Neuroinflammatory Signaling in the Pathogenesis of Alzheimer’s Disease

Page: [126 - 146] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.

Keywords: Neuroinflammation, Alzheimer’s disease, inflammatory cytokine, astroglia, microglia, disease-associated microglia

Graphical Abstract

[1]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological Signatures of Alzheimer’s Disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[2]
Uddin, M.S.; Al Mamun, A.; Ashraf, G.M. Neurotoxic Aβ: Linking Extracellular and Intracellular Aβ in Alzheimer’s Disease. Curr. Protein Pept. Sci., 2021, 22, 442-448.
[PMID: 33480343]
[4]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), 2.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[5]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5), a006148-a006148.
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[6]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[7]
Uddin, M.S.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisiting the amyloid cascade hypothesis: From anti-aβ therapeutics to auspicious new ways for alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(16), 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[8]
Gzil, F. Alzheimer’s disease: Psychiatric or neurological disorder? Poiesis Prax., 2009, 6, 13-26.
[http://dx.doi.org/10.1007/s10202-008-0061-3]
[9]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[10]
Chang, C.W.; Shao, E.; Mucke, L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science (80-. )., 2021, 371,
[11]
Janning, D.; Igaev, M.; Sündermann, F.; Brühmann, J.; Beutel, O.; Heinisch, J.J.; Bakota, L.; Piehler, J.; Junge, W.; Brandt, R. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol. Biol. Cell, 2014, 25(22), 3541-3551.
[http://dx.doi.org/10.1091/mbc.e14-06-1099] [PMID: 25165145]
[12]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[13]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[14]
Hanisch, U-K.; Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 2007, 10(11), 1387-1394.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[15]
Sierra, A.; Abiega, O.; Shahraz, A.; Neumann, H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front. Cell. Neurosci., 2013, 7, 6.
[http://dx.doi.org/10.3389/fncel.2013.00006] [PMID: 23386811]
[16]
Suzumura, A. Neuron-microglia interaction in neuroinflammation. Curr. Protein Pept. Sci., 2013, 14(1), 16-20.
[http://dx.doi.org/10.2174/1389203711314010004] [PMID: 23544747]
[17]
Santacruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L.; Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McCowan, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hyman, B.; Hutton, M.; Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function.Science (80-.), , 2005, 309, 476-481.
[18]
Mondragón-Rodríguez, S.; Perry, G.; Zhu, X.; Moreira, P.I.; Acevedo-Aquino, M.C.; Williams, S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for alzheimer’s disease.Oxid. Med. Cell. Longev., 2013, 2013,
[19]
Müller, W.E.; Eckert, A.; Kurz, C.; Eckert, G.P.; Leuner, K. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease--therapeutic aspects. Mol. Neurobiol., 2010, 41(2-3), 159-171.
[http://dx.doi.org/10.1007/s12035-010-8141-5] [PMID: 20461558]
[20]
Kigerl, K.A.; de Rivero Vaccari, J.P.; Dietrich, W.D.; Popovich, P.G.; Keane, R.W. Pattern recognition receptors and central nervous system repair. Exp. Neurol., 2014, 258, 5-16.
[http://dx.doi.org/10.1016/j.expneurol.2014.01.001] [PMID: 25017883]
[21]
Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; Zotova, E.; Nicoll, J.A. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 2008, 372(9634), 216-223.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[22]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[23]
Czirr, E.; Castello, N.A.; Mosher, K.I.; Castellano, J.M.; Hinkson, I.V.; Lucin, K.M.; Baeza-Raja, B.; Ryu, J.K.; Li, L.; Farina, S.N.; Belichenko, N.P.; Longo, F.M.; Akassoglou, K.; Britschgi, M.; Cirrito, J.R.; Wyss-Coray, T. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J. Exp. Med., 2017, 214(4), 1081-1092.
[http://dx.doi.org/10.1084/jem.20162011] [PMID: 28298456]
[24]
McGeer, P.L.; Akiyama, H.; Itagaki, S.; McGeer, E.G. Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci., 1989, 16(4)(Suppl.), 516-527.
[http://dx.doi.org/10.1017/S0317167100029863] [PMID: 2804814]
[25]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Pt 6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[26]
Rodríguez, J.J.; Witton, J.; Olabarria, M.; Noristani, H.N.; Verkhratsky, A. Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death Dis., 2010, 1, e1-e1.
[http://dx.doi.org/10.1038/cddis.2009.2] [PMID: 21364611]
[27]
Jung, C.K.E.; Keppler, K.; Steinbach, S.; Blazquez-Llorca, L.; Herms, J. Fibrillar amyloid plaque formation precedes microglial activation. PLoS One, 2015, 10(3)e0119768
[http://dx.doi.org/10.1371/journal.pone.0119768] [PMID: 25799372]
[28]
Jana, M.; Palencia, C.A.; Pahan, K. Fibrillar amyloid-beta peptides activate microglia via tlR2: Implications for alzheimer’s disease. J. Immunol. (Baltimore, Md. 1950), 2008, 181, 7254-7262.
[29]
Richard, K.L.; Filali, M.; Préfontaine, P.; Rivest, S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J. Neurosci., 2008, 28(22), 5784-5793.
[http://dx.doi.org/10.1523/JNEUROSCI.1146-08.2008] [PMID: 18509040]
[30]
Reed-Geaghan, E.G.; Savage, J.C.; Hise, A.G.; Landreth, G.E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation. J. Neurosci., 2009, 29(38), 11982-11992.
[http://dx.doi.org/10.1523/JNEUROSCI.3158-09.2009] [PMID: 19776284]
[31]
Apelt, J.; Schliebs, R. Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res., 2001, 894(1), 21-30.
[http://dx.doi.org/10.1016/S0006-8993(00)03176-0] [PMID: 11245811]
[32]
Patel, N.S.; Paris, D.; Mathura, V.; Quadros, A.N.; Crawford, F.C.; Mullan, M.J. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J. Neuroinflammation, 2005, 2(1), 9.
[http://dx.doi.org/10.1186/1742-2094-2-9] [PMID: 15762998]
[33]
Benzing, W.C.; Wujek, J.R.; Ward, E.K.; Shaffer, D.; Ashe, K.H.; Younkin, S.G.; Brunden, K.R. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol. Aging, 1999, 20(6), 581-589.
[http://dx.doi.org/10.1016/S0197-4580(99)00065-2] [PMID: 10674423]
[34]
Salminen, A.; Kauppinen, A.; Suuronen, T.; Kaarniranta, K.; Ojala, J. ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J. Neuroinflammation, 2009, 6, 41.
[http://dx.doi.org/10.1186/1742-2094-6-41] [PMID: 20035627]
[35]
Morimoto, K.; Horio, J.; Satoh, H.; Sue, L.; Beach, T.; Arita, S.; Tooyama, I.; Konishi, Y. Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J. Alzheimers Dis., 2011, 25(1), 59-76.
[http://dx.doi.org/10.3233/JAD-2011-101815] [PMID: 21368376]
[36]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[37]
Wang, W-Y.; Tan, M-S.; Yu, J-T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[PMID: 26207229]
[38]
McGeer, P.L.; Itagaki, S.; Tago, H.; McGeer, E.G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett., 1987, 79(1-2), 195-200.
[http://dx.doi.org/10.1016/0304-3940(87)90696-3] [PMID: 3670729]
[39]
Zotova, E.; Holmes, C.; Johnston, D.; Neal, J.W.; Nicoll, J.A.; Boche, D. Microglial alterations in human Alzheimer’s disease following Aβ42 immunization. Neuropathol. Appl. Neurobiol., 2011, 37(5), 513-524.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01156.x] [PMID: 21166690]
[40]
Shao, Y.; Gearing, M.; Mirra, S.S. Astrocyte-apolipoprotein E associations in senile plaques in Alzheimer disease and vascular lesions: a regional immunohistochemical study. J. Neuropathol. Exp. Neurol., 1997, 56(4), 376-381.
[http://dx.doi.org/10.1097/00005072-199704000-00006] [PMID: 9100668]
[41]
Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Barreto, G.E.; Rashid, M.; Perveen, A.; Ashraf, G.M. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. Int. Immunopharmacol., 2020, 84106479
[http://dx.doi.org/10.1016/j.intimp.2020.106479] [PMID: 32353686]
[42]
Ibrahim, A.M.; Pottoo, F.H.; Dahiya, E.S.; Khan, F.A.; Kumar, J.B.S. Neuron-glia interactions: Molecular basis of alzheimer’s disease and applications of neuroproteomics. Eur. J. Neurosci., 2020, 52(2), 2931-2943.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[43]
Kabir, M.T.; Uddin, M.S.; Zaman, S.; Rahman, M.S.; Behl, T.; Ahmad, A.; Hafeez, A.; Perveen, A.; Ashraf, G.M. Exploring the anti-neuroinflammatory potential of steroid and terpenoid-derived phytochemicals to combat alzheimer’s disease. Curr. Pharm. Des., 2021, 27(22), 2635-2647.
[PMID: 33463452]
[44]
Kummer, M.P.; Hammerschmidt, T.; Martinez, A.; Terwel, D.; Eichele, G.; Witten, A.; Figura, S.; Stoll, M.; Schwartz, S.; Pape, H-C.; Schultze, J.L.; Weinshenker, D.; Heneka, M.T.; Urban, I. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J. Neurosci., 2014, 34(26), 8845-8854.
[http://dx.doi.org/10.1523/JNEUROSCI.4027-13.2014] [PMID: 24966384]
[45]
Gahtan, E.; Overmier, J.B. Inflammatory pathogenesis in Alzheimer’s disease: biological mechanisms and cognitive sequeli. Neurosci. Biobehav. Rev., 1999, 23(5), 615-633.
[http://dx.doi.org/10.1016/S0149-7634(98)00058-X] [PMID: 10392655]
[46]
Ii, M.; Sunamoto, M.; Ohnishi, K.; Ichimori, Y. β-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res., 1996, 720(1-2), 93-100.
[http://dx.doi.org/10.1016/0006-8993(96)00156-4] [PMID: 8782901]
[47]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[48]
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol., 2007, 184(1-2), 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[49]
Rojo, L.E.; Fernández, J.A.; Maccioni, A.A.; Jimenez, J.M.; Maccioni, R.B. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res., 2008, 39(1), 1-16.
