Implantable Microfluidic Device: An Epoch of Technology

Page: [679 - 689] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Implantable microfluidic devices are milestones in developing devices that can measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity. It is a multidisciplinary approach with immense potential in the area of the biomedical field. Significant resources are utilized for the research and development of these devices for various applications. The induction of an implantable microfluidic device into an animal would enable us to measure the responses without any repeated invasive procedures. Such data would help in the development of a better drug delivery profile. Implantable microfluidic devices with reservoirs deliver specific chemical or biological products to treat situations like cancers and diabetes. They can also deliver fluorophores for specific imaging inside the body. Implantable microfluidic devices help provide a microenvironment for various cell differentiation procedures. These devices know no boundaries, and this article reviews these devices based on their design and applications.

Keywords: Implantable microfluidic devices, microfluidic platform, reservoir, actuators, sensors, imaging, cell differentiation, drug delivery.

[1]
Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Dev 1979; 26(12): 1880-6.
[http://dx.doi.org/10.1109/T-ED.1979.19791]
[2]
Gravesen P, Branebjerg J, Jensen OS. Microfluidics-a review. J Micromech Microeng 1993; 3(4): 168-82.
[http://dx.doi.org/10.1088/0960-1317/3/4/002]
[3]
Sofos F, Karakasidis TE, Liakopoulos A. Fluid flow at the nanoscale: How fluid properties deviate from the bulk. Nanosci Nanotechnol Lett 2013; 5(4): 457-60.
[http://dx.doi.org/10.1166/nnl.2013.1555]
[4]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[5]
Ríos Á, Zougagh M. Modern qualitative analysis by miniaturized and microfluidic systems. Trends Analyt Chem 2015; 69: 105-13.
[http://dx.doi.org/10.1016/j.trac.2015.04.003]
[6]
Fiorini GS, Chiu DT. Disposable microfluidic devices: Fabrication, function, and application. Biotechniques 2005; 38(3): 429-46.
[http://dx.doi.org/10.2144/05383RV02] [PMID: 15786809]
[7]
Fallahi H, Zhang J, Phan H-P, Nguyen N-T. Flexible microfluidics: Fundamentals, recent developments, and applications. Micromachines (Basel) 2019; 10(12): 830.
[http://dx.doi.org/10.3390/mi10120830] [PMID: 31795397]
[8]
Rossier JS, Vollet C, Carnal A, et al. Plasma etched polymer microelectrochemical systems. Lab Chip 2002; 2(3): 145-50.
[http://dx.doi.org/10.1039/b204063h] [PMID: 15100825]
[9]
Schaller T, Bohn L, Mayer J, Schubert K. Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Precis Eng 1999; 23(4): 229-35.
[http://dx.doi.org/10.1016/S0141-6359(99)00011-2]
[10]
Li X, Abe T, Esashi M. Deep reactive ion etching of Pyrex glass using SF6 plasma. Sens Actuators A Phys 2001; 87(3): 139-45.
[http://dx.doi.org/10.1016/S0924-4247(00)00482-9]
[11]
Beebe DJ, Moore JS, Yu Q, et al. Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci USA 2000; 97(25): 13488-93.
[http://dx.doi.org/10.1073/pnas.250273097] [PMID: 11087831]
[12]
Kim J, Yang K, Park H-J, Cho S-W, Han S, Shin Y. Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. Biotechnol Bioprocess Eng; BBE 2014; 19(3): 379-85.
[http://dx.doi.org/10.1007/s12257-014-0021-9]
[13]
Martinez-Duarte R, Madou M. SU-8 photolithography and its impact on microfluidics. Microfluidics and Nanofluidics Handbook 2006; 2011: 231-68.
[14]
Duffy DC, Schueller OJA, Brittain ST, Whitesides GM. Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. J Micromech Microeng 1999; 9(3): 211-7.
[http://dx.doi.org/10.1088/0960-1317/9/3/301]
[15]
McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 2002; 35(7): 491-9.
[http://dx.doi.org/10.1021/ar010110q] [PMID: 12118988]
[16]
Fiorini GS, Jeffries GDM, Lim DSW, Kuyper CL, Chiu DT. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. Lab Chip 2003; 3(3): 158-63.
[http://dx.doi.org/10.1039/b305074m] [PMID: 15100767]
[17]
Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 2000; 72(14): 3158-64.
