Beneficial Effects of Dietary Polyphenols in the Prevention and Treatment of NAFLD: Cell-Signaling Pathways Underlying Health Effects

Page: [299 - 328] Pages: 30

  • * (Excluding Mailing and Handling)

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic accretion of triacylglycerides in the absence of alcohol intake that may progress to steatohepatitis, fibrosis and cirrhosis, becoming the main cause of chronic liver disease. This article discusses recent data concerning the use of dietary polyphenols in the prevention and treatment of NAFLD in vitro, in vivo, and in clinical trials.

Methods: Study searches were performed using the PubMed database from the National Library of Medicine-National Institutes of Health.

Results: Polyphenols exert beneficial effects in NAFLD, with positive outcomes being related to body weight gain, insulin resistance, liver fat accumulation, oxidative stress, proinflammatory status, mitochondrial dysfunction and ER stress. Data reported for hydroxytyrosol suggest that the activation of the hepatic PPAR-α-FGF21-AMPK-PGC-1α signaling cascade is associated with fatty acid oxidation enhancement, de novo lipogenesis diminution and recovery of mitochondrial function, a contention that is supported by the actions of several polyphenols on specific components of this signaling pathway. Besides, polyphenols downregulate NF-κB, suppressing the pro-inflammatory state developed in NAFLD and upregulate liver Nrf2, increasing the cellular antioxidant potential. The latter feature of polyphenols is contributed by chelation of pro-oxidant trace elements, reduction of free radicals to stable forms and inhibition of free radical generating systems.

Conclusion: Polyphenols are relevant bioactive compounds in terms of prevention and treatment of NAFLD, which exhibit low bioavailability and instability in biological systems that could limit their health effects. These drawbacks reinforce the necessity of further studies to improve the efficacy of polyphenol formulations for human interventions.

Keywords: Nonalcoholic fatty liver disease, liver steatosis, polyphenols, bioactive compounds, antioxidants, oxidative stress.

[1]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[2]
Ashraf, N.U.; Sheikh, T.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic. Res., 2015, 49(12), 1405-1418.
[http://dx.doi.org/10.3109/10715762.2015.1078461] [PMID: 26223319]
[3]
Marengo, A.; Rosso, C.; Bugianesi, E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med., 2016, 67, 103-117.
[http://dx.doi.org/10.1146/annurev-med-090514-013832] [PMID: 26473416]
[4]
Michelotti, G.A.; Machado, M.V.; Diehl, A.M. NAFLD, NASH and Liver Cancer. In: Nature Reviews Gastroenterology and Hepatology; Nature Publishing Group, 2013; pp. 656-665.
[http://dx.doi.org/10.1038/nrgastro.2013.183]
[5]
Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int. J. Mol. Sci., 2015, 16(10), 25168-25198.
[http://dx.doi.org/10.3390/ijms161025168] [PMID: 26512643]
[6]
Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol., 2017, 9(16), 715-732.
[http://dx.doi.org/10.4254/wjh.v9.i16.715] [PMID: 28652891]
[7]
Valenzuela, R.; Espinosa, A.; Llanos, P.; Hernandez-Rodas, M.C.; Barrera, C.; Vergara, D.; Romero, N.; Pérez, F.; Ruz, M.; Videla, L.A. Anti-steatotic effects of an n-3 LCPUFA and extra virgin olive oil mixture in the liver of mice subjected to high-fat diet. Food Funct., 2016, 7(1), 140-150.
[http://dx.doi.org/10.1039/C5FO01086A] [PMID: 26471014]
[8]
Soto-Alarcón, S.A.; Ortiz, M.; Orellana, P.; Echeverría, F.; Bustamante, A.; Espinosa, A.; Illesca, P.; Gonzalez-Mañán, D.; Valenzuela, R.; Videla, L.A. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors, 2019, 45(6), 930-943.
[http://dx.doi.org/10.1002/biof.1556] [PMID: 31454114]
[9]
Videla, L.A.; Rodrigo, R.; Araya, J.; Poniachik, J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med., 2006, 12(12), 555-558.
[http://dx.doi.org/10.1016/j.molmed.2006.10.001] [PMID: 17049925]
[10]
Hernández-Rodas, M.C.; Valenzuela, R.; Echeverría, F.; Rincón-Cervera, M.Á.; Espinosa, A.; Illesca, P.; Muñoz, P.; Corbari, A.; Romero, N.; Gonzalez-Mañan, D.; Videla, L.A. Supplementation with docosahexaenoic acid and extra virgin olive oil prevents liver steatosis induced by a high-fat diet in mice through PPAR-α and Nrf2 upregulation with concomitant SREBP-1c and NF-κB downregulation. Mol. Nutr. Food Res., 2017, 61(12), 1700479.