[http://dx.doi.org/10.1016/j.arcmed.2007.10.001] [PMID: 18067990]
[50]
Hoozemans, J.J.M.; Veerhuis, R.; Rozemuller, J.M.; Eikelenboom, P. Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int. J. Dev. Neurosci., 2006, 24(2-3), 157-165.
[http://dx.doi.org/10.1016/j.ijdevneu.2005.11.001] [PMID: 16384684]
[51]
Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med., 2006, 12(9), 1005-1015.
[PMID: 16960575]
[52]
Clayton, K.A.; Van Enoo, A.A.; Ikezu, T. Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Front. Neurosci., 2017, 11, 680.
[http://dx.doi.org/10.3389/fnins.2017.00680] [PMID: 29311768]
[53]
Versijpt, J.J.; Dumont, F.; Van Laere, K.J.; Decoo, D.; Santens, P.; Audenaert, K.; Achten, E.; Slegers, G.; Dierckx, R.A.; Korf, J. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur. Neurol., 2003, 50(1), 39-47.
[http://dx.doi.org/10.1159/000070857] [PMID: 12824711]
[54]
Edison, P.; Archer, H.A.; Gerhard, A.; Hinz, R.; Pavese, N.; Turkheimer, F.E.; Hammers, A.; Tai, Y.F.; Fox, N.; Kennedy, A.; Rossor, M.; Brooks, D.J. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol. Dis., 2008, 32(3), 412-419.
[http://dx.doi.org/10.1016/j.nbd.2008.08.001] [PMID: 18786637]
[55]
Wiley, C.A.; Lopresti, B.J.; Venneti, S.; Price, J.; Klunk, W.E.; DeKosky, S.T.; Mathis, C.A. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch. Neurol., 2009, 66(1), 60-67.
[http://dx.doi.org/10.1001/archneurol.2008.511] [PMID: 19139300]
[56]
Venneti, S.; Lopresti, B.J.; Wang, G.; Hamilton, R.L.; Mathis, C.A.; Klunk, W.E.; Apte, U.M.; Wiley, C.A. PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol. Aging, 2009, 30(8), 1217-1226.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.005] [PMID: 18178291]
[57]
Bamberger, M.E.; Harris, M.E.; McDonald, D.R.; Husemann, J.; Landreth, G.E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci., 2003, 23(7), 2665-2674.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02665.2003] [PMID: 12684452]
[58]
Carty, M.; Bowie, A.G. Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem. Pharmacol., 2011, 81(7), 825-837.
[http://dx.doi.org/10.1016/j.bcp.2011.01.003] [PMID: 21241665]
[59]
Arancio, O.; Zhang, H.P.; Chen, X.; Lin, C.; Trinchese, F.; Puzzo, D.; Liu, S.; Hegde, A.; Yan, S.F.; Stern, A.; Luddy, J.S.; Lue, L.F.; Walker, D.G.; Roher, A.; Buttini, M.; Mucke, L.; Li, W.; Schmidt, A.M.; Kindy, M.; Hyslop, P.A.; Stern, D.M.; Du Yan, S.S. Rage potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J., 2004, 23(20), 4096-4105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[60]
Koenigsknecht-Talboo, J.; Landreth, G.E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci., 2005, 25(36), 8240-8249.
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005] [PMID: 16148231]
[61]
El Khoury, J.B.; Moore, K.J.; Means, T.K.; Leung, J.; Terada, K.; Toft, M.; Freeman, M.W.; Luster, A.D. CD36 mediates the innate host response to beta-amyloid. J. Exp. Med., 2003, 197(12), 1657-1666.
[http://dx.doi.org/10.1084/jem.20021546] [PMID: 12796468]
[62]
Lue, L.F.; Brachova, L.; Civin, W.H. Rogers, J. Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol., 1996, 55(10), 1083-1088.
[http://dx.doi.org/10.1097/00005072-199655100-00008] [PMID: 8858005]
[63]
Schilling, T.; Eder, C. Amyloid-β-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J. Cell. Physiol., 2011, 226(12), 3295-3302.
[http://dx.doi.org/10.1002/jcp.22675] [PMID: 21321937]
[64]
Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.N.; Johnson, R.E.; O’Banion, M.K. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest., 2007, 117(6), 1595-1604.
[http://dx.doi.org/10.1172/JCI31450] [PMID: 17549256]
[65]
Chakrabarty, P.; Jansen-West, K.; Beccard, A.; Ceballos-Diaz, C.; Levites, Y.; Verbeeck, C.; Zubair, A.C.; Dickson, D.; Golde, T.E.; Das, P. Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J., 2010, 24(2), 548-559.
[http://dx.doi.org/10.1096/fj.09-141754] [PMID: 19825975]
[66]
Decourt, B.; Lahiri, D.K.; Sabbagh, M.N. Targeting tumor necrosis factor alpha for alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(4), 412-425.
[http://dx.doi.org/10.2174/1567205013666160930110551] [PMID: 27697064]
[67]
Ramos, E.M.; Lin, M.T.; Larson, E.B.; Maezawa, I.; Tseng, L.H.; Edwards, K.L.; Schellenberg, G.D.; Hansen, J.A.; Kukull, W.A.; Jin, L.W. Tumor necrosis factor α and interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease. Arch. Neurol., 2006, 63(8), 1165-1169.
[http://dx.doi.org/10.1001/archneur.63.8.1165] [PMID: 16908746]
[68]
Janelsins, M.C.; Mastrangelo, M.A.; Park, K.M.; Sudol, K.L.; Narrow, W.C.; Oddo, S.; LaFerla, F.M.; Callahan, L.M.; Federoff, H.J.; Bowers, W.J. Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am. J. Pathol., 2008, 173(6), 1768-1782.
[http://dx.doi.org/10.2353/ajpath.2008.080528] [PMID: 18974297]
[69]
Yin, Y.; Ren, Y.; Wu, W.; Wang, Y.; Cao, M.; Zhu, Z.; Wang, M.; Li, W. Protective effects of bilobalide on Aβ(25-35) induced learning and memory impairments in male rats. Pharmacol. Biochem. Behav., 2013, 106, 77-84.
[http://dx.doi.org/10.1016/j.pbb.2013.03.005] [PMID: 23537729]
[70]
Tobinick, E. Tumour necrosis factor modulation for treatment of alzheimerʼs disease. CNS Drugs, 2009, 23, 713-725.
[http://dx.doi.org/10.2165/11310810-000000000-00000] [PMID: 19689163]
[71]
Shin, J-W.; Cheong, Y-J.; Koo, Y-M.; Kim, S.; Noh, C-K.; Son, Y-H.; Kang, C.; Sohn, N-W. α-asarone ameliorates memory deficit in lipopolysaccharide-treated mice via suppression of pro-inflammatory cytokines and microglial activation. Biomol. Ther. (Seoul), 2014, 22(1), 17-26.
[http://dx.doi.org/10.4062/biomolther.2013.102] [PMID: 24596617]
[72]
Bremer, E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol., 2013, 2013371854
[http://dx.doi.org/10.1155/2013/371854] [PMID: 23840967]
[73]
Montgomery, S.L.; Narrow, W.C.; Mastrangelo, M.A.; Olschowka, J.A.; O’Banion, M.K.; Bowers, W.J. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies. Am. J. Pathol., 2013, 182(6), 2285-2297.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.030] [PMID: 23567638]
[74]
He, P.; Zhong, Z.; Lindholm, K.; Berning, L.; Lee, W.; Lemere, C.; Staufenbiel, M.; Li, R.; Shen, Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol., 2007, 178(5), 829-841.
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[75]
McAlpine, F.E.; Lee, J-K.; Harms, A.S.; Ruhn, K.A.; Blurton-Jones, M.; Hong, J.; Das, P.; Golde, T.E.; LaFerla, F.M.; Oddo, S.; Blesch, A.; Tansey, M.G. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis., 2009, 34(1), 163-177.
[http://dx.doi.org/10.1016/j.nbd.2009.01.006] [PMID: 19320056]
[76]
Montgomery, S.L.; Mastrangelo, M.A.; Habib, D.; Narrow, W.C.; Knowlden, S.A.; Wright, T.W.; Bowers, W.J. Ablation of TNF-RI/RII expression in Alzheimer’s disease mice leads to an unexpected enhancement of pathology: implications for chronic pan-TNF-α suppressive therapeutic strategies in the brain. Am. J. Pathol., 2011, 179(4), 2053-2070.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.001] [PMID: 21835156]
[77]
Barger, S.W.; Hörster, D.; Furukawa, K.; Goodman, Y.; Krieglstein, J.; Mattson, M.P. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA, 1995, 92(20), 9328-9332.
[http://dx.doi.org/10.1073/pnas.92.20.9328] [PMID: 7568127]
[78]
Tarkowski, E.; Blennow, K.; Wallin, A.; Tarkowski, A. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J. Clin. Immunol., 1999, 19(4), 223-230.
[http://dx.doi.org/10.1023/A:1020568013953] [PMID: 10471976]
[79]
Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen., 2019, 39, 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]
[80]
Shaftel, S.S.; Griffin, W.S.T.; O’Banion, M.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation, 2008, 5, 7.
[http://dx.doi.org/10.1186/1742-2094-5-7] [PMID: 18302763]
[81]
Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28, 137-161.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[82]
Liu, L.; Martin, R.; Chan, C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol. Aging, 2013, 34(2), 540-550.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.05.017] [PMID: 22727944]
[83]
Parajuli, B.; Sonobe, Y.; Horiuchi, H.; Takeuchi, H.; Mizuno, T.; Suzumura, A. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis., 2013, 4, e975-e975.
[http://dx.doi.org/10.1038/cddis.2013.503] [PMID: 24357806]
[84]
Boutajangout, A.; Wisniewski, T. The innate immune system in Alzheimer’s disease. Int. J. Cell Biol., 2013, 2013576383
[http://dx.doi.org/10.1155/2013/576383] [PMID: 24223593]
[85]
Hunter, J.M.; Kwan, J.; Malek-Ahmadi, M.; Maarouf, C.L.; Kokjohn, T.A.; Belden, C.; Sabbagh, M.N.; Beach, T.G.; Roher, A.E. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer’s disease. PLoS One, 2012, 7(5)e36893
[http://dx.doi.org/10.1371/journal.pone.0036893] [PMID: 22615835]
[86]
Sheng, J.G.; Zhu, S.G.; Jones, R.A.; Griffin, W.S.T.; Mrak, R.E. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp. Neurol., 2000, 163(2), 388-391.