[http://dx.doi.org/10.1021/ac9912294] [PMID: 10939381]
[18]
Alrifaiy A, Lindahl OA, Ramser K. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers (Basel) 2012; 4(3): 1349-98.
[http://dx.doi.org/10.3390/polym4031349]
[19]
Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993; 261(5123): 895-7.
[http://dx.doi.org/10.1126/science.261.5123.895] [PMID: 17783736]
[20]
Tan X, Khaing Oo MK, Gong Y, Li Y, Zhu H, Fan X. Glass capillary based microfluidic ELISA for rapid diagnostics. Analyst (Lond) 2017; 142(13): 2378-85.
[http://dx.doi.org/10.1039/C7AN00523G] [PMID: 28548141]
[21]
Jeong W-W, Kim C. One-step method for monodisperse microbiogels by glass capillary microfluidics. Colloids Surf A Physicochem Eng Asp 2011; 384(1): 268-73.
[http://dx.doi.org/10.1016/j.colsurfa.2011.04.006]
[22]
Li EQ, Zhang JM, Thoroddsen ST. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions. J Micromech Microeng 2013; 24(1): 015019.
[http://dx.doi.org/10.1088/0960-1317/24/1/015019]
[23]
Zhao X, Liu S, Yildirimer L, Zhao H, Ding R, Wang H. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater 2016; 26(17): 2809-19.
[http://dx.doi.org/10.1002/adfm.201504943]
[24]
Bernacka-Wojcik I, Huerta M, Tybrandt K, et al. Implantable organic electronic ion pump enables aba hormone delivery for control of stomata in an intact tobacco plant. Small 2019; 15(43): e1902189.
[http://dx.doi.org/10.1002/smll.201902189] [PMID: 31513355]
[25]
Rathnasingham R, Kipke DR, Bledsoe SC Jr, McLaren JD. Characterization of implantable microfabricated fluid delivery devices. IEEE Trans Biomed Eng 2004; 51(1): 138-45.
[http://dx.doi.org/10.1109/TBME.2003.820311] [PMID: 14723503]
[26]
Ryu B-H, Kim D-E. Development of highly durable and low friction micro-structured PDMS coating based on bio-inspired surface design. CIRP Ann 2015; 64(1): 519-22.
[http://dx.doi.org/10.1016/j.cirp.2015.03.004]
[27]
Leester-Schädel M, Lorenz T, Jürgens F, Richter C. Fabrication of microfluidic devices Microsystems for Pharmatechnology. Springer 2016; pp. 23-57.
[http://dx.doi.org/10.1007/978-3-319-26920-7_2]
[28]
Martin S, Bhushan B. Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. J Colloid Interface Sci 2017; 488: 118-26.
[http://dx.doi.org/10.1016/j.jcis.2016.10.094] [PMID: 27821332]
[29]
Pu Z, Zou C, Wang R, et al. A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system. Biomicrofluidics 2016; 10(1): 011910.
[http://dx.doi.org/10.1063/1.4942437] [PMID: 26958097]
[30]
Scholten K, Meng E. Materials for microfabricated implantable devices: A review. Lab Chip 2015; 15(22): 4256-72.
[http://dx.doi.org/10.1039/C5LC00809C] [PMID: 26400550]
[31]
Bosq N, Guigo N, Persello J, Sbirrazzuoli N. Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys Chem Chem Phys 2014; 16(17): 7830-40.
[http://dx.doi.org/10.1039/C4CP00164H] [PMID: 24643621]
[32]
McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000; 21(1): 27-40.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C] [PMID: 10634468]
[33]
Lamberti A, Marasso SL, Cocuzza M. PDMS membranes with tunable gas permeability for microfluidic applications. RSC Advances 2014; 4(106): 61415-9.
[http://dx.doi.org/10.1039/C4RA12934B]
[34]
Wnek GE, Bowlin GL. Encyclopedia of biomaterials and biomedical engineering. 1st ed. CRC Press 2004; pp. 28-May-2008.
[35]
Zamiri P, Kuang Y, Sharma U, et al. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials 2010; 31(31): 7847-55.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.057] [PMID: 20696471]
[36]
Schakenraad JM, Dijkstra PJ. Biocompatibility of poly (DL-lactic acid/glycine) copolymers. Clin Mater 1991; 7(3): 253-69.
[http://dx.doi.org/10.1016/0267-6605(91)90067-P] [PMID: 10149137]
[37]
Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005; 23(7): 879-84.