[http://dx.doi.org/10.1002/mnfr.201700479] [PMID: 28940752]
[11]
Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M-Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct., 2017, 8(4), 1526-1537.
[http://dx.doi.org/10.1039/C7FO00090A] [PMID: 28386616]
[12]
Halliwell, B. Antioxidant characterization. Methodology and mechanism. Biochem. Pharmacol., 1995, 49(10), 1341-1348.
[http://dx.doi.org/10.1016/0006-2952(95)00088-H] [PMID: 7763275]
[13]
Ferramosca, A.; Di Giacomo, M.; Zara, V. Antioxidant dietary approach in treatment of fatty liver: new insights and updates. World J. Gastroenterol., 2017, 23(23), 4146-4157.
[http://dx.doi.org/10.3748/wjg.v23.i23.4146] [PMID: 28694655]
[14]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[15]
Pepa, G.; Della, ; Vetrani, C.; Lombardi, G.; Bozzetto, L.; Annuzzi, G.; Rivellese, A. A. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals.
[http://dx.doi.org/10.3390/nu9101065]
[16]
Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients, 2021, 13(2), 494.
[http://dx.doi.org/10.3390/nu13020494] [PMID: 33546130]
[17]
Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int. J. Mol. Sci., 2019, 20(10), 2451.
[http://dx.doi.org/10.3390/ijms20102451] [PMID: 31108962]
[18]
Marques, B.C.A.A.; Trindade, M.; Aquino, J.C.F.; Cunha, A.R.; Gismondi, R.O.; Neves, M.F.; Oigman, W. Beneficial effects of acute trans-resveratrol supplementation in treated hypertensive patients with endothelial dysfunction. Clin. Exp. Hypertens., 2018, 40(3), 218-223.
[http://dx.doi.org/10.1080/10641963.2017.1288741] [PMID: 29431520]
[19]
Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res., 2017, 61(4)
[http://dx.doi.org/10.1002/mnfr.201600930] [PMID: 27943649]
[20]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 351.
[http://dx.doi.org/10.3390/ijms20020351] [PMID: 30654461]
[21]
Koushki, M.; Dashatan, N.A.; Meshkani, R. Effect of resveratrol supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Clin. Ther., 2018, 40(7), 1180-1192.e5.
[http://dx.doi.org/10.1016/j.clinthera.2018.05.015] [PMID: 30017172]
[22]
Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother. Res., 2016, 30(9), 1540-1548.
[http://dx.doi.org/10.1002/ptr.5659] [PMID: 27270872]
[23]
Zhang, C.; Yuan, W.; Fang, J.; Wang, W.; He, P.; Lei, J.; Wang, C. Efficacy of resveratrol supplementation against non-alcoholic fatty liver disease: a meta-analysis of placebo-controlled clinical trials. PLoS One, 2016, 11(8), e0161792.
[http://dx.doi.org/10.1371/journal.pone.0161792] [PMID: 27560482]
[24]
Ortiz, M.; Soto-Alarcón, S.A.; Orellana, P.; Espinosa, A.; Campos, C.; López-Arana, S.; Rincón, M.A.; Illesca, P.; Valenzuela, R.; Videla, L.A. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig. Liver Dis., 2020, 52(8), 895-904.
[http://dx.doi.org/10.1016/j.dld.2020.04.019] [PMID: 32620521]
[25]
Valenzuela, R.; Echeverría, F.; Ortiz, M.; Rincón-Cervera, M-Á.; Espinosa, A.; Hernández-Rodas, M-C.; Illesca, P.; Valenzuela, A.; Videla, L.A. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis., 2017, 16(1), 64.
[http://dx.doi.org/10.1186/s12944-017-0450-5] [PMID: 28395666]
[26]
Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol., 2018, 53(3), 362-376.
[http://dx.doi.org/10.1007/s00535-017-1415-1] [PMID: 29247356]
[27]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[28]
Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proce. Nut. Soc., 2016, 75, pp. 47-60.
[http://dx.doi.org/10.1017/S0029665115004218]
[29]
Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C. Dietary (EPIC) study. Eur. J. Nutr., 2016, 55(4), 1359-1375.
[http://dx.doi.org/10.1007/s00394-015-0950-x] [PMID: 26081647]
[30]
Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 513-527.
[http://dx.doi.org/10.1080/10408398.2016.1196334] [PMID: 27438892]
[31]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[32]
Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5]
[33]
Al-Dayyat, H.M.; Rayyan, Y.M.; Tayyem, R.F. Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes Metab. Syndr., 2018, 12(4), 569-575.
[http://dx.doi.org/10.1016/j.dsx.2018.03.016] [PMID: 29571977]
[34]
Nseir, W.; Hellou, E.; Assy, N. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(28), 9338-9344.