[http://dx.doi.org/10.1006/exnr.2000.7393] [PMID: 10833312]
[87]
Kitazawa, M.; Cheng, D.; Tsukamoto, M.R.; Koike, M.A.; Wes, P.D.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol., 2011, 187(12), 6539-6549.
[http://dx.doi.org/10.4049/jimmunol.1100620] [PMID: 22095718]
[88]
Pickering, M.; O’Connor, J.J. Pro-inflammatory cytokines and their effects in the dentate gyrus., 2007.
[http://dx.doi.org/10.1016/S0079-6123(07)63020-9]
[89]
Rubio-Perez, J.M.; Morillas-Ruiz, J.M.A. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal, 2012, 2012756357
[http://dx.doi.org/10.1100/2012/756357] [PMID: 22566778]
[90]
Heneka, M.T.; Nadrigny, F.; Regen, T.; Martinez-Hernandez, A.; Dumitrescu-Ozimek, L.; Terwel, D.; Jardanhazi-Kurutz, D.; Walter, J.; Kirchhoff, F.; Hanisch, U-K.; Kummer, M.P. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc. Natl. Acad. Sci. USA, 2010, 107(13), 6058-6063.
[http://dx.doi.org/10.1073/pnas.0909586107] [PMID: 20231476]
[91]
Wang, Y.; Jin, S.; Sonobe, Y.; Cheng, Y.; Horiuchi, H.; Parajuli, B.; Kawanokuchi, J.; Mizuno, T.; Takeuchi, H.; Suzumura, A. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One, 2014, 9(10)e110024
[http://dx.doi.org/10.1371/journal.pone.0110024] [PMID: 25313834]
[92]
Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.N.; Johnson, R.E.; O’Banion, M.K. Sustained hippocampal IL-1 β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest., 2007, 117(6), 1595-1604.
[http://dx.doi.org/10.1172/JCI31450] [PMID: 17549256]
[93]
Ghosh, S.; Wu, M.D.; Shaftel, S.S.; Kyrkanides, S.; LaFerla, F.M.; Olschowka, J.A.; O’Banion, M.K. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J. Neurosci., 2013, 33(11), 5053-5064.
[http://dx.doi.org/10.1523/JNEUROSCI.4361-12.2013] [PMID: 23486975]
[94]
Tachida, Y.; Nakagawa, K.; Saito, T.; Saido, T.C.; Honda, T.; Saito, Y.; Murayama, S.; Endo, T.; Sakaguchi, G.; Kato, A.; Kitazume, S.; Hashimoto, Y. Interleukin-1 β up-regulates TACE to enhance α-cleavage of APP in neurons: resulting decrease in Abeta production. J. Neurochem., 2008, 104(5), 1387-1393.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05127.x] [PMID: 18021299]
[95]
Wu, Y.Y.; Hsu, J.L.; Wang, H.C.; Wu, S.J.; Hong, C.J.; Cheng, I.H.J. Alterations of the neuroinflammatory markers il-6 and trail in alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Extra, 2015, 5(3), 424-434.
[http://dx.doi.org/10.1159/000439214] [PMID: 26675645]
[96]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[97]
Huell, M.; Strauss, S.; Volk, B.; Berger, M.; Bauer, J. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol., 1995, 89(6), 544-551.
[http://dx.doi.org/10.1007/BF00571510] [PMID: 7676810]
[98]
Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183.
[http://dx.doi.org/10.1016/j.brainresrev.2011.01.002] [PMID: 21238488]
[99]
Vukic, V.; Callaghan, D.; Walker, D.; Lue, L-F.; Liu, Q.Y.; Couraud, P-O.; Romero, I.A.; Weksler, B.; Stanimirovic, D.B.; Zhang, W. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol. Dis., 2009, 34(1), 95-106.
[http://dx.doi.org/10.1016/j.nbd.2008.12.007] [PMID: 19162185]
[100]
Flynn, C.M.; Garbers, Y.; Lokau, J.; Wesch, D.; Schulte, D.M.; Laudes, M.; Lieb, W.; Aparicio-Siegmund, S.; Garbers, C. Activation of Toll-like Receptor 2 (TLR2) induces Interleukin-6 trans-signaling. Sci. Rep., 2019, 9(1), 7306.
[http://dx.doi.org/10.1038/s41598-019-43617-5] [PMID: 31086276]
[101]
Quintanilla, R.A.; Orellana, D.I.; González-Billault, C.; Maccioni, R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res., 2004, 295(1), 245-257.
[http://dx.doi.org/10.1016/j.yexcr.2004.01.002] [PMID: 15051507]
[102]
Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, 25(2), 181-213.
[http://dx.doi.org/10.1016/j.bbi.2010.10.015] [PMID: 20970492]
[103]
Weaver, J.D.; Huang, M-H.; Albert, M.; Harris, T.; Rowe, J.W.; Seeman, T.E. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology, 2002, 59(3), 371-378.
[http://dx.doi.org/10.1212/WNL.59.3.371] [PMID: 12177370]
[104]
Dugan, L.L.; Ali, S.S.; Shekhtman, G.; Roberts, A.J.; Lucero, J.; Quick, K.L.; Behrens, M.M. IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One, 2009, 4(5)e5518
[http://dx.doi.org/10.1371/journal.pone.0005518] [PMID: 19436757]
[105]
Donegan, J.J.; Girotti, M.; Weinberg, M.S.; Morilak, D.A. A novel role for brain interleukin-6: Facilitation of cognitive flexibility in rat orbitofrontal cortex. J. Neurosci., 2014, 34(3), 953-962.
[http://dx.doi.org/10.1523/JNEUROSCI.3968-13.2014] [PMID: 24431453]
[106]
Sivakumar, P.V.; Westrich, G.M.; Kanaly, S.; Garka, K.; Born, T.L.; Derry, J.M.J.; Viney, J.L. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut, 2002, 50(6), 812-820.
[http://dx.doi.org/10.1136/gut.50.6.812] [PMID: 12010883]
[107]
Dinarello, C.A. Interleukin-18 and the pathogenesis of inflammatory diseases. Semin. Nephrol., 2007, 27(1), 98-114.
[http://dx.doi.org/10.1016/j.semnephrol.2006.09.013] [PMID: 17336692]
[108]
Sutinen, E.M.; Pirttilä, T.; Anderson, G.; Salminen, A.; Ojala, J.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J. Neuroinflammation, 2012, 9, 199.
[http://dx.doi.org/10.1186/1742-2094-9-199] [PMID: 22898493]
[109]
Ghayur, T.; Banerjee, S.; Hugunin, M.; Butler, D.; Herzog, L.; Carter, A.; Quintal, L.; Sekut, L.; Talanian, R.; Paskind, M.; Wong, W.; Kamen, R.; Tracey, D.; Allen, H. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature, 1997, 386(6625), 619-623.
[http://dx.doi.org/10.1038/386619a0] [PMID: 9121587]
[110]
Fantuzzi, G.; Dinarello, C.A. Interleukin-18 and interleukin-1 β: Two cytokine substrates for ICE (caspase-1). J. Clin. Immunol., 1999, 19(1), 1-11.
[http://dx.doi.org/10.1023/A:1020506300324] [PMID: 10080100]
[111]
Ojala, J.; Alafuzoff, I.; Herukka, S.K.; van Groen, T.; Tanila, H.; Pirttilä, T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol. Aging, 2009, 30(2), 198-209.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.006] [PMID: 17658666]
[112]
Curran, B.; O’Connor, J.J. The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience, 2001, 108(1), 83-90.
[http://dx.doi.org/10.1016/S0306-4522(01)00405-5] [PMID: 11738133]
[113]
Alboni, S.; Cervia, D.; Sugama, S.; Conti, B. Interleukin 18 in the CNS. J. Neuroinflammation, 2010, 7, 9.
[http://dx.doi.org/10.1186/1742-2094-7-9] [PMID: 20113500]
[114]
Rex, D.A.B.; Agarwal, N.; Prasad, T.S.K.; Kandasamy, R.K.; Subbannayya, Y.; Pinto, S.M. A comprehensive pathway map of IL-18-mediated signalling. J. Cell Commun. Signal., 2020, 14(2), 257-266.
[http://dx.doi.org/10.1007/s12079-019-00544-4] [PMID: 31863285]
[115]
Chandrasekar, B.; Valente, A.J.; Freeman, G.L.; Mahimainathan, L.; Mummidi, S. Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem. Biophys. Res. Commun., 2006, 339(3), 956-963.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.100] [PMID: 16325763]
[116]
Yu, J-T.; Chang, R.C-C.; Tan, L. Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. Prog. Neurobiol., 2009, 89(3), 240-255.
[http://dx.doi.org/10.1016/j.pneurobio.2009.07.009] [PMID: 19664678]
[117]
Frayling, T.M.; Rafiq, S.; Murray, A.; Hurst, A.J.; Weedon, M.N.; Henley, W.; Bandinelli, S.; Corsi, A-M.; Ferrucci, L.; Guralnik, J.M.; Wallace, R.B.; Melzer, D. An interleukin-18 polymorphism is associated with reduced serum concentrations and better physical functioning in older people. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(1), 73-78.
[http://dx.doi.org/10.1093/gerona/62.1.73] [PMID: 17301041]
[118]
Bossù, P.; Ciaramella, A.; Salani, F.; Vanni, D.; Palladino, I.; Caltagirone, C.; Scapigliati, G. Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(38), 4213-4224.
[http://dx.doi.org/10.2174/138161210794519147] [PMID: 21184660]
[119]
Ojala, J.O.; Sutinen, E.M.; Salminen, A.; Pirttilä, T. Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J. Neuroimmunol., 2008, 205(1-2), 86-93.
[http://dx.doi.org/10.1016/j.jneuroim.2008.09.012] [PMID: 18947885]
[120]
Savarin-Vuaillat, C.; Ransohoff, R.M. Chemokines and chemokine receptors in neurological disease: Raise, retain, or reduce? Neurotherapeutics, 2007, 4(4), 590-601.
[http://dx.doi.org/10.1016/j.nurt.2007.07.004] [PMID: 17920540]
[121]
Xia, M.Q.; Qin, S.X.; Wu, L.J.; Mackay, C.R.; Hyman, B.T. Immunohistochemical study of the β-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am. J. Pathol., 1998, 153(1), 31-37.
