811]
[46]
Mellanby, K. Metabolic water and desiccation. Nature, 1942, 3792, 21-21.
[http://dx.doi.org/10.1038/150021a0]
[47]
Orozco, M.N.; Solomons, N.W.; Schümann, K.; Friel, J.K.; de Montenegro, A.L. Antioxidant-rich oral supplements attenuate the effects of oral iron on in situ oxidation susceptibility of human feces. J. Nutr., 2010, 140(6), 1105-1110.
[http://dx.doi.org/10.3945/jn.109.111104]
[48]
Sedlak, T.W.; Saleh, M.; Higginson, D.S.; Paul, B.D.; Juluri, K.R.; Snyder, S.H. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5171-5176.
[http://dx.doi.org/10.1073/pnas.0813132106]
[49]
Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med., 2016, 9, 229-255.
[http://dx.doi.org/10.2147/IJGM.S102819]
[50]
Viswanathan, V.; Snehalatha, C.; Kumutha, R.; Jayaraman, M.; Ramachandran, A. Serum albumin levels in different stages of type 2 diabetic nephropathy patients. Indian J. Nephrol., 2004, 14, 89-92.
[51]
Ito, Y.; Sørensen, K.K.; Bethea, N.W.; Svistounov, D.; McCuskey, M.K.; Smedsrød, B.H.; McCuskey, R.S. Age-related changes in the hepatic microcirculation in mice. Exp. Gerontol., 2007, 42(8), 789-797.
[http://dx.doi.org/10.1016/j.exger.2007.04.008]
[52]
Sovran, B.; Hugenholtz, F.; Elderman, M.; Van Beek, A.A.; Graversen, K.; Huijskes, M.; Boekschoten, M.V.; Savelkoul, H.F.J.; De Vos, P.; Dekker, J.; Wells, J.M. Age-associated Impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep., 2019, 9(1), 1437.
[http://dx.doi.org/10.1038/s41598-018-35228-3]
[53]
Klinder, A.; Shen, Q.; Heppel, S.; Lovegrove, J.A.; Rowland, I.; Tuohy, K.M. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct., 2016, 7(4), 1788-1796.
[http://dx.doi.org/10.1039/C5FO01096A]
[54]
Shortt, C.; Hasselwander, O.; Meynier, A.; Nauta, A.; Fernández, E.N.; Putz, P.; Rowland, I.; Swann, J.; Türk, J.; Vermeiren, J.; Antoine, J.M. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr., 2018, 57(1), 25-49.
[http://dx.doi.org/10.1007/s00394-017-1546-4]
[55]
Hayashi, H.; Sakamoto, M.; Kitahara, M.; Benno, Y. Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. FEMS Microbiol. Lett., 2006, 257(2), 202-207.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00171.x]
[56]
Kaulmann, A.; Bohn, T. Bioactivity of polyphenols: Preventive and adjuvant strategies toward reducing inflammatory bowel diseases-promises, perspectives, and pitfalls. Oxid. Med. Cell. Longev., 2016, 2016, 9346470.
[http://dx.doi.org/10.1155/2016/9346470]
[57]
Oz, H.S.; Chen, T.S.; McClain, C.J.; de Villiers, W.J. Antioxidants as novel therapy in a murine model of colitis. J. Nutr. Biochem., 2005, 16(5), 297-304.
[http://dx.doi.org/10.1016/j.jnutbio.2004.09.007]
[58]
Appak-Baskoy, S.; Cengiz, M.; Teksoy, O.; Ayhanci, A. Dietary antioxidants in experimental models of liver diseases.Strawberry- pre-and post-harvest management techniques for higher fruit quality., 2019,
[59]
Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell. Longev., 2018, 2018, 8394818.
[http://dx.doi.org/10.1155/2018/8394818]
[60]
Alam, M.N.; Almoyad, M.; Huq, F. Polyphenols in colorectal cancer: Current state of knowledge including clinical trials and molecular mechanism of action. BioMed Res. Int., 2018, 2018, 4154185.
[http://dx.doi.org/10.1155/2018/4154185]
[61]
Funk, M.C.; Zhou, J.; Boutros, M. Ageing, metabolism and the intestine. EMBO Rep., 2020, 21(7), e50047.
[http://dx.doi.org/10.15252/embr.202050047]
[62]
Mistry, R.H.; Gu, F.; Schols, H.A.; Verkade, H.J.; Tietge, U.J.F. Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci. Rep., 2018, 8(1), 13238.
[http://dx.doi.org/10.1038/s41598-018-31698-7]
[63]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2), e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085]
[64]
Adachi, K.; Sugiyama, T.; Yamaguchi, Y.; Tamura, Y.; Izawa, S.; Hijikata, Y.; Ebi, M.; Funaki, Y.; Ogasawara, N.; Goto, C.; Sasaki, M.; Kasugai, K. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. J. Clin. Biochem. Nutr., 2019, 64(3), 231-238.
[http://dx.doi.org/10.3164/jcbn.18-101]
[65]
Li, H.; Christman, L.M.; Li, R.; Gu, L. Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food Funct., 2020, 11(6), 4878-4891.
[http://dx.doi.org/10.1039/D0FO00713G]
[66]
Li, L.L.; Wang, Y.T.; Zhu, L.M.; Liu, Z.Y.; Ye, C.Q.; Qin, S. Inulin with different degrees of polymerization protects against diet-induced endotoxemia and inflammation in association with gut microbiota regulation in mice. Sci. Rep., 2020, 10(1), 978.
[http://dx.doi.org/10.1038/s41598-020-58048-w]
[67]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012]
[68]
Mansoorian, B.; Combet, E.; Alkhaldy, A.; Garcia, A.L.; Edwards, C.A. Impact of fermentable fibres on the colonic microbiota metabolism of dietary polyphenols rutin and quercetin. Int. J. Environ. Res. Public Health, 2019, 16(2), 292.
[http://dx.doi.org/10.3390/ijerph16020292]
[69]
Moylan, H.E.C.; Nguyen-Ngo, C.; Lim, R.; Lappas, M. The short-chain fatty acids butyrate and propionate protect against inflammation-induced activation of mediators involved in active labor: Implications for preterm birth. Mol. Hum. Reprod., 2020, 26(6), 452-468.
[http://dx.doi.org/10.1093/molehr/gaaa025]
[70]
Lee, J.; d’Aigle, J.; Atadja, L.; Quaicoe, V.; Honarpisheh, P.; Ganesh, B.P.; Hassan, A.; Graf, J.; Petrosino, J.; Putluri, N.; Zhu, L.; Durgan, D.J.; Bryan, R.M., Jr; McCullough, L.D.; Venna, V.R. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ. Res., 2020, 127(4), 453-465.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316448]
[71]
Filosa, S.; Di Meo, F.; Crispi, S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res., 2018, 13(12), 2055-2059.
[http://dx.doi.org/10.4103/1673-5374.241429]
[72]
Shimizu, H.; Masujima, Y.; Ushiroda, C.; Mizushima, R.; Taira, S.; Ohue-Kitano, R.; Kimura, I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep., 2019, 9(1), 16574.
[http://dx.doi.org/10.1038/s41598-019-53242-x]