[http://dx.doi.org/10.3748/wjg.v20.i28.9338] [PMID: 25071328]
[35]
Peña-Oyarzun, D.; Bravo-Sagua, R.; Diaz-Vega, A.; Aleman, L.; Chiong, M.; Garcia, L.; Bambs, C.; Troncoso, R.; Cifuentes, M.; Morselli, E.; Ferreccio, C.; Quest, A.F.G.; Criollo, A.; Lavandero, S. Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state? Free Radic. Biol. Med., 2018, 124, 61-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.084] [PMID: 29859344]
[36]
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016, 65(8), 1038-1048.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[37]
Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology, 2015, 149(2), 367-78.e5.
[http://dx.doi.org/10.1053/j.gastro.2015.04.005] [PMID: 25865049]
[38]
Curioni, C.C.; Lourenço, P.M. Long-term weight loss after diet and exercise: a systematic review. Int. J. Obes., 2005, 29(10), 1168-1174.
[http://dx.doi.org/10.1038/sj.ijo.0803015] [PMID: 15925949]
[39]
Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense. Phytomedicine, 2020, 69, 153209.
[http://dx.doi.org/10.1016/j.phymed.2020.153209] [PMID: 32240928]
[40]
Liu, H.; Zhan, Q.; Miao, X.; Xia, X.; Yang, G.; Peng, X.; Yan, C. Punicalagin prevents hepatic steatosis through improving lipid homeostasis and inflammation in liver and adipose tissue and modulating gut microbiota in western diet-fed mice. Mol. Nutr. Food Res., 2021.65(4), e2001031..
[http://dx.doi.org/10.1002/mnfr.202001031] [PMID: 33369197]
[41]
Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J. Am. Coll. Nutr., 2018, 37(3), 223-233.
[http://dx.doi.org/10.1080/07315724.2017.1392264] [PMID: 29313746]
[42]
Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; Peng, Z.; Song, Y.; Wang, Z.; Du, X.; Liu, G. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br. J. Pharmacol., 2020, 177(15), 3591-3607.
[http://dx.doi.org/10.1111/bph.15083] [PMID: 32343398]
[43]
Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem., 2019, 64, 1-12.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.028] [PMID: 30414469]
[44]
Concha, F.; Prado, G.; Quezada, J.; Ramirez, A.; Bravo, N.; Flores, C.; Herrera, J.J.; Lopez, N.; Uribe, D.; Duarte-Silva, L.; Lopez-Legarrea, P.; Garcia-Diaz, D.F. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev. Endocr. Metab. Disord., 2019, 20(2), 161-171.
[http://dx.doi.org/10.1007/s11154-019-09495-y] [PMID: 31020455]
[45]
Duarte, L.; Gasaly, N.; Poblete-Aro, C.; Uribe, D.; Echeverria, F.; Gotteland, M.; Garcia-Diaz, D.F. Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Rev. Endocr. Metab. Disord., 2021, 22(2), 367-388.
[http://dx.doi.org/10.1007/s11154-020-09622-0] [PMID: 33387285]
[46]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: what polyphenols can do for Us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[47]
Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A.V.; Poniachik, J.; Videla, L.A. Decreased liver fatty acid δ-6 and δ-5 desaturase activity in obese patients. Obesity (Silver Spring), 2010, 18(7), 1460-1463.
[http://dx.doi.org/10.1038/oby.2009.379] [PMID: 19875987]
[48]
Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.; Rojas, J.; Maluenda, F.; Burdiles, P.; Diaz, J.C.; Smok, G.; Thielemann, L.; Poniachik, J. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. (Lond.), 2004, 106(3), 261-268.
[http://dx.doi.org/10.1042/CS20030285] [PMID: 14556645]
[49]
Li, S.; Tan, H. Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med.Cell. Longev., 2018, 201, 8394818.
[http://dx.doi.org/10.1155/2018/8394818]
[50]
Galicia-Moreno, M.; Lucano-Landeros, S.; Monroy-Ramirez, H.C.; Silva-Gomez, J.; Gutierrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Roles of Nrf2 in liver diseases: molecular, pharmacological, and epigenetic aspects. Antioxidants, 2020, 9(10), 980.
[http://dx.doi.org/10.3390/antiox9100980] [PMID: 33066023]
[51]
Deng, Y.; Tang, K.; Chen, R.; Nie, H.; Liang, S.; Zhang, J.; Zhang, Y.; Yang, Q. Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp. Ther. Med., 2019, 17(3), 2091-2098.
[http://dx.doi.org/10.3892/etm.2019.7208] [PMID: 30867696]
[52]
Hajighasem, A.; Farzanegi, P.; Mazaheri, Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch. Physiol. Biochem., 2019, 125(2), 142-149.
[http://dx.doi.org/10.1080/13813455.2018.1441872] [PMID: 29463133]
[53]
Wu, C.T.; Deng, J.S.; Huang, W.C.; Shieh, P.C.; Chung, M.I.; Huang, G.J. Salvianolic acid C against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the Keap1/Nrf2/HO-1 signaling. Oxid. Med. Cell. Longev., 2019, 2019, 9056845.