[http://dx.doi.org/10.1016/S0002-9440(10)65542-3] [PMID: 9665462]
[122]
Ishizuka, K.; Kimura, T.; Igata-yi, R.; Katsuragi, S.; Takamatsu, J.; Miyakawa, T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin. Neurosci., 1997, 51(3), 135-138.
[http://dx.doi.org/10.1111/j.1440-1819.1997.tb02375.x] [PMID: 9225377]
[123]
Smits, H.A.; Rijsmus, A.; van Loon, J.H.; Wat, J.W.Y.; Verhoef, J.; Boven, L.A.; Nottet, H.S.L.M. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J. Neuroimmunol., 2002, 127(1-2), 160-168.
[http://dx.doi.org/10.1016/S0165-5728(02)00112-1] [PMID: 12044988]
[124]
Lue, L.F.; Walker, D.G.; Rogers, J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol. Aging, 2001, 22(6), 945-956.
[http://dx.doi.org/10.1016/S0197-4580(01)00311-6] [PMID: 11755003]
[125]
Fuhrmann, M.; Bittner, T.; Jung, C.K.E.; Burgold, S.; Page, R.M.; Mitteregger, G.; Haass, C.; LaFerla, F.M.; Kretzschmar, H.; Herms, J. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci., 2010, 13(4), 411-413.
[http://dx.doi.org/10.1038/nn.2511] [PMID: 20305648]
[126]
Lee, S.; Varvel, N.H.; Konerth, M.E.; Xu, G.; Cardona, A.E.; Ransohoff, R.M.; Lamb, B.T. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol., 2010, 177(5), 2549-2562.
[http://dx.doi.org/10.2353/ajpath.2010.100265] [PMID: 20864679]
[127]
Cho, S-H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem., 2011, 286(37), 32713-32722.
[http://dx.doi.org/10.1074/jbc.M111.254268] [PMID: 21771791]
[128]
Kiyota, T.; Yamamoto, M.; Xiong, H.; Lambert, M.P.; Klein, W.L.; Gendelman, H.E.; Ransohoff, R.M.; Ikezu, T. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One, 2009, 4(7)e6197
[http://dx.doi.org/10.1371/journal.pone.0006197] [PMID: 19593388]
[129]
Semple, B.D.; Frugier, T.; Morganti-Kossmann, M.C. CCL2 modulates cytokine production in cultured mouse astrocytes. J. Neuroinflammation, 2010, 7, 67.
[http://dx.doi.org/10.1186/1742-2094-7-67] [PMID: 20942978]
[130]
El Khoury, J.; Toft, M.; Hickman, S.E.; Means, T.K.; Terada, K.; Geula, C.; Luster, A.D. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med., 2007, 13(4), 432-438.
[http://dx.doi.org/10.1038/nm1555] [PMID: 17351623]
[131]
Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364.
[http://dx.doi.org/10.1016/j.immuni.2019.05.020] [PMID: 31216460]
[132]
Venero, J.L.; Burguillos, M.A.; Joseph, B. Caspases playing in the field of neuroinflammation: Old and new players. Proc. Devel. Neurosci., 2013, 35, 88-101.
[http://dx.doi.org/10.1159/000346155]
[133]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[134]
van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A.B. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol., 2011, 32(3), 110-116.
[http://dx.doi.org/10.1016/j.it.2011.01.003] [PMID: 21333600]
[135]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[136]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T-C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[137]
Fricker, M.; Vilalta, A.; Tolkovsky, A.M.; Brown, G.C. Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia. J. Biol. Chem., 2013, 288(13), 9145-9152.
[http://dx.doi.org/10.1074/jbc.M112.427880] [PMID: 23386613]
[138]
Burguillos, M.A.; Deierborg, T.; Kavanagh, E.; Persson, A.; Hajji, N.; Garcia-Quintanilla, A.; Cano, J.; Brundin, P.; Englund, E.; Venero, J.L.; Joseph, B. Caspase signalling controls microglia activation and neurotoxicity. Nature, 2011, 472(7343), 319-324.
[http://dx.doi.org/10.1038/nature09788] [PMID: 21389984]
[139]
Rohn, T.T.; Kokoulina, P.; Eaton, C.R.; Poon, W.W. Caspase activation in transgenic mice with Alzheimer-like pathology: results from a pilot study utilizing the caspase inhibitor, Q-VD-OPh. Int. J. Clin. Exp. Med., 2009, 2(4), 300-308.
[PMID: 20057974]
[140]
Biscaro, B.; Lindvall, O.; Tesco, G.; Ekdahl, C.T.; Nitsch, R.M. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener. Dis., 2012, 9(4), 187-198.
[http://dx.doi.org/10.1159/000330363] [PMID: 22584394]
[141]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[142]
Choi, S-H.; Aid, S.; Caracciolo, L.; Minami, S.S.; Niikura, T.; Matsuoka, Y.; Turner, R.S.; Mattson, M.P.; Bosetti, F. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J. Neurochem., 2013, 124(1), 59-68.
[http://dx.doi.org/10.1111/jnc.12059] [PMID: 23083210]
[143]
Montine, T.J.; Sidell, K.R.; Crews, B.C.; Markesbery, W.R.; Marnett, L.J.; Roberts, L.J., II; Morrow, J.D. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology, 1999, 53(7), 1495-1498.
[http://dx.doi.org/10.1212/WNL.53.7.1495] [PMID: 10534257]
[144]
Slawik, H.; Volk, B.; Fiebich, B.; Hüll, M. Microglial expression of prostaglandin EP3 receptor in excitotoxic lesions in the rat striatum. Neurochem. Int., 2004, 45(5), 653-660.
[http://dx.doi.org/10.1016/j.neuint.2004.04.007] [PMID: 15234107]
[145]
Shie, F-S.; Montine, K.S.; Breyer, R.M.; Montine, T.J. Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid beta-induced damage to neurons. Brain Pathol., 2005, 15(2), 134-138.
[http://dx.doi.org/10.1111/j.1750-3639.2005.tb00509.x] [PMID: 15912885]
[146]
Liang, X.; Wang, Q.; Hand, T.; Wu, L.; Breyer, R.M.; Montine, T.J.; Andreasson, K. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J. Neurosci., 2005, 25(44), 10180-10187.
[http://dx.doi.org/10.1523/JNEUROSCI.3591-05.2005] [PMID: 16267225]
[147]
Shi, J.; Wang, Q.; Johansson, J.U.; Liang, X.; Woodling, N.S.; Priyam, P.; Loui, T.M.; Merchant, M.; Breyer, R.M.; Montine, T.J.; Andreasson, K. Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease. Ann. Neurol., 2012, 72(5), 788-798.
[http://dx.doi.org/10.1002/ana.23677] [PMID: 22915243]
[148]
Xiang, Z.; Ho, L.; Yemul, S.; Zhao, Z.; Qing, W.; Pompl, P.; Kelley, K.; Dang, A.; Qing, W.; Teplow, D.; Pasinetti, G.M. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer’s disease neuropathology. Gene Expr., 2002, 10(5-6), 271-278.
[http://dx.doi.org/10.3727/000000002783992352] [PMID: 12450219]
[149]
Woodling, N.S.; Wang, Q.; Priyam, P.G.; Larkin, P.; Shi, J.; Johansson, J.U.; Zagol-Ikapitte, I.; Boutaud, O.; Andreasson, K.I. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling. J. Neurosci., 2014, 34(17), 5882-5894.
[http://dx.doi.org/10.1523/JNEUROSCI.0410-14.2014] [PMID: 24760848]
[150]
Bazan, N.G.; Molina, M.F.; Gordon, W.C. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu. Rev. Nutr., 2011, 31, 321-351.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104635] [PMID: 21756134]
[151]
Lukiw, W.J.; Cui, J-G.; Marcheselli, V.L.; Bodker, M.; Botkjaer, A.; Gotlinger, K.; Serhan, C.N.; Bazan, N.G. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest., 2005, 115(10), 2774-2783.
[http://dx.doi.org/10.1172/JCI25420] [PMID: 16151530]
[152]
Bazan, N.G. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J. Lipid Res., 2009, 50(Suppl.), S400-S405.
[http://dx.doi.org/10.1194/jlr.R800068-JLR200] [PMID: 19018037]
[153]
Zhao, Y.; Calon, F.; Julien, C.; Winkler, J.W.; Petasis, N.A.; Lukiw, W.J.; Bazan, N.G. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One, 2011, 6(1)e15816
[http://dx.doi.org/10.1371/journal.pone.0015816] [PMID: 21246057]
[154]
Alawieh, A.; Langley, E.F.; Weber, S.; Adkins, D.; Tomlinson, S. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J. Neurosci., 2018, 38(10), 2519-2532.
[http://dx.doi.org/10.1523/JNEUROSCI.2197-17.2018] [PMID: 29437855]
[155]
Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res., 2010, 20(1), 34-50.
[http://dx.doi.org/10.1038/cr.2009.139] [PMID: 20010915]
[156]
Veerhuis, R.; Nielsen, H.M.; Tenner, A.J. Complement in the brain. Mol. Immunol., 2011, 48(14), 1592-1603.
[http://dx.doi.org/10.1016/j.molimm.2011.04.003] [PMID: 21546088]
[157]
Strohmeyer, R.; Ramirez, M.; Cole, G.J.; Mueller, K.; Rogers, J. Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer’s disease brain. J. Neuroimmunol., 2002, 131(1-2), 135-146.
[http://dx.doi.org/10.1016/S0165-5728(02)00272-2] [PMID: 12458045]
[158]
Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Complement system activation by amyloid aggregates of Aβ(1-40) and Aβ(1-42) peptides: facts and hypotheses. Biophys. Russian Fed., 2020, 65, 18-21.
[159]
Emmerling, M.R.; Watson, M.D.; Raby, C.A.; Spiegel, K. The role of complement in Alzheimer’s disease pathology. Biochim. Biophys. Acta, 2000, 1502(1), 158-171.
[http://dx.doi.org/10.1016/S0925-4439(00)00042-9] [PMID: 10899441]
[160]
Lambert, J-C.; Heath, S.; Even, G.; Campion, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Zelenika, D.; Bullido, M.J.; Tavernier, B.; Letenneur, L.; Bettens, K.; Berr, C.; Pasquier, F.; Fiévet, N.; Barberger-Gateau, P.; Engelborghs, S.; De Deyn, P.; Mateo, I.; Franck, A.; Helisalmi, S.; Porcellini, E.; Hanon, O.; de Pancorbo, M.M.; Lendon, C.; Dufouil, C.; Jaillard, C.; Leveillard, T.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Hannequin, D.; Licastro, F.; Soininen, H.; Ritchie, K.; Blanché, H.; Dartigues, J-F.; Tzourio, C.; Gut, I.; Van Broeckhoven, C.; Alpérovitch, A.; Lathrop, M.; Amouyel, P.; Amouyel, P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet., 2009, 41(10), 1094-1099.