[http://dx.doi.org/10.1038/nbt1109] [PMID: 15965465]
[38]
Gutierrez-Rivera L, Cescato L. Biodegradable submicrometric sieves in PLLA fabricated by soft lithography. Microsyst Technol 2010; 16(11): 1893-9.
[http://dx.doi.org/10.1007/s00542-010-1113-x]
[39]
Eawwiboonthanakit N, Jaafar M, Hamid ZAA, Todo M, Lila B. Tensile Properties of Poly(L-Lactic) Acid(PLLA) Blends. Adv Mat Res 2014; 1024: 179-83.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1024.179]
[40]
Ala-Vannesluoma P. Moisture absorptivity of the poly (lactide- co-glycolide), and comparison of dehumidifying gases [Master of science thesis] 2016.
[41]
Kim BJ, Meng E. Micromachining of Parylene C for bioMEMS. Polym Adv Technol 2016; 27(5): 564-76.
[http://dx.doi.org/10.1002/pat.3729]
[42]
Kokko K, Harjunpää H, Heino P, Kellomäki M. Composite coating structure in an implantable electronic device. Solder Surf Mt Technol 2009.
[http://dx.doi.org/10.1108/09540910910970385]
[43]
Valle Jd, Oliva Ndl, Müller M, Stieglitz T, Navarro X, Eds. Biocompatibility evaluation of parylene C and polyimide as substrates for peripheral nerve interfaces. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). 22-4.
[44]
Gensler H, Sheybani R, Li P-Y, Mann RL, Meng E. An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices 2012; 14(3): 483-96.
[http://dx.doi.org/10.1007/s10544-011-9625-4] [PMID: 22273985]
[45]
Surace R, Trotta G, Fassi I, Bellantone V. The micro injection moulding process for polymeric components manufacturing New Technologies - Trends, Innovations and Research. INTECH Open Access Publisher 2012; pp. 65-89.
[46]
Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F. Evaluation of biocompatible photopolymers I: Photoreactivity and mechanical properties of reactive diluents. Journal of Macromolecular Science, Part A 2007; 44(5): 547-57.
[http://dx.doi.org/10.1080/10601320701235958]
[47]
Cheremisinoff NP. Condensed encyclopedia of polymer engineering terms. Butterworth-Heinemann 2001.
[48]
Ohlin A, Linder L. Biocompatibility of polyoxymethylene (Delrin) in bone. Biomaterials 1993; 14(4): 285-9.
[http://dx.doi.org/10.1016/0142-9612(93)90120-Q] [PMID: 8476998]
[49]
Becker H, Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000; 21(1): 12-26.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7] [PMID: 10634467]
[50]
Tan HY, Loke WK, Nguyen N-T. A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens Actuators B Chem 2010; 151(1): 133-9.
[http://dx.doi.org/10.1016/j.snb.2010.09.035]
[51]
Abdel-Wahab AA, Ataya S, Silberschmidt VV. Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling. Polym Test 2017; 58: 86-95.
[http://dx.doi.org/10.1016/j.polymertesting.2016.12.016]
[52]
Flora XH, Ulaganathan M, Rajendran S. Influence of lithium salt concentration on PAN-PMMA blend polymer electrolytes. Int J Electrochem Sci 2012; 7(8): 7451-62.
[53]
Hollick EJ, Spalton DJ, Ursell PG, Pande MV. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface. J Cataract Refract Surg 1998; 24(3): 361-6.
[http://dx.doi.org/10.1016/S0886-3350(98)80324-6] [PMID: 9559472]
[54]
Metz S, Bertsch A, Bertrand D, Renaud P. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 2004; 19(10): 1309-18.
[http://dx.doi.org/10.1016/j.bios.2003.11.021] [PMID: 15046764]
[55]
Richardson RR Jr, Miller JA, Reichert WM. Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 1993; 14(8): 627-35.
[http://dx.doi.org/10.1016/0142-9612(93)90183-3] [PMID: 8399958]
[56]
Tapaswi PK, Ha CS. Recent trends on transparent colorless polyimides with balanced thermal and optical properties: Design and synthesis. Macromol Chem Phys 2019; 220(3): 1800313.
[http://dx.doi.org/10.1002/macp.201800313]
[57]
Lee KB, Lin L. Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications. Sens Actuators A Phys 2004; 111(1): 44-50.