[http://dx.doi.org/10.1155/2019/9056845] [PMID: 31214283]
[54]
Musolino, V.; Gliozzi, M.; Scarano, F.; Bosco, F.; Scicchitano, M.; Nucera, S.; Carresi, C.; Ruga, S.; Zito, M.C.; Maiuolo, J.; Macrì, R.; Amodio, N.; Juli, G.; Tassone, P.; Mollace, R.; Caffrey, R.; Marioneaux, J.; Walker, R.; Ehrlich, J.; Palma, E.; Muscoli, C.; Bedossa, P.; Salvemini, D.; Mollace, V.; Sanyal, A.J. Bergamot polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease. Sci. Rep., 2020, 10(1), 2565.
[http://dx.doi.org/10.1038/s41598-020-59485-3] [PMID: 32054943]
[55]
Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5), e0216711.
[http://dx.doi.org/10.1371/journal.pone.0216711] [PMID: 31112588]
[56]
Izdebska, M.; Piątkowska-Chmiel, I.; Korolczuk, A.; Herbet, M.; Gawrońska-Grzywacz, M.; Gieroba, R.; Sysa, M.; Czajkowska-Bania, K.; Cygal, M.; Korga, A.; Dudka, J. The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells. Can. J. Physiol. Pharmacol., 2017, 95(12), 1442-1453.
[http://dx.doi.org/10.1139/cjpp-2016-0561] [PMID: 28759727]
[57]
Biesalski, H.K. Polyphenols and inflammation: basic interactions. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(6), 724-728.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cef2] [PMID: 18089954]
[58]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[59]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[60]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[61]
Van De Wier, B.; Koek, G.H.; Bast, A.; Haenen, G.R.M.M. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit. Rev. Food Sci. Nutr., 2017, 57(4), 834-855.
[http://dx.doi.org/10.1080/10408398.2014.952399] [PMID: 25897647]
[62]
Noori, M.; Jafari, B.; Hekmatdoost, A. Pomegranate juice prevents development of non-alcoholic fatty liver disease in rats by attenuating oxidative stress and inflammation. J. Sci. Food Agric., 2017, 97(8), 2327-2332.
[http://dx.doi.org/10.1002/jsfa.8042] [PMID: 27717115]
[63]
Lee, Y.; Kwon, E-Y.; Choi, M-S. Dietary isoliquiritigenin at a low dose ameliorates insulin resistance and nafld in diet-induced obesity in C57BL/6J mice. Int. J. Mol. Sci., 2018, 19(10), 3281.
[http://dx.doi.org/10.3390/ijms19103281] [PMID: 30360437]
[64]
Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res., 2019, 33(9), 2347-2359.
[http://dx.doi.org/10.1002/ptr.6417] [PMID: 31273855]
[65]
Tan, Y.; Kim, J.; Cheng, J.; Ong, M.; Lao, W-G.; Jin, X-L.; Lin, Y-G.; Xiao, L.; Zhu, X-Q.; Qu, X-Q. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats. World J. Gastroenterol., 2017, 23(21), 3805-3814.
[http://dx.doi.org/10.3748/wjg.v23.i21.3805] [PMID: 28638220]
[66]
Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: is insulin resistance the link? Mol. Cell. Endocrinol., 2015, 418(Pt 1), 55-65.
[http://dx.doi.org/10.1016/j.mce.2015.02.018] [PMID: 25724480]
[67]
de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett., 2008, 582(1), 97-105.
[http://dx.doi.org/10.1016/j.febslet.2007.11.057] [PMID: 18053812]
[68]
Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[69]
Gong, L.; Guo, S.; Zou, Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci., 2020, 242, 117212.
[http://dx.doi.org/10.1016/j.lfs.2019.117212] [PMID: 31884092]
[70]
Li, J.; Wei, L.; Zhao, C.; Li, J.; Liu, Z.; Zhang, M.; Wang, Y. Resveratrol maintains lipid metabolism homeostasis via one of the mechanisms associated with the key circadian regulator Bmal1. Molecules, 2019, 24(16), 2916.
[http://dx.doi.org/10.3390/molecules24162916] [PMID: 31408938]
[71]
Xia, S-F.; Le, G-W.; Wang, P.; Qiu, Y-Y.; Jiang, Y-Y.; Tang, X. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 2016, 8(12), 799.
[http://dx.doi.org/10.3390/nu8120799] [PMID: 27973423]
[72]
Guruvaiah, P.; Guo, H.; Li, D.; Xie, Z. Preventive effect of flavonol derivatives abundant sanglan tea on long-term high-fat-diet-induced obesity complications in C57BL/6 mice. Nutrients, 2018, 10(9), 1276.