[http://dx.doi.org/10.1038/ng.439] [PMID: 19734903]
[161]
Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; Jones, N.; Thomas, C.; Stretton, A.; Morgan, A.R.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Morgan, K.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Love, S.; Kehoe, P.G.; Hardy, J.; Mead, S.; Fox, N.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Schürmann, B.; Heun, R.; van den Bussche, H.; Heuser, I.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Hüll, M.; Rujescu, D.; Goate, A.M.; Kauwe, J.S.K.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Sleegers, K.; Bettens, K.; Engelborghs, S.; De Deyn, P.P.; Van Broeckhoven, C.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Tsolaki, M.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K-H.; Klopp, N.; Wichmann, H-E.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Holmans, P.A.; O’Donovan, M.; Owen, M.J.; Williams, J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet., 2009, 41(10), 1088-1093.
[http://dx.doi.org/10.1038/ng.440] [PMID: 19734902]
[162]
Uddin, M.S.; Kabir, M.T.; Begum, M.M.; Islam, M.S.; Behl, T.; Ashraf, M.G.M. Exploring the role of clu in the pathogenesis of Alzheimer’s disease. Neurotox. Res., 2020, 38(4), 1062.
[163]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[164]
Uddin, M.S.; Upaganlawar, A.B. Oxidative stress and antioxidant defense: Biomedical value in health and diseases; Nova Science Publishers: USA, 2019.
[165]
Jones, S.V.; Kounatidis, I. Nuclear factor-kappa b and alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front. Immunol., 2017, 8, 1805.
[http://dx.doi.org/10.3389/fimmu.2017.01805] [PMID: 29312321]
[166]
Tilstra, J.S.; Clauson, C.L.; Niedernhofer, L.J.; Robbins, P.D. NF-κB in Aging and Disease. Aging Dis., 2011, 2(6), 449-465.
[PMID: 22396894]
[167]
Thakurta, I.G.; Chattopadhyay, M.; Ghosh, A.; Chakrabarti, S. Dietary supplementation with N-acetyl cysteine, α-tocopherol and α-lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology, 2012, 13(5), 479-488.
[http://dx.doi.org/10.1007/s10522-012-9392-5] [PMID: 22851277]
[168]
Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[169]
Kaltschmidt, B.; Uherek, M.; Volk, B.; Baeuerle, P.A.; Kaltschmidt, C. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1997, 94(6), 2642-2647.
[http://dx.doi.org/10.1073/pnas.94.6.2642] [PMID: 9122249]
[170]
Kitamura, Y.; Shimohama, S.; Ota, T.; Matsuoka, Y.; Nomura, Y.; Taniguchi, T. Alteration of transcription factors NF-kappaB and STAT1 in Alzheimer’s disease brains. Neurosci. Lett., 1997, 237(1), 17-20.
[http://dx.doi.org/10.1016/S0304-3940(97)00797-0] [PMID: 9406869]
[171]
Terai, K.; Matsuo, A.; McGeer, P.L. Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res., 1996, 735(1), 159-168.
[http://dx.doi.org/10.1016/0006-8993(96)00310-1] [PMID: 8905182]
[172]
Cai, Z.; Zhao, B.; Ratka, A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromol. Med., 2011, 13(4), 223-250.
[http://dx.doi.org/10.1007/s12017-011-8155-9] [PMID: 21901428]
[173]
Sivandzade, F.; Prasad, S.; Bhalerao, A.; Cucullo, L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol., 2019, 21101059
[http://dx.doi.org/10.1016/j.redox.2018.11.017] [PMID: 30576920]
[174]
Carrero, I.; Gonzalo, M.R.; Martin, B.; Sanz-Anquela, J.M.; Arévalo-Serrano, J.; Gonzalo-Ruiz, A. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Exp. Neurol., 2012, 236(2), 215-227.
[http://dx.doi.org/10.1016/j.expneurol.2012.05.004] [PMID: 22617488]
[175]
Chen, J.; Zhou, Y.; Mueller-Steiner, S.; Chen, L-F.; Kwon, H.; Yi, S.; Mucke, L.; Gan, L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem., 2005, 280(48), 40364-40374.
[http://dx.doi.org/10.1074/jbc.M509329200] [PMID: 16183991]
[176]
Chen, X-F.; Zhang, Y.W.; Xu, H.; Bu, G. Transcriptional regulation and its misregulation in Alzheimer’s disease. Mol. Brain, 2013, 6, 44.
[http://dx.doi.org/10.1186/1756-6606-6-44] [PMID: 24144318]
[177]
Vodovotz, Y.; Lucia, M.S.; Flanders, K.C.; Chesler, L.; Xie, Q.W.; Smith, T.W.; Weidner, J.; Mumford, R.; Webber, R.; Nathan, C.; Roberts, A.B.; Lippa, C.F.; Sporn, M.B. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J. Exp. Med., 1996, 184(4), 1425-1433.
[http://dx.doi.org/10.1084/jem.184.4.1425] [PMID: 8879214]
[178]
Nathan, C.; Calingasan, N.; Nezezon, J.; Ding, A.; Lucia, M.S.; La Perle, K.; Fuortes, M.; Lin, M.; Ehrt, S.; Kwon, N.S.; Chen, J.; Vodovotz, Y.; Kipiani, K.; Beal, M.F. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J. Exp. Med., 2005, 202(9), 1163-1169.
[http://dx.doi.org/10.1084/jem.20051529] [PMID: 16260491]
[179]
Ansari, M.A.; Scheff, S.W. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic. Biol. Med., 2011, 51(1), 171-178.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.025] [PMID: 21457777]
[180]
Jekabsone, A.; Mander, P.K.; Tickler, A.; Sharpe, M.; Brown, G.C. Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study. J. Neuroinflammation, 2006, 3, 24.
[http://dx.doi.org/10.1186/1742-2094-3-24] [PMID: 16959029]
[181]
Choi, S-H.; Aid, S.; Kim, H-W.; Jackson, S.H.; Bosetti, F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J. Neurochem., 2012, 120(2), 292-301.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07572.x] [PMID: 22050439]
[182]
Mander, P.; Brown, G.C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation, 2005, 2, 20.
[http://dx.doi.org/10.1186/1742-2094-2-20] [PMID: 16156895]
[183]
Butterfield, D.A.; Reed, T.T.; Perluigi, M.; De Marco, C.; Coccia, R.; Keller, J.N.; Markesbery, W.R.; Sultana, R. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res., 2007, 1148, 243-248.
[http://dx.doi.org/10.1016/j.brainres.2007.02.084] [PMID: 17395167]
[184]
Cho, D.-H.; Nakamura, T.; Fang, J.; Cieplak, P.; Godzik, A.; Gu, Z.; Lipton, S.A. S-nitrosylation of drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science (80-. ), 2009, 324, 102-105..
[185]
Kummer, M.P.; Hermes, M.; Delekarte, A.; Hammerschmidt, T.; Kumar, S.; Terwel, D.; Walter, J.; Pape, H.C.; König, S.; Roeber, S.; Jessen, F.; Klockgether, T.; Korte, M.; Heneka, M.T. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron, 2011, 71(5), 833-844.
[http://dx.doi.org/10.1016/j.neuron.2011.07.001] [PMID: 21903077]
[186]
Thiabaud, G.; Pizzocaro, S.; Garcia-Serres, R.; Latour, J-M.; Monzani, E.; Casella, L. Heme binding induces dimerization and nitration of truncated β-amyloid peptide Aβ16 under oxidative stress. Angew. Chem. Int. Ed. Engl., 2013, 52(31), 8041-8044.
[http://dx.doi.org/10.1002/anie.201302989] [PMID: 23788407]
[187]
Rius-Pérez, S.; Tormos, A.M.; Pérez, S.; Taléns-Visconti, R. Vascular pathology: Cause or effect in Alzheimer disease? Neurologia (Engl Ed), 2018, 33(2), 112-120.
[http://dx.doi.org/10.1016/j.nrleng.2015.07.008] [PMID: 26385017]
[188]
Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease--lessons from pathology. BMC Med., 2014, 12, 206.
[http://dx.doi.org/10.1186/s12916-014-0206-2] [PMID: 25385447]
[189]
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci., 2004, 5(5), 347-360.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[190]
Shin, H.K.; Jones, P.B.; Garcia-Alloza, M.; Borrelli, L.; Greenberg, S.M.; Bacskai, B.J.; Frosch, M.P.; Hyman, B.T.; Moskowitz, M.A.; Ayata, C. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain, 2007, 130(Pt 9), 2310-2319.
[http://dx.doi.org/10.1093/brain/awm156] [PMID: 17638859]
[191]
Petzold, G.C.; Murthy, V.N. Role of astrocytes in neurovascular coupling. Neuron, 2011, 71(5), 782-797.
[http://dx.doi.org/10.1016/j.neuron.2011.08.009] [PMID: 21903073]
[192]
Jarre, A.; Gowert, N.S.; Donner, L.; Münzer, P.; Klier, M.; Borst, O.; Schaller, M.; Lang, F.; Korth, C.; Elvers, M. Pre-activated blood platelets and a pro-thrombotic phenotype in APP23 mice modeling Alzheimer’s disease. Cell. Signal., 2014, 26(9), 2040-2050.
[http://dx.doi.org/10.1016/j.cellsig.2014.05.019] [PMID: 24928203]
[193]
Deane, R.; Du Yan, S.; Submamaryan, R.K.; LaRue, B.; Jovanovic, S.; Hogg, E.; Welch, D.; Manness, L.; Lin, C.; Yu, J.; Zhu, H.; Ghiso, J.; Frangione, B.; Stern, A.; Schmidt, A.M.; Armstrong, D.L.; Arnold, B.; Liliensiek, B.; Nawroth, P.; Hofman, F.; Kindy, M.; Stern, D.; Zlokovic, B. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med., 2003, 9(7), 907-913.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[194]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[195]
Aguzzi, A.; Barres, B.A.; Bennett, M.L. Microglia: Scapegoat, saboteur, or something else? Science (80- ), 2013, 339, 156-161.,
[196]
Butovsky, O.; Jedrychowski, M.P.; Moore, C.S.; Cialic, R.; Lanser, A.J.; Gabriely, G.; Koeglsperger, T.; Dake, B.; Wu, P.M.; Doykan, C.E.; Fanek, Z.; Liu, L.; Chen, Z.; Rothstein, J.D.; Ransohoff, R.M.; Gygi, S.P.; Antel, J.P.; Weiner, H.L. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci., 2014, 17(1), 131-143.
