Current Alzheimer Research

Author(s): G.A. Reid and S. Darvesh*

DOI: 10.2174/1567205018666210827122704

Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain

Page: [470 - 481] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: In Alzheimer’s disease (AD), and amyloid models such as the 5XFAD mouse, butyrylcholinesterase (BChE) is associated with β-amyloid (Aβ) plaques and has unique biochemical features which distinguish it from that found in neurons. It has been suggested that BChE associated with Aβ plaques may be involved in the maturation of this structure and thus disease progression.

Objective: Currently, it is unknown whether BChE bound to Aβ plaques has altered biochemical properties due to a different primary structure or because of the association of this enzyme with Aβ plaques. Also, the source and binding mechanism of this BChE remains unknown.

Methods: Brain tissue sections from the 5XFAD/BChE-KO mouse were incubated with exogenous sources of BChE and stained for this enzyme’s activity. Efforts were made to determine what region of BChE or Aβ may be involved in this association.

Results: We found that incubation of 5XFAD/BChE-KO brain tissues with exogenous BChE led to this enzyme becoming associated with Aβ plaques and neurons. In contrast to neuronal BChE, the BChE bound to Aβ plaques had similar biochemical properties to those seen in AD. Mutations to BChE and efforts to block Aβ epitomes failed to prevent this association.

Conclusion: The association of BChE with Aβ plaques, and the resultant biochemical changes, suggests that BChE may undergo a conformational change when bound to Aβ plaques but not neurons. The 5XFAD/BChE-KO model is ideally suited to explore the binding mechanism of BChE to Aβ plaques as well as the involvement of BChE in AD pathogenesis.

Keywords: Butyrylcholinesterase, β-amyloid plaques, 5XFAD, neurodegeneration, Alzheimer's disease, Karnovsky-Roots histochemistry.