[http://dx.doi.org/10.3390/nu10091276] [PMID: 30201876]
[73]
Quitete, F.T.; Almeida Santos, G.M.; de Oliveira Ribeiro, L.; Aguiar da Costa, C.; Freitas, S.P.; Martins da Matta, V.; Daleprane, J.B. Phenolic-rich smoothie consumption ameliorates non-alcoholic fatty liver disease in obesity mice by increasing antioxidant response. Chem. Biol. Interact., 2021, 336, 109369.
[http://dx.doi.org/10.1016/j.cbi.2021.109369] [PMID: 33422521]
[74]
Brumbaugh, D.E.; Friedman, J.E. Developmental origins of nonalcoholic fatty liver disease. Pediatr. Res., 2014, 75(1-2), 140-147.
[http://dx.doi.org/10.1038/pr.2013.193] [PMID: 24192698]
[75]
Lynch, C.; Chan, C.S.; Drake, A.J. Early life programming and the risk of non-alcoholic fatty liver disease. J. Dev. Orig. Health Dis., 2017, 8(3), 263-272.
[http://dx.doi.org/10.1017/S2040174416000805] [PMID: 28112071]
[76]
Canbay, A.; Bechmann, L.; Gerken, G. Lipid metabolism in the liver. Z. Gastroenterol., 2007, 45(1), 35-41.
[http://dx.doi.org/10.1055/s-2006-927368] [PMID: 17236119]
[77]
Reddy, J.K.; Rao, M.S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(5), G852-G858.
[http://dx.doi.org/10.1152/ajpgi.00521.2005] [PMID: 16603729]
[78]
Reddy, J.K. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal β-oxidation, PPAR α, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(6), G1333-G1339.
[http://dx.doi.org/10.1152/ajpgi.2001.281.6.G1333] [PMID: 11705737]
[79]
Pessayre, D. Role of mitochondria in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2007, 22(s1)(Suppl. 1), S20-S27.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04640.x] [PMID: 17567459]
[80]
Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol., 2010, 5(1), 145-171.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[81]
Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016, 65(8), 1080-1086.
[http://dx.doi.org/10.1016/j.metabol.2015.11.008] [PMID: 26775559]
[82]
Sanyal, A.J. Mechanisms of Disease: pathogenesis of nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol., 2005, 2(1), 46-53.
[http://dx.doi.org/10.1038/ncpgasthep0084] [PMID: 16265100]
[83]
Wang, L.; Liu, X.; Nie, J.; Zhang, J.; Kimball, S.R.; Zhang, H.; Zhang, W.J.; Jefferson, L.S.; Cheng, Z.; Ji, Q.; Shi, Y. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology, 2015, 61(2), 486-496.
[http://dx.doi.org/10.1002/hep.27420] [PMID: 25203315]
[84]
Aharoni-Simon, M.; Hann-Obercyger, M.; Pen, S.; Madar, Z.; Tirosh, O. Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab. Invest., 2011, 91(7), 1018-1028.
[http://dx.doi.org/10.1038/labinvest.2011.55] [PMID: 21464822]
[85]
Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion, 2021, 57, 119-130.
[http://dx.doi.org/10.1016/j.mito.2020.12.010] [PMID: 33387664]
[86]
Echeverría, F.; Jimenez Patino, P.A.; Castro-Sepulveda, M.; Bustamante, A.; Garcia Concha, P.A.; Poblete-Aro, C.; Valenzuela, R.; García-Díaz, D.F. Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. Br. J. Nutr., 2021, 126(6), 825-836.
[http://dx.doi.org/10.1017/S000711452000481X] [PMID: 33256858]
[87]
Lundåsen, T.; Hunt, M.C.; Nilsson, L.M.; Sanyal, S.; Angelin, B.; Alexson, S.E.; Rudling, M. PPARalpha is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun., 2007, 360(2), 437-440.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.068] [PMID: 17601491]
[88]
Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[89]
Sugden, M.C.; Caton, P.W.; Holness, M.J. PPAR control: it’s SIRTainly as easy as PGC. J. Endocrinol., 2010, 204(2), 93-104.
[http://dx.doi.org/10.1677/JOE-09-0359] [PMID: 19770177]
[90]
Sudeep, HV.; Venkatakrishna, K.; Patel, D.; Shyamprasad, K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement. Altern. Med., 2016, 16, 274.
[http://dx.doi.org/10.1186/s12906-016-1258-y] [PMID: 27495925]
[91]
Lee, D.E.; Lee, S.J.; Kim, S.J.; Lee, H.S.; Kwon, O.S. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients, 2019, 11(11), 2702.
[92]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[93]
Sun, Y.; Xia, M.; Yan, H.; Han, Y.; Zhang, F.; Hu, Z.; Cui, A.; Ma, F.; Liu, Z.; Gong, Q.; Chen, X.; Gao, J.; Bian, H.; Tan, Y.; Li, Y.; Gao, X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br. J. Pharmacol., 2018, 175(2), 374-387.