[http://dx.doi.org/10.1038/nn.3599] [PMID: 24316888]
[197]
Lambert, J-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; Russo, G.; Thorton-Wells, T.A.; Jones, N.; Smith, A.V.; Chouraki, V.; Thomas, C.; Ikram, M.A.; Zelenika, D.; Vardarajan, B.N.; Kamatani, Y.; Lin, C.F.; Gerrish, A.; Schmidt, H.; Kunkle, B.; Dunstan, M.L.; Ruiz, A.; Bihoreau, M.T.; Choi, S.H.; Reitz, C.; Pasquier, F.; Cruchaga, C.; Craig, D.; Amin, N.; Berr, C.; Lopez, O.L.; De Jager, P.L.; Deramecourt, V.; Johnston, J.A.; Evans, D.; Lovestone, S.; Letenneur, L.; Morón, F.J.; Rubinsztein, D.C.; Eiriksdottir, G.; Sleegers, K.; Goate, A.M.; Fiévet, N.; Huentelman, M.W.; Gill, M.; Brown, K.; Kamboh, M.I.; Keller, L.; Barberger-Gateau, P.; McGuiness, B.; Larson, E.B.; Green, R.; Myers, A.J.; Dufouil, C.; Todd, S.; Wallon, D.; Love, S.; Rogaeva, E.; Gallacher, J.; St George-Hyslop, P.; Clarimon, J.; Lleo, A.; Bayer, A.; Tsuang, D.W.; Yu, L.; Tsolaki, M.; Bossù, P.; Spalletta, G.; Proitsi, P.; Collinge, J.; Sorbi, S.; Sanchez-Garcia, F.; Fox, N.C.; Hardy, J.; Deniz Naranjo, M.C.; Bosco, P.; Clarke, R.; Brayne, C.; Galimberti, D.; Mancuso, M.; Matthews, F.; Moebus, S.; Mecocci, P.; Del Zompo, M.; Maier, W.; Hampel, H.; Pilotto, A.; Bullido, M.; Panza, F.; Caffarra, P.; Nacmias, B.; Gilbert, J.R.; Mayhaus, M.; Lannefelt, L.; Hakonarson, H.; Pichler, S.; Carrasquillo, M.M.; Ingelsson, M.; Beekly, D.; Alvarez, V.; Zou, F.; Valladares, O.; Younkin, S.G.; Coto, E.; Hamilton-Nelson, K.L.; Gu, W.; Razquin, C.; Pastor, P.; Mateo, I.; Owen, M.J.; Faber, K.M.; Jonsson, P.V.; Combarros, O.; O’Donovan, M.C.; Cantwell, L.B.; Soininen, H.; Blacker, D.; Mead, S.; Mosley, T.H., Jr; Bennett, D.A.; Harris, T.B.; Fratiglioni, L.; Holmes, C.; de Bruijn, R.F.; Passmore, P.; Montine, T.J.; Bettens, K.; Rotter, J.I.; Brice, A.; Morgan, K.; Foroud, T.M.; Kukull, W.A.; Hannequin, D.; Powell, J.F.; Nalls, M.A.; Ritchie, K.; Lunetta, K.L.; Kauwe, J.S.; Boerwinkle, E.; Riemenschneider, M.; Boada, M.; Hiltuenen, M.; Martin, E.R.; Schmidt, R.; Rujescu, D.; Wang, L.S.; Dartigues, J.F.; Mayeux, R.; Tzourio, C.; Hofman, A.; Nöthen, M.M.; Graff, C.; Psaty, B.M.; Jones, L.; Haines, J.L.; Holmans, P.A.; Lathrop, M.; Pericak-Vance, M.A.; Launer, L.J.; Farrer, L.A.; van Duijn, C.M.; Van Broeckhoven, C.; Moskvina, V.; Seshadri, S.; Williams, J.; Schellenberg, G.D.; Amouyel, P.; Lathrop, M.; Pericak-Vance, M.A.; Launer, L.J.; Farrer, L.A.; van Duijn, C.M.; Van Broeckhoven, C.; Moskvina, V.; Seshadri, S.; Williams, J.; Schellenberg, G.D.; Amouyel, P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet., 2013, 45(12), 1452-1458.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[198]
Friedman, B.A.; Srinivasan, K.; Ayalon, G.; Meilandt, W.J.; Lin, H.; Huntley, M.A.; Cao, Y.; Lee, S.H.; Haddick, P.C.G.; Ngu, H.; Modrusan, Z.; Larson, J.L.; Kaminker, J.S.; van der Brug, M.P.; Hansen, D.V. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep., 2018, 22(3), 832-847.
[http://dx.doi.org/10.1016/j.celrep.2017.12.066] [PMID: 29346778]
[199]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[200]
Zhao, Y.; Wu, X.; Li, X.; Jiang, L.L.; Gui, X.; Liu, Y.; Sun, Y.; Zhu, B.; Piña-Crespo, J.C.; Zhang, M.; Zhang, N.; Chen, X.; Bu, G.; An, Z.; Huang, T.Y.; Xu, H. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron, 2018, 97(5), 1023-1031.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.01.031] [PMID: 29518356]
[201]
Zhong, L.; Wang, Z.; Wang, D.; Wang, Z.; Martens, Y.A.; Wu, L.; Xu, Y.; Wang, K.; Li, J.; Huang, R.; Can, D.; Xu, H.; Bu, G.; Chen, X.F. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol. Neurodegener., 2018, 13(1), 15.
[http://dx.doi.org/10.1186/s13024-018-0247-7] [PMID: 29587871]
[202]
Ahyayauch, H.; Raab, M.; Busto, J.V.; Andraka, N.; Arrondo, J.R.; Masserini, M.; Tvaroska, I.; Goñi, F.M. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies. Biophys. J., 2012, 103(3), 453-463.
[http://dx.doi.org/10.1016/j.bpj.2012.06.043] [PMID: 22947861]
[203]
Nagarathinam, A.; Höflinger, P.; Bühler, A.; Schäfer, C.; McGovern, G.; Jeffrey, M.; Staufenbiel, M.; Jucker, M.; Baumann, F. Membrane-anchored Aβ accelerates amyloid formation and exacerbates amyloid-associated toxicity in mice. J. Neurosci., 2013, 33(49), 19284-19294.
[http://dx.doi.org/10.1523/JNEUROSCI.2542-13.2013] [PMID: 24305824]
[204]
Wang, Y.; Cella, M.; Mallinson, K.; Ulrich, J.D.; Young, K.L.; Robinette, M.L.; Gilfillan, S.; Krishnan, G.M.; Sudhakar, S.; Zinselmeyer, B.H.; Holtzman, D.M.; Cirrito, J.R.; Colonna, M. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell, 2015, 160(6), 1061-1071.
[http://dx.doi.org/10.1016/j.cell.2015.01.049] [PMID: 25728668]
[205]
Song, W.; Hooli, B.; Mullin, K.; Jin, S.C.; Cella, M.; Ulland, T.K.; Wang, Y.; Tanzi, R.E.; Colonna, M. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimers Dement., 2017, 13(4), 381-387.
[http://dx.doi.org/10.1016/j.jalz.2016.07.004] [PMID: 27520774]
[206]
Terwel, D.; Steffensen, K.R.; Verghese, P.B.; Kummer, M.P.; Gustafsson, J.Å.; Holtzman, D.M.; Heneka, M.T. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J. Neurosci., 2011, 31(19), 7049-7059.
[http://dx.doi.org/10.1523/JNEUROSCI.6546-10.2011] [PMID: 21562267]
[207]
Yeh, F.L.; Wang, Y.; Tom, I.; Gonzalez, L.C.; Sheng, M. TREM2 binds to apolipoproteins, including apoe and clu/apoj, and thereby facilitates uptake of amyloid-beta by microglia. Neuron, 2016, 91(2), 328-340.
[http://dx.doi.org/10.1016/j.neuron.2016.06.015] [PMID: 27477018]
[208]
Song, W.M.; Joshita, S.; Zhou, Y.; Ulland, T.K.; Gilfillan, S.; Colonna, M. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med., 2018, 215(3), 745-760.
[http://dx.doi.org/10.1084/jem.20171529] [PMID: 29321225]
[209]
Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.K.; Younkin, S.; Hazrati, L.; Collinge, J.; Pocock, J.; Lashley, T.; Williams, J.; Lambert, J-C.; Amouyel, P.; Goate, A.; Rademakers, R.; Morgan, K.; Powell, J.; St George-Hyslop, P.; Singleton, A.; Hardy, J. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 117-127.
[http://dx.doi.org/10.1056/NEJMoa1211851] [PMID: 23150934]
[210]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[211]
Mori, Y.; Yoshino, Y.; Ochi, S.; Yamazaki, K.; Kawabe, K.; Abe, M.; Kitano, T.; Ozaki, Y.; Yoshida, T.; Numata, S.; Mori, T.; Iga, J.; Kuroda, N.; Ohmori, T.; Ueno, S. TREM2 mrna expression in leukocytes is increased in Alzheimer’s disease and schizophrenia. PLoS One, 2015, 10(9)e0136835
[http://dx.doi.org/10.1371/journal.pone.0136835] [PMID: 26332043]
[212]
Paloneva, J.; Kestilä, M.; Wu, J.; Salminen, A.; Böhling, T.; Ruotsalainen, V.; Hakola, P.; Bakker, A.B.H.; Phillips, J.H.; Pekkarinen, P.; Lanier, L.L.; Timonen, T.; Peltonen, L. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet., 2000, 25(3), 357-361.
[http://dx.doi.org/10.1038/77153] [PMID: 10888890]
[213]
Liu, Z.; Condello, C.; Schain, A.; Harb, R.; Grutzendler, J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci., 2010, 30(50), 17091-17101.
[http://dx.doi.org/10.1523/JNEUROSCI.4403-10.2010] [PMID: 21159979]
[214]
Bhaskar, K.; Konerth, M.; Kokiko-Cochran, O.N.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T. Regulation of tau pathology by the microglial fractalkine receptor. Neuron, 2010, 68(1), 19-31.