[http://dx.doi.org/10.1016/j.sna.2003.10.027]
[58]
Bu M, Melvin T, Ensell GJ, Wilkinson JS, Evans AGR. A new masking technology for deep glass etching and its microfluidic application. Sens Actuators A Phys 2004; 115(2-3): 476-82.
[http://dx.doi.org/10.1016/j.sna.2003.12.013]
[59]
Plaza JA, Lopez MJ, Moreno A, Duch M, Cane C. Definition of high aspect ratio glass columns. Sens Actuators A Phys 2003; 105(3): 305-10.
[http://dx.doi.org/10.1016/S0924-4247(03)00207-3]
[60]
Worgull M. Hot embossing: theory and technology of microreplication. In: William Andrew. 2009; p. 368.
[61]
Dublin WL Jr, Dublin LG, Nieman RE, Nieman RE. Apparatus and method for monitoring intraocular and blood pressure by non- contact contour measurement. Google Patents 2000.
[62]
Boyer G, Pailler Mattei C, Molimard J, Pericoi M, Laquieze S, Zahouani H. Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing. Med Eng Phys 2012; 34(2): 172-8.
[http://dx.doi.org/10.1016/j.medengphy.2011.07.007] [PMID: 21807547]
[63]
Shao D, Liu C, Tsow F, et al. Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Trans Biomed Eng 2016; 63(6): 1091-8.
[http://dx.doi.org/10.1109/TBME.2015.2481896] [PMID: 26415199]
[64]
Poh M-Z, McDuff DJ, Picard RW. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt Express 2010; 18(10): 10762-74.
[http://dx.doi.org/10.1364/OE.18.010762] [PMID: 20588929]
[65]
Araci IE, Su B, Quake SR, Mandel Y. An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med 2014; 20(9): 1074-8.
[http://dx.doi.org/10.1038/nm.3621] [PMID: 25150497]
[66]
Kim D, Ahn SK, Yoon J. Highly stretchable strain sensors comprising double network hydrogels fabricated by microfluidic devices. Adv Mater Technol 2019; 4(7): 1800739.
[http://dx.doi.org/10.1002/admt.201800739]
[67]
Rosner AL, Cuthbert SC. Applied kinesiology: distinctions in its definition and interpretation. J Bodyw Mov Ther 2012; 16(4): 464-87.
[http://dx.doi.org/10.1016/j.jbmt.2012.04.008] [PMID: 23036878]
[68]
Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 1962; 102(1): 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[69]
Clark LC Jr. Implantable gas-containing biosensor and method for measuring an analyte such as glucose. Google Patents 1988.
[70]
Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 2010; 39(3): 1073-95.
[http://dx.doi.org/10.1039/B909366B] [PMID: 20179826]
[71]
Darrow CB, Satcher JH Jr, Lane SM, Lee AP, Wang AW. Chemical sensor system. Google Patents 2002.
[72]
Kurita R, Hayashi K, Fan X, Yamamoto K, Kato T, Niwa O. Microfluidic device integrated with pre-reactor and dual enzyme- modified microelectrodes for monitoring in vivo glucose and lactate. Sens Actuators B Chem 2002; 87(2): 296-303.
[http://dx.doi.org/10.1016/S0925-4005(02)00249-6]
[73]
Hsieh Y-C, Zahn JD. Glucose recovery in a microfluidic microdialysis biochip. Sens Actuators B Chem 2005; 107(2): 649-56.
[http://dx.doi.org/10.1016/j.snb.2004.11.039]
[74]
Saylor RA, Lunte SM. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A 2015; 1382: 48-64.
[http://dx.doi.org/10.1016/j.chroma.2014.12.086] [PMID: 25637011]
[75]
Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal Chem 2019; 91(23): 14803-7.
[http://dx.doi.org/10.1021/acs.analchem.9b03110] [PMID: 31553565]
[76]
Reeder JT, Choi J, Xue Y, et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci Adv 2019; 5(1): eaau6356.
[http://dx.doi.org/10.1126/sciadv.aau6356] [PMID: 30746456]
[77]
Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020; 4(2): 159-71.
[http://dx.doi.org/10.1038/s41551-019-0462-8] [PMID: 31659307]
[78]
Bai W, Yang H, Ma Y, et al. Flexible transient optical waveguides and surface‐wave biosensors constructed from monocrystalline silicon. Adv Mater 2018; 30(32): e1801584.
[http://dx.doi.org/10.1002/adma.201801584] [PMID: 29944186]
[79]
Aceves-Serrano LG, Ordaz-Martinez KA, Vazquez-Piñon M, Hwang H. Microfluidics for drug delivery systems Nanoarchitectonics in Biomedicine. Elsevier 2019; pp. 55-83.