[http://dx.doi.org/10.1111/bph.14079] [PMID: 29065221]
[94]
Li, X.; Wang, R.; Zhou, N.; Wang, X.; Liu, Q.; Bai, Y.; Bai, Y.; Liu, Z.; Yang, H.; Zou, J.; Wang, H.; Shi, T. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed. Rep., 2013, 1(1), 71-76.
[http://dx.doi.org/10.3892/br.2012.27] [PMID: 24648896]
[95]
Shabalala, SC; Dludla, PV; Mabasa, L; Kappo, AP; Basson, AK; Pheiffer, C; Johnson, R The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed. Pharmacother., 2020, 131, 110735.
[http://dx.doi.org/10.1016/j.biopha.2020.110785]
[96]
Rafiei, H.; Omidian, K.; Bandy, B. Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol. Nutr. Food Res., 2017, 61(9), 1600781.
[97]
Wang, L.; Chen, J.; Ning, C.; Lei, D.; Ren, J. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic fatty liver disease (NAFLD). Curr. Drug Targets, 2018, 19(9), 1087-1094.
[http://dx.doi.org/10.2174/1389450118666180516122517] [PMID: 29766802]
[98]
Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2018, 69(4), 927-947.
[http://dx.doi.org/10.1016/j.jhep.2018.06.008] [PMID: 29940269]
[99]
Kaneko, M.; Imaizumi, K.; Saito, A.; Kanemoto, S.; Asada, R.; Matsuhisa, K.; Ohtake, Y. ER stress and disease: toward prevention and treatment. Biol. Pharm. Bull., 2017, 40(9), 1337-1343.
[http://dx.doi.org/10.1248/bpb.b17-00342] [PMID: 28867719]
[100]
Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60.
[http://dx.doi.org/10.1016/j.fct.2018.02.019] [PMID: 29438776]
[101]
Lee, G-H.; Peng, C.; Park, S-A.; Hoang, T-H.; Lee, H-Y.; Kim, J.; Kang, S-I.; Lee, C-H.; Lee, J-S.; Chae, H-J. Citrus peel extract ameliorates high-fat diet-induced NAFLD via activation of AMPK signaling. Nutrients, 2020, 12(3), 673.
[http://dx.doi.org/10.3390/nu12030673] [PMID: 32121602]
[102]
Li, F.; Yang, Y.; Yang, L.; Wang, K.; Zhang, X.; Zong, Y.; Ding, Y.; Wang, C.; Zhang, L.; Ji, G. Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. Oncotarget, 2017, 8(27), 43799-43809.
[http://dx.doi.org/10.18632/oncotarget.16460] [PMID: 28415630]
[103]
Hong, Y.; Choi, S.I.; Hong, E.; Kim, G.H. Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free-fatty-acid-incubated HEPG2 cells and in high-fat diet-fed mice. J. Food Sci., 2020, 85(7), 2216-2226.
[http://dx.doi.org/10.1111/1750-3841.15166] [PMID: 32579753]
[104]
Guo, W-W.; Wang, X.; Chen, X-Q.; Ba, Y-Y.; Zhang, N.; Xu, R-R.; Zhao, W-W.; Wu, X. Flavonones from penthorum chinense ameliorate hepatic steatosis by activating the SIRT1/AMPK pathway in HepG2 Cells. Int. J. Mol. Sci., 2018, 19(9), 2555.
[http://dx.doi.org/10.3390/ijms19092555] [PMID: 30154382]
[105]
Rafiei, H.; Omidian, K.; Bandy, B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients, 2019, 11(3), E541.
[http://dx.doi.org/10.3390/nu11030541] [PMID: 30832407]
[106]
Salomone, F.; Barbagallo, I.; Godos, J.; Lembo, V.; Currenti, W.; Cinà, D.; Avola, R.; D’Orazio, N.; Morisco, F.; Galvano, F.; Li Volti, G. Silibinin restores NAD+ levels and induces the SIRT1/AMPK pathway in non-alcoholic fatty liver. Nutrients, 2017, 9(10), 1086.
[http://dx.doi.org/10.3390/nu9101086] [PMID: 28973994]
[107]
Li, S.; Qian, Q.; Ying, N.; Lai, J.; Feng, L.; Zheng, S.; Jiang, F.; Song, Q.; Chai, H.; Dou, X. Activation of the AMPK-SIRT1 pathway contributes to protective effects of Salvianolic acid A against lipotoxicity in hepatocytes and NAFLD in mice. Front. Pharmacol., 2020, 11, 560905.
[http://dx.doi.org/10.3389/fphar.2020.560905] [PMID: 33328983]
[108]
Tanaka, M.; Sato, A.; Kishimoto, Y.; Mabashi-Asazuma, H.; Kondo, K.; Iida, K. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients, 2020, 12(5), 1479.