[1]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[2]
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8(1): 1-13.
[http://dx.doi.org/10.1016/j.jalz.2011.10.007] [PMID: 22265587]
[3]
Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2(8000): 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[4]
Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215(4537): 1237-9.
[http://dx.doi.org/10.1126/science.7058341] [PMID: 7058341]
[5]
Friede RL. Enzyme histochemical studies of senile plaques. J Neuropathol Exp Neurol 1965; 24(3): 477-91.
[http://dx.doi.org/10.1097/00005072-196507000-00008]
[6]
Geula C, Mesulam M. Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease. Brain Res 1989; 498(1): 185-9.
[http://dx.doi.org/10.1016/0006-8993(89)90419-8] [PMID: 2790472]
[7]
Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord 1995; 9(2): 23-8.
[http://dx.doi.org/10.1097/00002093-199501002-00005] [PMID: 8534419]
[8]
Mesulam MM, Geula C, Morán MA. Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 1987; 22(6): 683-91.
[http://dx.doi.org/10.1002/ana.410220603] [PMID: 3435078]
[9]
Mesulam MM, Asuncion Morán M. Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann Neurol 1987; 22(2): 223-8.
[http://dx.doi.org/10.1002/ana.410220206] [PMID: 3662453]
[10]
Wright CI, Geula C, Mesulam MM. Protease inhibitors and indolamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer’s disease. Ann N Y Acad Sci 1993; 695: 65-8.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23029.x] [PMID: 8239315]
[11]
Darvesh S, Reid GA, Martin E. Biochemical and histochemical comparison of cholinesterases in normal and Alzheimer brain tissues. Curr Alzheimer Res 2010; 7(5): 386-400.
[http://dx.doi.org/10.2174/156720510791383868] [PMID: 19939227]
[12]
Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006; 66(12): 1837-44.
[http://dx.doi.org/10.1212/01.wnl.0000219668.47116.e6] [PMID: 16801647]
[13]
Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 2015; 313(19): 1924-38.
[http://dx.doi.org/10.1001/jama.2015.4668] [PMID: 25988462]
[14]
Macdonald IR, Maxwell SP, Reid GA, Cash MK, DeBay DR, Darvesh S. Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J Alzheimers Dis 2017; 58(2): 491-505.
[http://dx.doi.org/10.3233/JAD-170164] [PMID: 28453492]
[15]
Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 1994; 36(5): 722-7.
[http://dx.doi.org/10.1002/ana.410360506] [PMID: 7979218]
[16]
Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 1997; 42(6): 909-18.
[http://dx.doi.org/10.1002/ana.410420613] [PMID: 9403484]
[17]
Reid GA, Darvesh S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 2015; 298: 424-35.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.039] [PMID: 25931333]
[18]
Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006; 26(40): 10129-40.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[19]
Li B, Duysen EG, Saunders TL, Lockridge O. Production of the butyrylcholinesterase knockout mouse. J Mol Neurosci 2006; 30(1-2): 193-5.
[http://dx.doi.org/10.1385/JMN:30:1:193] [PMID: 17192674]
[20]
Darvesh S, Reid GA. Reduced fibrillar β-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact 2016; 259(Pt B): 307-12.
[http://dx.doi.org/10.1016/j.cbi.2016.04.022]
[21]
Karnovsky MJ, Roots L. “Direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 1964; 12: 219-21.
[http://dx.doi.org/10.1177/12.3.219] [PMID: 14187330]
[22]
Silver A. The biology of cholinesterases. North-Holland Pub. Co. 1974.
[23]
Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013; 234: 53-68.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.054] [PMID: 23305761]
[24]
Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 1978; 4(4): 273-7.
[http://dx.doi.org/10.1111/j.1365-2990.1978.tb00545.x] [PMID: 703927]
[25]
Ramanan VK, Risacher SL, Nho K, et al. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 2014; 19(3): 351-7.
[http://dx.doi.org/10.1038/mp.2013.19] [PMID: 23419831]
[26]
van Groen T, Kadish I. Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Res Brain Res Rev 2005; 48(2): 370-8.
[http://dx.doi.org/10.1016/j.brainresrev.2004.12.026] [PMID: 15850676]
[27]
Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2012; 71(1): 2-14.
[http://dx.doi.org/10.1097/NEN.0b013e31823cc7a6] [PMID: 22157615]
[28]
Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci USA 2006; 103(23): 8628-33.
[http://dx.doi.org/10.1073/pnas.0602922103] [PMID: 16731619]
[29]
Podoly E, Bruck T, Diamant S, et al. Human recombinant butyrylcholinesterase purified from the milk of transgenic goats interacts with beta-amyloid fibrils and suppresses their formation in vitro. Neurodegener Dis 2008; 5(3-4): 232-6.
[http://dx.doi.org/10.1159/000113711] [PMID: 18322399]
[30]
Kumar R, Nordberg A, Darreh-Shori T. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 2016; 139(Pt 1): 174-92.
[http://dx.doi.org/10.1093/brain/awv318] [PMID: 26525916]
[31]
Wright CI, Geula C, Mesulam MM. Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 1993; 34(3): 373-84.
[http://dx.doi.org/10.1002/ana.410340312] [PMID: 8363355]
[32]
Ming LJ, Epperson JD. Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 2002; 91(1): 46-58.
[http://dx.doi.org/10.1016/S0162-0134(02)00464-6] [PMID: 12121761]
[33]
Mäkinen KK. Inhibition by bacitracin of some hydrolytic enzymes. Int J Protein Res 1972; 4(1): 21-8.
[http://dx.doi.org/10.1111/j.1399-3011.1972.tb03394.x] [PMID: 4552683]
[34]
Josviak ND, Batistela MS, Souza RKM, et al. Plasma butyrylcholinesterase activity: a possible biomarker for differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies? Int J Neurosci 2017; 127(12): 1082-6.
[http://dx.doi.org/10.1080/00207454.2017.1329203] [PMID: 28504037]
[35]
Podoly E, Shalev DE, Shenhar-Tsarfaty S, et al. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 2009; 284(25): 17170-9.
[http://dx.doi.org/10.1074/jbc.M109.004952] [PMID: 19383604]
[36]
Blong RM, Bedows E, Lockridge O. Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem J 1997; 327(Pt 3): 747-57.
[37]
Bartels CF, Jensen FS, Lockridge O, et al. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet 1992; 50(5): 1086-103.
[PMID: 1570838]
[38]
Podoly E, Hanin G, Soreq H. Alanine-to-threonine substitutions and amyloid diseases: butyrylcholinesterase as a case study. Chem Biol Interact 2010; 187(1-3): 64-71.
[http://dx.doi.org/10.1016/j.cbi.2010.01.003] [PMID: 20060816]
[39]
Masson P, Xie W, Froment MT, et al. Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochim Biophys Acta 1999; 1433(1-2): 281-93.
[http://dx.doi.org/10.1016/S0167-4838(99)00115-6] [PMID: 10446378]
[40]
Masson P, Legrand P, Bartels CF, Froment MT, Schopfer LM, Lockridge O. Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry 1997; 36(8): 2266-77.
[http://dx.doi.org/10.1021/bi962484a] [PMID: 9047329]
[41]
Levitsky V, Xie W, Froment MT, Lockridge O, Masson P. Polyol-induced activation by excess substrate of the D70G butyrylcholinesterase mutant. Biochim Biophys Acta 1999; 1429(2): 422-30.
[http://dx.doi.org/10.1016/S0167-4838(98)00253-2] [PMID: 9989227]
[42]
Masson P, Nachon F, Bartels CF, et al. High activity of human butyrylcholinesterase at low pH in the presence of excess butyrylthiocholine. Eur J Biochem 2003; 270(2): 315-24.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03388.x] [PMID: 12605682]
[43]
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2015; 148: 34-46.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.011] [PMID: 25448037]
[44]
Arendt T, Brückner MK, Lange M, Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development--a study of molecular forms. Neurochem Int 1992; 21(3): 381-96.
[http://dx.doi.org/10.1016/0197-0186(92)90189-X] [PMID: 1303164]
[45]
Atack JR, Perry EK, Bonham JR, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid. J Neurochem 1987; 48(6): 1845-50.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb05746.x] [PMID: 3572402]
[46]
Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 2009; 47(4): 289-99.
[PMID: 20054780]
[47]
Kalaria RN, Kroon SN, Grahovac I, Perry G. Acetylcholinesterase and its association with heparan sulphate proteoglycans in cortical amyloid deposits of Alzheimer’s disease. Neuroscience 1992; 51(1): 177-84.
[http://dx.doi.org/10.1016/0306-4522(92)90482-H] [PMID: 1465181]
[48]
Kolarich D, Weber A, Pabst M, et al. Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics 2008; 8(2): 254-63.
[http://dx.doi.org/10.1002/pmic.200700720] [PMID: 18203274]
[49]
Furukawa-Hibi Y, Alkam T, Nitta A, et al. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav Brain Res 2011; 225(1): 222-9.
[http://dx.doi.org/10.1016/j.bbr.2011.07.035] [PMID: 21820013]
[50]
Kamal MA, Shakil S, Nawaz MS, et al. Inhibition of butyrylcholinesterase with fluorobenzylcymserine, an experimental Alzheimer’s drug candidate: Validation of enzoinformatics results by classical and innovative enzyme kinetic analyses. CNS Neurol Disord Drug Targets 2017; 16(7): 820-7.
[http://dx.doi.org/10.2174/1871527316666170207160606] [PMID: 28176640]