[80]
Wei J, Ju X-J, Xie R, Mou C-L, Lin X, Chu L-Y. Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. J Colloid Interface Sci 2011; 357(1): 101-8.
[http://dx.doi.org/10.1016/j.jcis.2011.01.105] [PMID: 21345438]
[81]
Chappel E. Implantable drug delivery devices.Drug Delivery Devices and Therapeutic Systems. Academic Press 2021; pp. 129-56.
[http://dx.doi.org/10.1016/B978-0-12-819838-4.00001-8]
[82]
Song P, Tng DJH, Hu R, Yong K-T, Eds. Engineering Implantable Microfluidic Drug Delivery Device for Individualized Cancer Chemotherapy. Proceedings of the International Conference on Biomedical Electronics and Devices. 2015 In: BIODEVICES, (BIOSTEC 2015); 2015; p. : 2015.
[http://dx.doi.org/10.5220/0005202900370043]
[83]
Yi Y, Zaher A, Yassine O, Buttner U, Kosel J, Foulds IG, Eds. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery. 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2015; 2015.
[http://dx.doi.org/10.1109/NEMS.2015.7147344]
[84]
Farra R, Sheppard NF, McCabe L, Neer RM, Anderson JM, Santini JT. First-in-human testing of a wirelessly controlled drug delivery microchip. Science translational medicine 2012; 4(122): 122ra21-1.
[http://dx.doi.org/10.1126/scitranslmed.3003276]
[85]
Hamie A, Ghafar-Zadeh E, Sawan M, Eds. An implantable micropump prototype for focal drug delivery. 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2013 4-5 May; 2013.
[86]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[87]
Lo R, Li P-Y, Saati S, Agrawal RN, Humayun MS, Meng E. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 2009; 11(5): 959-70.
[http://dx.doi.org/10.1007/s10544-009-9313-9] [PMID: 19396548]
[88]
Elman NM, Ho Duc HL, Cima MJ. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed Microdevices 2009; 11(3): 625-31.
[http://dx.doi.org/10.1007/s10544-008-9272-6] [PMID: 19169826]
[89]
Pirmoradi FN, Jackson JK, Burt HM, Chiao M. A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing. Lab Chip 2011; 11(18): 3072-80.
[http://dx.doi.org/10.1039/c1lc20438f] [PMID: 21860883]
[90]
Chen Z, Noh S, Prisby RD, Lee J-B. An implanted magnetic microfluidic pump for in vivo bone remodeling applications. Micromachines (Basel) 2020; 11(3): 300.
[http://dx.doi.org/10.3390/mi11030300] [PMID: 32182976]
[91]
Meng E, Hoang T. Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv 2012; 3(12): 1457-67.
[http://dx.doi.org/10.4155/tde.12.132] [PMID: 23323562]
[92]
Su Y-C, Lin L, Pisano AP. A water-powered osmotic microactuator. J Microelectromech Syst 2002; 11(6): 736-42.
[http://dx.doi.org/10.1109/JMEMS.2002.805045]
[93]
Yih TC, Wei C, Hammad B. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. Nanomedicine 2005; 1(2): 164-75.
[http://dx.doi.org/10.1016/j.nano.2005.01.002] [PMID: 17292074]
[94]
Teymoori MM, Abbaspour-Sani E. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A Phys 2005; 117(2): 222-9.
[http://dx.doi.org/10.1016/j.sna.2004.06.025]
[95]
Forouzandeh F, Zhu X, Alfadhel A, et al. A nanoliter resolution implantable micropump for murine inner ear drug delivery. J Control Release 2019; 298: 27-37.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.032] [PMID: 30690105]
[96]
Maillefer D, Lintel Hv, Rey-Mermet G, Hirschi R. A high-performance silicon micropump for an implantable drug delivery system. Technical Digest IEEE International MEMS 99 Conference Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat No99CH36291). 1999 21-21 Jan; 1999.
[97]
Geipel A, Goldschmidtboeing F, Jantscheff P, Esser N, Massing U, Woias P. Design of an implantable active microport system for patient specific drug release. Biomed Microdevices 2008; 10(4): 469-78.