[http://dx.doi.org/10.3390/nu12051479] [PMID: 32443660]
[109]
Chen, Y-C.; Chen, H-J.; Huang, B-M.; Chen, Y-C.; Chang, C-F. Polyphenol-rich extracts from Toona Sinensis bark and fruit ameliorate free fatty acid-induced lipogenesis through AMPK and LC3 pathways. J. Clin. Med., 2019, 8(10), 1664.
[http://dx.doi.org/10.3390/jcm8101664] [PMID: 31614650]
[110]
Guo, R.; Zhao, B.; Wang, Y.; Wu, D.; Wang, Y.; Yu, Y.; Yan, Y.; Zhang, W.; Liu, Z.; Liu, X. Cichoric acid prevents free-fatty-acid-induced lipid metabolism disorders via regulating Bmal1 in HepG2 cells. J. Agric. Food Chem., 2018, 66(37), 9667-9678.
[http://dx.doi.org/10.1021/acs.jafc.8b02147] [PMID: 30036051]
[111]
Wang, L.L.; Zhang, Z.C.; Hassan, W.; Li, Y.; Liu, J.; Shang, J. Amelioration of free fatty acid-induced fatty liver by quercetin-3-O-β-D-glucuronide through modulation of peroxisome proliferator-activated receptor-alpha/sterol regulatory element-binding protein-1c signaling. Hepatol. Res., 2016, 46(2), 225-238.
[http://dx.doi.org/10.1111/hepr.12557] [PMID: 26190035]
[112]
Vargas, R.; Riquelme, B.; Fernández, J.; Álvarez, D.; Pérez, I.F.; Cornejo, P.; Fernández, V.; Videla, L.A. Docosahexaenoic acid-thyroid hormone combined protocol as a novel approach to metabolic stress disorders: relation to mitochondrial adaptation via liver PGC-1α and sirtuin1 activation. Biofactors, 2019, 45(2), 271-278.
[http://dx.doi.org/10.1002/biof.1483] [PMID: 30578580]
[113]
Liou, C-J.; Wei, C-H.; Chen, Y-L.; Cheng, C-Y.; Wang, C-L.; Huang, W-C. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell. Physiol. Biochem., 2018, 49(5), 1870-1884.
[http://dx.doi.org/10.1159/000493650] [PMID: 30235452]
[114]
Donaldson, J.; Ngema, M.; Nkomozepi, P.; Erlwanger, K. Quercetin administration post-weaning attenuates high-fructose, high-cholesterol diet-induced hepatic steatosis in growing, female, Sprague Dawley rat pups. J. Sci. Food Agric., 2019, 99(15), 6954-6961.
[http://dx.doi.org/10.1002/jsfa.9984] [PMID: 31414497]
[115]
Hirsch, N.; Konstantinov, A.; Anavi, S.; Aronis, A.; Hagay, Z.; Madar, Z.; Tirosh, O. Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice. Mol. Nutr. Food Res., 2016, 60(12), 2542-2553.
[http://dx.doi.org/10.1002/mnfr.201600221] [PMID: 27432221]
[116]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[117]
Chashmniam, S.; Mirhafez, S.R.; Dehabeh, M.; Hariri, M.; Azimi Nezhad, M.; Nobakht M Gh, B.F. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr., 2019, 73(9), 1224-1235.
[http://dx.doi.org/10.1038/s41430-018-0386-5] [PMID: 30647436]
[118]
Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 279-289.
[http://dx.doi.org/10.1024/0300-9831/a000528] [PMID: 30789808]
[119]
Zou, T.; Chen, D.; Yang, Q.; Wang, B.; Zhu, M-J.; Nathanielsz, P.W.; Du, M. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J. Physiol., 2017, 595(5), 1547-1562.
[http://dx.doi.org/10.1113/JP273478] [PMID: 27891610]
[120]
Kantartzis, K.; Fritsche, L.; Bombrich, M.; Machann, J.; Schick, F.; Staiger, H.; Kunz, I.; Schoop, R.; Lehn-Stefan, A.; Heni, M.; Peter, A.; Fritsche, A.; Häring, H.U.; Stefan, N. Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes. Metab., 2018, 20(7), 1793-1797.
[http://dx.doi.org/10.1111/dom.13268] [PMID: 29484808]
[121]
Heebøll, S.; El-Houri, R.B.; Hellberg, Y.E.K.; Haldrup, D.; Pedersen, S.B.; Jessen, N.; Christensen, L.P.; Grønbaek, H. Effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment. J. Gastroenterol. Hepatol., 2016, 31(3), 668-675.