[http://dx.doi.org/10.1016/j.neuron.2010.08.023] [PMID: 20920788]
[215]
Jiang, T.; Zhang, Y.D.; Chen, Q.; Gao, Q.; Zhu, X.C.; Zhou, J.S.; Shi, J.Q.; Lu, H.; Tan, L.; Yu, J.T. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology, 2016, 105, 196-206.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.028] [PMID: 26802771]
[216]
Jay, T.R.; Hirsch, A.M.; Broihier, M.L.; Miller, C.M.; Neilson, L.E.; Ransohoff, R.M.; Lamb, B.T.; Landreth, G.E. Disease progression-dependent effects of trem2 deficiency in a mouse model of Alzheimer’s disease. J. Neurosci., 2017, 37(3), 637-647.
[http://dx.doi.org/10.1523/JNEUROSCI.2110-16.2016] [PMID: 28100745]
[217]
Zhang, B.; Gaiteri, C.; Bodea, L-G.; Wang, Z.; McElwee, J.; Podtelezhnikov, A.A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin, R.; Fluder, E.; Clurman, B.; Melquist, S.; Narayanan, M.; Suver, C.; Shah, H.; Mahajan, M.; Gillis, T.; Mysore, J.; MacDonald, M.E.; Lamb, J.R.; Bennett, D.A.; Molony, C.; Stone, D.J.; Gudnason, V.; Myers, A.J.; Schadt, E.E.; Neumann, H.; Zhu, J.; Emilsson, V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell, 2013, 153(3), 707-720.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[218]
Tarkowski, E.; Andreasen, N.; Tarkowski, A.; Blennow, K. Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(9), 1200-1205.
[http://dx.doi.org/10.1136/jnnp.74.9.1200] [PMID: 12933918]
[219]
Brosseron, F.; Krauthausen, M.; Kummer, M.; Heneka, M.T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: A comparative overview. Mol. Neurobiol., 2014, 50(2), 534-544.
[http://dx.doi.org/10.1007/s12035-014-8657-1] [PMID: 24567119]
[220]
Krstic, D.; Madhusudan, A.; Doehner, J.; Vogel, P.; Notter, T.; Imhof, C.; Manalastas, A.; Hilfiker, M.; Pfister, S.; Schwerdel, C.; Riether, C.; Meyer, U.; Knuesel, I. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation, 2012, 9, 151.
[http://dx.doi.org/10.1186/1742-2094-9-151] [PMID: 22747753]
[221]
Gandy, S.; Heppner, F.L. Microglia as dynamic and essential components of the amyloid hypothesis. Neuron, 2013, 78(4), 575-577.
[http://dx.doi.org/10.1016/j.neuron.2013.05.007] [PMID: 23719156]
[222]
Perry, V.H.; Holmes, C. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol., 2014, 10(4), 217-224.
[http://dx.doi.org/10.1038/nrneurol.2014.38] [PMID: 24638131]
[223]
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol., 2014, 14(7), 463-477.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[224]
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia, 2013, 61(1), 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[225]
Sudduth, T.L.; Schmitt, F.A.; Nelson, P.T.; Wilcock, D.M. Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol. Aging, 2013, 34(4), 1051-1059.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.09.012] [PMID: 23062700]
[226]
Krstic, D.; Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol., 2013, 9(1), 25-34.
[http://dx.doi.org/10.1038/nrneurol.2012.236] [PMID: 23183882]
[227]
Hickman, S.E.; El Khoury, J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem. Pharmacol., 2014, 88(4), 495-498.
[http://dx.doi.org/10.1016/j.bcp.2013.11.021] [PMID: 24355566]
[228]
Perry, V.H. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol., 2010, 120(3), 277-286.
[http://dx.doi.org/10.1007/s00401-010-0722-x] [PMID: 20644946]
[229]
Holmes, C.; Cunningham, C.; Zotova, E.; Woolford, J.; Dean, C.; Kerr, S.; Culliford, D.; Perry, V.H. Systemic inflammation and disease progression in Alzheimer disease. Neurology, 2009, 73(10), 768-774.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[230]
Cribbs, D.H.; Berchtold, N.C.; Perreau, V.; Coleman, P.D.; Rogers, J.; Tenner, A.J.; Cotman, C.W. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation, 2012, 9, 179.
[http://dx.doi.org/10.1186/1742-2094-9-179] [PMID: 22824372]
[231]
Schwartz, M.; Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol., 2010, 6(7), 405-410.
[http://dx.doi.org/10.1038/nrneurol.2010.71] [PMID: 20531383]
[232]
Lo, A.W.; Ho, C.; Cummings, J.; Kosik, K.S. Parallel discovery of Alzheimer’s therapeutics. Sci. Transl. Med., 2014, 6(241)241cm5
[http://dx.doi.org/10.1126/scitranslmed.3008228] [PMID: 24944190]
[233]
Vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819.
[http://dx.doi.org/10.1038/nm.2965] [PMID: 23178247]
[234]
Hu, W.T.; Holtzman, D.M.; Fagan, A.M.; Shaw, L.M.; Perrin, R.; Arnold, S.E.; Grossman, M.; Xiong, C.; Craig-Schapiro, R.; Clark, C.M.; Pickering, E.; Kuhn, M.; Chen, Y.; Van Deerlin, V.M.; McCluskey, L.; Elman, L.; Karlawish, J.; Chen-Plotkin, A.; Hurtig, H.I.; Siderowf, A.; Swenson, F.; Lee, V.M.Y.; Morris, J.C.; Trojanowski, J.Q.; Soares, H. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology, 2012, 79(9), 897-905.
[http://dx.doi.org/10.1212/WNL.0b013e318266fa70] [PMID: 22855860]
[235]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Guan, H.S.; Tan, L. IL12/23 p40 inhibition ameliorates Alzheimer’s disease-associated neuropathology and spatial memory in SAMP8 mice. J. Alzheimers Dis., 2014, 38(3), 633-646.
[http://dx.doi.org/10.3233/JAD-131148] [PMID: 24047617]
[236]
Liu, Y.; Yu, J.T.; Zhang, W.; Zong, Y.; Lu, R.C.; Zhou, J.; Tan, L. Interleukin-23 receptor polymorphisms are associated with Alzheimer’s disease in Han Chinese. J. Neuroimmunol., 2014, 271(1-2), 43-48.
[http://dx.doi.org/10.1016/j.jneuroim.2014.03.013] [PMID: 24703098]
[237]
Papassotiropoulos, A.; Bagli, M.; Jessen, F.; Bayer, T.A.; Maier, W.; Rao, M.L.; Heun, R. A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease. Ann. Neurol., 1999, 45(5), 666-668.
[http://dx.doi.org/10.1002/1531-8249(199905)45:5<666:AID-ANA18>3.0.CO;2-3] [PMID: 10319892]
[238]
Cojocaru, I.M.; Cojocaru, M.; Miu, G.; Sapira, V. Study of interleukin-6 production in Alzheimer’s disease. Rom. J. Intern. Med., 2011, 49(1), 55-58.
[PMID: 22026253]
[239]
Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Husain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci. Rep., 2018, 8(1), 12050.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 30104698]
[240]
Kleinberger, G.; Yamanishi, Y.; Suárez-Calvet, M.; Czirr, E.; Lohmann, E.; Cuyvers, E.; Struyfs, H.; Pettkus, N.; Wenninger-Weinzierl, A.; Mazaheri, F.; Tahirovic, S.; Lleó, A.; Alcolea, D.; Fortea, J.; Willem, M.; Lammich, S.; Molinuevo, J.L.; Sánchez-Valle, R.; Antonell, A.; Ramirez, A.; Heneka, M.T.; Sleegers, K.; van der Zee, J.; Martin, J.J.; Engelborghs, S.; Demirtas-Tatlidede, A.; Zetterberg, H.; Van Broeckhoven, C.; Gurvit, H.; Wyss-Coray, T.; Hardy, J.; Colonna, M.; Haass, C. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med., 2014, 6(243)243ra86
[http://dx.doi.org/10.1126/scitranslmed.3009093] [PMID: 24990881]
[241]
Jay, T.R.; Miller, C.M.; Cheng, P.J.; Graham, L.C.; Bemiller, S.; Broihier, M.L.; Xu, G.; Margevicius, D.; Karlo, J.C.; Sousa, G.L.; Cotleur, A.C.; Butovsky, O.; Bekris, L.; Staugaitis, S.M.; Leverenz, J.B.; Pimplikar, S.W.; Landreth, G.E.; Howell, G.R.; Ransohoff, R.M.; Lamb, B.T. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J. Exp. Med., 2015, 212(3), 287-295.
[http://dx.doi.org/10.1084/jem.20142322] [PMID: 25732305]
[242]
Baleriola, J.; Walker, C.A.; Jean, Y.Y.; Crary, J.F.; Troy, C.M.; Nagy, P.L.; Hengst, U. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell, 2014, 158(5), 1159-1172.
[http://dx.doi.org/10.1016/j.cell.2014.07.001] [PMID: 25171414]
[243]
Bradshaw, E.M.; Chibnik, L.B.; Keenan, B.T.; Ottoboni, L.; Raj, T.; Tang, A.; Rosenkrantz, L.L.; Imboywa, S.; Lee, M.; Von Korff, A.; Morris, M.C.; Evans, D.A.; Johnson, K.; Sperling, R.A.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci., 2013, 16(7), 848-850.