[http://dx.doi.org/10.1007/s10544-007-9147-2] [PMID: 18483865]
[98]
Takehara H, Nagaoka A, Noguchi J, Akagi T, Kasai H, Ichiki T. Lab-on-a-brain: implantable micro-optical fluidic devices for neural cell analysis in vivo. Sci Rep 2014; 4: 6721.
[http://dx.doi.org/10.1038/srep06721] [PMID: 25335545]
[99]
Retterer ST, Smith KL, Bjornsson CS, Turner JN, Isaacson MS, Shain W. Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices. J Neural Eng 2008; 5(4): 385-91.
[http://dx.doi.org/10.1088/1741-2560/5/4/003] [PMID: 18827310]
[100]
Cao Y, Uhrich KE. Biodegradable and biocompatible polymers for electronic applications: A review. J Bioact Compat Polym 2019; 34(1): 3-15.
[http://dx.doi.org/10.1177/0883911518818075]
[101]
Torisawa YS, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 2014; 11(6): 663-9.
[http://dx.doi.org/10.1038/nmeth.2938] [PMID: 24793454]
[102]
Chen R, Gore F, Nguyen Q-A, Ramakrishnan C, Patel S, Kim SH. Deep brain optogenetics without intracranial surgery. Nat Biotechnol 2020.
[PMID: 33020604]
[103]
Jeong J-W, McCall JG, Shin G, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015; 162(3): 662-74.
[http://dx.doi.org/10.1016/j.cell.2015.06.058] [PMID: 26189679]
[104]
Gutruf P, Rogers JA. Implantable, wireless device platforms for neuroscience research. Curr Opin Neurobiol 2018; 50: 42-9.
[http://dx.doi.org/10.1016/j.conb.2017.12.007] [PMID: 29289027]
[105]
Malpeli JG. Reversible inactivation of subcortical sites by drug injection. J Neurosci Methods 1999; 86(2): 119-28.
[http://dx.doi.org/10.1016/S0165-0270(98)00161-7] [PMID: 10065981]
[106]
Fuster JM, Alexander GE. Delayed response deficit by cryogenic depression of frontal cortex. Brain Res 1970; 20(1): 85-90.
[http://dx.doi.org/10.1016/0006-8993(70)90156-3] [PMID: 4986430]
[107]
Fuster JM, Bauer RH. Visual short-term memory deficit from hypothermia of frontal cortex. Brain Res 1974; 81(3): 393-400.
[http://dx.doi.org/10.1016/0006-8993(74)90838-5] [PMID: 4434203]
[108]
Cooke DF, Goldring AB, Yamayoshi I, et al. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates. J Neurophysiol 2012; 107(12): 3543-58.
[http://dx.doi.org/10.1152/jn.01101.2011] [PMID: 22402651]
[109]
Wood RJ. The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Trans Robot 2008; 24(2): 341-7.
[http://dx.doi.org/10.1109/TRO.2008.916997]
[110]
Cho K-J, Wood R. Biomimetic Robots.Springer Handbook of Robotics. Cham: Springer International Publishing 2016; pp. 543-74.
[http://dx.doi.org/10.1007/978-3-319-32552-1_23]
[111]
Chung AJ, Erickson D. Engineering insect flight metabolics using immature stage implanted microfluidics. Lab Chip 2009; 9(5): 669-76.
[http://dx.doi.org/10.1039/B814911A] [PMID: 19224016]
[112]
Bozkurt A, F Gilmour R Jr, Lal A. Balloon-assisted flight of radio-controlled insect biobots. IEEE Trans Biomed Eng 2009; 56(9): 2304-7.
[http://dx.doi.org/10.1109/TBME.2009.2022551] [PMID: 19692306]
[113]
Bozkurt A, Gilmour RF Jr, Sinha A, Stern D, Lal A. Insect-machine interface based neurocybernetics. IEEE Trans Biomed Eng 2009; 56(6): 1727-33.
[http://dx.doi.org/10.1109/TBME.2009.2015460] [PMID: 19272983]
[114]
Chung AJ, Cordovez B, Jasuja N, Lee DJ, Huang XT, Erickson D. Implantable microfluidic and electronic systems for insect flight manipulation. Microfluid Nanofluidics 2012; 13(2): 345-52.
[http://dx.doi.org/10.1007/s10404-012-0957-z]
[115]
Hirotaka S, Berry CW, Casey BE, Lavella G, Ying Y, VandenBrooks JM, Eds. A cyborg beetle: Insect flight control through an implantable, tetherless microsystem. 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. 2008 13-17 Jan; 2008.