[http://dx.doi.org/10.1111/jgh.13151] [PMID: 26312773]
[122]
Poulsen, M.K.; Nellemann, B.; Bibby, B.M.; Stødkilde-Jørgensen, H.; Pedersen, S.B.; Grønbaek, H.; Nielsen, S. No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes. Metab., 2018, 20(10), 2504-2509.
[http://dx.doi.org/10.1111/dom.13409] [PMID: 29885082]
[123]
Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res., 2014, 34(10), 837-843.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[124]
Loffredo, L.; Baratta, F.; Ludovica, P.; Battaglia, S.; Carnevale, R.; Nocella, C.; Novo, M.; Pannitteri, G.; Ceci, F.; Angelico, F.; Violi, F.; Del Ben, M. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr. Metab. Cardiovasc. Dis., 2017, 28(2), 143-149.
[http://dx.doi.org/10.1016/j.numecd.2017.10.027] [PMID: 29329924]
[125]
Wah Kheong, C.; Nik Mustapha, N.R.; Mahadeva, S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol., 2017, 15(12), 1940-1949.e8.
[http://dx.doi.org/10.1016/j.cgh.2017.04.016] [PMID: 28419855]
[126]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liver Dis., 2015, 47(3), 226-232.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[127]
Guo, H.; Zhong, R.; Liu, Y.; Jiang, X.; Tang, X.; Li, Z.; Xia, M.; Ling, W. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition, 2014, 30(2), 198-203.
[http://dx.doi.org/10.1016/j.nut.2013.07.023] [PMID: 24377455]
[128]
Wicklow, B.; Wittmeier, K.; Tjong, G.W.; McGavock, J.; Robert, M.; Duhamel, T.; Dolinsky, V.W. Proposed trial: safety and efficacy of resveratrol for the treatment of non-alcoholic fatty liver disease (NAFLD) and associated insulin resistance in adolescents who are overweight or obese adolescents-rationale and protocol. Biochem. Cell Biol., 2015, 93(5), 522-530.
[http://dx.doi.org/10.1139/bcb-2014-0136] [PMID: 26305052]
[129]
Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients, 2019, 11(9), 2216.
[http://dx.doi.org/10.3390/nu11092216] [PMID: 31540270]
[130]
Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol., 2016, 1, 1-9.
[http://dx.doi.org/10.1016/j.tifs.2015.10.015]
[131]
McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 577-606.
[http://dx.doi.org/10.1080/10408390902841529] [PMID: 19484636]
[132]
Al Zarzour, R.H.; Ahmad, M.; Asmawi, M.Z.; Kaur, G.; Saeed, M.A.A.; Al-Mansoub, M.A.; Saghir, S.A.M.; Usman, N.S.; Al-Dulaimi, D.W.; Yam, M.F. Phyllanthus Niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in sprague-dawley rats. Nutrients, 2017, 9(7), E766.
[http://dx.doi.org/10.3390/nu9070766] [PMID: 28718838]
[133]
Pfohl, M.; DaSilva, N. A.; Marques, E.; Agudelo, J.; Liu, C.; Goedken, M.; Slitt, A. L.; Seeram, N. P.; Ma, H. Hepatoprotective and anti-inflammatory effects of a standardized pomegranate. Int. J. food. Sci. Nut., 2020, 499-510.
[http://dx.doi.org/10.1080/09637486.2020.1849041]
[134]
Murdande, S.B.; Pikal, M.J.; Shanker, R.M.; Bogner, R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol., 2011, 16(3), 187-200.
[http://dx.doi.org/10.3109/10837451003774377] [PMID: 20429826]
[135]
Elgebaly, A.; Radwan, I.A.I.; AboElnas, M.M.; Ibrahim, H.H.; Eltoomy, M.F.M.; Atta, A.A.; Mesalam, H.A.; Sayed, A.A.; Othman, A.A. Resveratrol supplementation in patients with non-alcoholic fatty liver disease: systematic review and meta-analysis. J. Gastrointestin. Liver Dis., 2017, 26(1), 59-67.
[http://dx.doi.org/10.15403/jgld.2014.1121.261.ely] [PMID: 28338115]
[136]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[137]
Ardid-Ruiz, A.; Ibars, M.; Mena, P.; Del Rio, D.; Muguerza, B.; Arola, L.; Aragonès, G.; Suárez, M. Resveratrol treatment enhances the cellular response to leptin by increasing OBRb content in palmitate-induced steatotic HepG2 cells. Int. J. Mol. Sci., 2019, 20(24), 6282.
[http://dx.doi.org/10.3390/ijms20246282] [PMID: 31842467]
[138]
Pan, M-H.; Yang, G.; Li, S.; Li, M-Y.; Tsai, M-L.; Wu, J-C.; Badmaev, V.; Ho, C-T.; Lai, C-S. Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Mol. Nutr. Food Res., 2017, 61(11), 1601104.
[http://dx.doi.org/10.1002/mnfr.201601104] [PMID: 28643888]