[http://dx.doi.org/10.1038/nn.3435] [PMID: 23708142]
[244]
Naj, A.C.; Jun, G.; Beecham, G.W.; Wang, L.S.; Vardarajan, B.N.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Jarvik, G.P.; Crane, P.K.; Larson, E.B.; Bird, T.D.; Boeve, B.F.; Graff-Radford, N.R.; De Jager, P.L.; Evans, D.; Schneider, J.A.; Carrasquillo, M.M.; Ertekin-Taner, N.; Younkin, S.G.; Cruchaga, C.; Kauwe, J.S.K.; Nowotny, P.; Kramer, P.; Hardy, J.; Huentelman, M.J.; Myers, A.J.; Barmada, M.M.; Demirci, F.Y.; Baldwin, C.T.; Green, R.C.; Rogaeva, E.; St George-Hyslop, P.; Arnold, S.E.; Barber, R.; Beach, T.; Bigio, E.H.; Bowen, J.D.; Boxer, A.; Burke, J.R.; Cairns, N.J.; Carlson, C.S.; Carney, R.M.; Carroll, S.L.; Chui, H.C.; Clark, D.G.; Corneveaux, J.; Cotman, C.W.; Cummings, J.L.; DeCarli, C.; DeKosky, S.T.; Diaz-Arrastia, R.; Dick, M.; Dickson, D.W.; Ellis, W.G.; Faber, K.M.; Fallon, K.B.; Farlow, M.R.; Ferris, S.; Frosch, M.P.; Galasko, D.R.; Ganguli, M.; Gearing, M.; Geschwind, D.H.; Ghetti, B.; Gilbert, J.R.; Gilman, S.; Giordani, B.; Glass, J.D.; Growdon, J.H.; Hamilton, R.L.; Harrell, L.E.; Head, E.; Honig, L.S.; Hulette, C.M.; Hyman, B.T.; Jicha, G.A.; Jin, L.W.; Johnson, N.; Karlawish, J.; Karydas, A.; Kaye, J.A.; Kim, R.; Koo, E.H.; Kowall, N.W.; Lah, J.J.; Levey, A.I.; Lieberman, A.P.; Lopez, O.L.; Mack, W.J.; Marson, D.C.; Martiniuk, F.; Mash, D.C.; Masliah, E.; McCormick, W.C.; McCurry, S.M.; McDavid, A.N.; McKee, A.C.; Mesulam, M.; Miller, B.L.; Miller, C.A.; Miller, J.W.; Parisi, J.E.; Perl, D.P.; Peskind, E.; Petersen, R.C.; Poon, W.W.; Quinn, J.F.; Rajbhandary, R.A.; Raskind, M.; Reisberg, B.; Ringman, J.M.; Roberson, E.D.; Rosenberg, R.N.; Sano, M.; Schneider, L.S.; Seeley, W.; Shelanski, M.L.; Slifer, M.A.; Smith, C.D.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Williamson, J.; Woltjer, R.L.; Cantwell, L.B.; Dombroski, B.A.; Beekly, D.; Lunetta, K.L.; Martin, E.R.; Kamboh, M.I.; Saykin, A.J.; Reiman, E.M.; Bennett, D.A.; Morris, J.C.; Montine, T.J.; Goate, A.M.; Blacker, D.; Tsuang, D.W.; Hakonarson, H.; Kukull, W.A.; Foroud, T.M.; Haines, J.L.; Mayeux, R.; Pericak-Vance, M.A.; Farrer, L.A.; Schellenberg, G.D. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet., 2011, 43(5), 436-441.
[http://dx.doi.org/10.1038/ng.801] [PMID: 21460841]
[245]
Thambisetty, M.; An, Y.; Nalls, M.; Sojkova, J.; Swaminathan, S.; Zhou, Y.; Singleton, A.B.; Wong, D.F.; Ferrucci, L.; Saykin, A.J.; Resnick, S.M. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biol. Psychiatry, 2013, 73(5), 422-428.
[http://dx.doi.org/10.1016/j.biopsych.2012.08.015] [PMID: 23022416]
[246]
Mahmoudi, R.; Feldman, S.; Kisserli, A.; Duret, V.; Tabary, T.; Bertholon, L.A.; Badr, S.; Nonnonhou, V.; Cesar, A.; Neuraz, A.; Novella, J.L.; Cohen, J.H.M. Inherited and acquired decrease in complement receptor 1 (cr1) density on red blood cells associated with high levels of soluble cr1 in alzheimer’s disease. Int. J. Mol. Sci., 2018, 19(8), 19.
[http://dx.doi.org/10.3390/ijms19082175] [PMID: 30044434]
[247]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[248]
Cramer, P.E.; Cirrito, J.R.; Wesson, D.W.; Lee, C.Y.D.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; Brunden, K.R.; Wilson, D.A.; Landreth, G.E. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in ad mouse models.Science (80-.),, 2012, 335, 1503-1506.
[249]
Sheedy, F.J.; Grebe, A.; Rayner, K.J.; Kalantari, P.; Ramkhelawon, B.; Carpenter, S.B.; Becker, C.E.; Ediriweera, H.N.; Mullick, A.E.; Golenbock, D.T.; Stuart, L.M.; Latz, E.; Fitzgerald, K.A.; Moore, K.J. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol., 2013, 14(8), 812-820.
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[250]
Ries, M.; Sastre, M. Mechanisms of aβ clearance and degradation by glial cells. Front. Aging Neurosci., 2016, 8, 160.
[http://dx.doi.org/10.3389/fnagi.2016.00160] [PMID: 27458370]
[251]
Fassbender, K.; Walter, S.; Kühl, S.; Landmann, R.; Ishii, K.; Bertsch, T.; Stalder, A.K.; Muehlhauser, F.; Liu, Y.; Ulmer, A.J.; Rivest, S.; Lentschat, A.; Gulbins, E.; Jucker, M.; Staufenbiel, M.; Brechtel, K.; Walter, J.; Multhaup, G.; Penke, B.; Adachi, Y.; Hartmann, T.; Beyreuther, K. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J., 2004, 18(1), 203-205.
[http://dx.doi.org/10.1096/fj.03-0364fje] [PMID: 14597556]
[252]
Reed-Geaghan, E.G.; Reed, Q.W.; Cramer, P.E.; Landreth, G.E. Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J. Neurosci., 2010, 30(46), 15369-15373.
[http://dx.doi.org/10.1523/JNEUROSCI.2637-10.2010] [PMID: 21084593]
[253]
Pase, M.P.; Himali, J.J.; Beiser, A.S.; DeCarli, C.; McGrath, E.R.; Satizabal, C.L.; Aparicio, H.J.; Adams, H.H.H.; Reiner, A.P.; Longstreth, W.T., Jr; Fornage, M.; Tracy, R.P.; Lopez, O.; Psaty, B.M.; Levy, D.; Seshadri, S.; Bis, J.C. Association of CD14 with incident dementia and markers of brain aging and injury. Neurology, 2020, 94(3), e254-e266.
[http://dx.doi.org/10.1212/WNL.0000000000008682] [PMID: 31818907]
[254]
Chen, P.; Zhao, W.; Guo, Y.; Xu, J.; Yin, M. CX3CL1/CX3CR1 in alzheimer’s disease: A target for neuroprotection. Biomed Res. Int., 2016, 20168090918
[255]
Nash, K.R.; Lee, D.C.; Hunt, J.B., Jr; Morganti, J.M.; Selenica, M.L.; Moran, P.; Reid, P.; Brownlow, M.; Guang, Yu Yang, C.; Savalia, M.; Gemma, C.; Bickford, P.C.; Gordon, M.N.; Morgan, D. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging, 2013, 34(6), 1540-1548.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.011] [PMID: 23332170]
[256]
Hickman, S.E.; Allison, E.K.; Coleman, U.; Kingery-Gallagher, N.D.; El Khoury, J. Heterozygous cx3cr1 deficiency in microglia restores neuronal β-amyloid clearance pathways and slows progression of alzheimer’s like-disease in ps1-app mice. Front. Immunol., 2019, 10, 2780.
[http://dx.doi.org/10.3389/fimmu.2019.02780] [PMID: 31849963]
[257]
Ryu, J.K.; McLarnon, J.G. Block of purinergic P2X(7) receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport, 2008, 19(17), 1715-1719.
[http://dx.doi.org/10.1097/WNR.0b013e3283179333] [PMID: 18852683]
[258]
Diaz-Hernandez, J.I.; Gomez-Villafuertes, R.; León-Otegui, M.; Hontecillas-Prieto, L.; Del Puerto, A.; Trejo, J.L.; Lucas, J.J.; Garrido, J.J.; Gualix, J.; Miras-Portugal, M.T.; Diaz-Hernandez, M. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3β and secretases. Neurobiol. Aging, 2012, 33(8), 1816-1828.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.040] [PMID: 22048123]
[259]
Frenkel, D.; Wilkinson, K.; Zhao, L.; Hickman, S.E.; Means, T.K.; Puckett, L.; Farfara, D.; Kingery, N.D.; Weiner, H.L.; El Khoury, J. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat. Commun., 2013, 4, 2030.
[http://dx.doi.org/10.1038/ncomms3030] [PMID: 23799536]
[260]
Chen, J-H.; Ke, K-F.; Lu, J-H.; Qiu, Y-H.; Peng, Y-P. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats. PLoS One, 2015, 10(2)e0116549
[http://dx.doi.org/10.1371/journal.pone.0116549] [PMID: 25658940]
[261]
Juraskova, B.; Andrys, C.; Holmerova, I.; Solichova, D.; Hrnciarikova, D.; Vankova, H.; Vasatko, T.; Krejsek, J. Transforming growth factor beta and soluble endoglin in the healthy senior and in Alzheimer’s disease patients. J. Nutr. Health Aging, 2010, 14(9), 758-761.
[http://dx.doi.org/10.1007/s12603-010-0325-1] [PMID: 21085906]
[262]
Guerreiro, R.J.; Santana, I.; Brás, J.M.; Santiago, B.; Paiva, A.; Oliveira, C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener. Dis., 2007, 4(6), 406-412.
[http://dx.doi.org/10.1159/000107700] [PMID: 17934323]
[263]
Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[264]
van der Wal, E.A.; Gómez-Pinilla, F.; Cotman, C.W. Transforming growth factor-beta 1 is in plaques in Alzheimer and down pathologies. Neuroreport, 1993, 4(1), 69-72.
[http://dx.doi.org/10.1097/00001756-199301000-00018] [PMID: 8453039]
[265]
Wyss-Coray, T.; Lin, C.; Yan, F.; Yu, G.Q.; Rohde, M.; McConlogue, L.; Masliah, E.; Mucke, L. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat. Med., 2001, 7(5), 612-618.
[http://dx.doi.org/10.1038/87945] [PMID: 11329064]
[266]
Town, T.; Laouar, Y.; Pittenger, C.; Mori, T.; Szekely, C.A.; Tan, J.; Duman, R.S.; Flavell, R.A. Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med., 2008, 14(6), 681-687.
[http://dx.doi.org/10.1038/nm1781] [PMID: 18516051]
[267]
Swardfager, W.; Lanctôt, K.; Rothenburg, L.; Wong, A.; Cappell, J.; Herrmann, N. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry, 2010, 68(10), 930-941.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.012] [PMID: 20692646]