Pulmonary Surfactant: A Unique Biomaterial with Life-saving Therapeutic Applications

Page: [526 - 590] Pages: 65

  • * (Excluding Mailing and Handling)

Abstract

Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, leading to innovative therapeutic avenues for the treatment of several respiratory diseases.

Keywords: Pulmonary surfactant, surface tension, respiratory distress syndrome, surfactant replacement therapy, exogenous surfactant preparations, drug delivery

[1]
Clements, J.A. Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med., 1957, 95(1), 170-172.
[http://dx.doi.org/10.3181/00379727-95-23156] [PMID: 13432025]
[2]
Avery, M.E.; Mead, J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J. Dis. Child., 1959, 97(5, Part 1), 517-523.
[http://dx.doi.org/10.1001/archpedi.1959.02070010519001] [PMID: 13649082]
[3]
Mirastschijski, U.; Dembinski, R.; Maedler, K. Lung surfactant for pulmonary barrier restoration in patients with COVID-19 pneumonia. Front. Med. (Lausanne), 2020, 7, 254.
[http://dx.doi.org/10.3389/fmed.2020.00254] [PMID: 32574339]
[4]
Curstedt, T.; Halliday, H.L.; Speer, C.P. A unique story in neonatal research: the development of a porcine surfactant. Neonatology, 2015, 107(4), 321-329.
[http://dx.doi.org/10.1159/000381117] [PMID: 26044099]
[5]
Fujiwara, T.; Maeta, H.; Chida, S.; Morita, T.; Watabe, Y.; Abe, T. Artificial surfactant therapy in hyaline-membrane disease. Lancet, 1980, 1(8159), 55-59.
[http://dx.doi.org/10.1016/S0140-6736(80)90489-4] [PMID: 6101413]
[6]
Olmeda, B.; Martínez-Calle, M.; Pérez-Gil, J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann. Anat., 2017, 209, 78-92.
[http://dx.doi.org/10.1016/j.aanat.2016.09.008] [PMID: 27773772]
[7]
Whitsett, J.A. The molecular era of surfactant biology. Neonatology, 2014, 105(4), 337-343.
[http://dx.doi.org/10.1159/000360649] [PMID: 24931326]
[8]
Egberts, J.; de Winter, J.P.; Sedin, G.; de Kleine, M.J.; Broberger, U.; van Bel, F.; Curstedt, T.; Robertson, B. Comparison of prophylaxis and rescue treatment with Curosurf in neonates less than 30 weeks’ gestation: A randomized trial. Pediatrics, 1993, 92(6), 768-774.
[PMID: 8233735]
[9]
Stevens, T.P.; Harrington, E.W.; Blennow, M.; Soll, R.F. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst. Rev., 2007, (4)CD003063[Review]..
[http://dx.doi.org/10.1002/14651858.CD003063.pub3] [PMID: 17943779]
[10]
Lopez-Rodriguez, E.; Pérez-Gil, J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim. Biophys. Acta, 2014, 1838(6), 1568-1585.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.028] [PMID: 24525076]
[11]
Bernhard, W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann. Anat., 2016, 208, 146-150.
[http://dx.doi.org/10.1016/j.aanat.2016.08.003] [PMID: 27693601]
[12]
Fahy, E.; Sud, M.; Cotter, D.; Subramaniam, S. LIPID MAPS online tools for lipid research.Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl.), W606-12.,
[http://dx.doi.org/10.1093/nar/gkm324] [PMID: 17584797]
[13]
Pelizzi, N.; Catinella, S.; Barboso, S.; Zanol, M. Different electrospray tandem mass spectrometric approaches for rapid characterization of phospholipid classes of Curosurf, a natural pulmonary surfactant. Rapid Commun. Mass Spectrom., 2002, 16(24), 2215-2220.
[http://dx.doi.org/10.1002/rcm.844] [PMID: 12478563]
[14]
Garcia-Manyes, S.; Redondo-Morata, L.; Oncins, G.; Sanz, F. Nanomechanics of lipid bilayers: heads or tails? J. Am. Chem. Soc., 2010, 132(37), 12874-12886.
[http://dx.doi.org/10.1021/ja1002185] [PMID: 20799688]
[15]
Gille, C.; Spring, B.; Bernhard, W.; Gebhard, C.; Basile, D.; Lauber, K.; Poets, C.F.; Orlikowsky, T.W. Differential effect of surfactant and its saturated phosphatidylcholines on human blood macrophages. J. Lipid Res., 2007, 48(2), 307-317.
[http://dx.doi.org/10.1194/jlr.M600451-JLR200] [PMID: 17099186]
[16]
Grossmann, G.; Tashiro, K.; Kobayashi, T.; Suzuki, Y.; Matsumoto, Y.; Waseda, Y.; Akino, T.; Curstedt, T.; Robertson, B. Experimental neonatal respiratory failure induced by lysophosphatidylcholine: effect of surfactant treatment. J Appl Physiol (1985), 1999, 86(2), 633-640..
[http://dx.doi.org/10.1152/jappl.1999.86.2.633]
[17]
De Luca, D.; Baroni, S.; Vento, G.; Piastra, M.; Pietrini, D.; Romitelli, F.; Capoluongo, E.; Romagnoli, C.; Conti, G.; Zecca, E. Secretory phospholipase A2 and neonatal respiratory distress: pilot study on broncho-alveolar lavage. Intensive Care Med., 2008, 34(10), 1858-1864.
[http://dx.doi.org/10.1007/s00134-008-1224-3] [PMID: 18648767]
[18]
Numata, M.; Kandasamy, P.; Voelker, D.R. Anionic pulmonary surfactant lipid regulation of innate immunity. Expert Rev. Respir. Med., 2012, 6(3), 243-246.
[http://dx.doi.org/10.1586/ers.12.21] [PMID: 22788936]
[19]
Seeds, M.C.; Grier, B.L.; Suckling, B.N.; Safta, A.M.; Long, D.L.; Waite, B.M.; Morris, P.E.; Hite, R.D. Secretory phospholipase A2-mediated depletion of phosphatidylglycerol in early acute respiratory distress syndrome. Am. J. Med. Sci., 2012, 343(6), 446-451.
[http://dx.doi.org/10.1097/MAJ.0b013e318239c96c] [PMID: 22173044]
[20]
Griese, M.; Kirmeier, H.G.; Liebisch, G.; Rauch, D.; Stückler, F.; Schmitz, G.; Zarbock, R. Surfactant lipidomics in healthy children and childhood interstitial lung disease. PLoS One, 2015, 10(2)e0117985
[http://dx.doi.org/10.1371/journal.pone.0117985] [PMID: 25692779]
[21]
Berger, A.; Havet, N.; Vial, D.; Arbibe, L.; Dumarey, C.; Watson, M.L.; Touqui, L. Dioleylphosphatidylglycerol inhibits the expression of type II phospholipase A2 in macrophages. Am. J. Respir. Crit. Care Med., 1999, 159(2), 613-618.
[http://dx.doi.org/10.1164/ajrccm.159.2.9805053] [PMID: 9927381]
[22]
Hidi, R.; Vial, D.; Havet, N.; Berger, A.; Vargaftig, B.B.; Touqui, L. Inhibition by pulmonary surfactant Curosurf of secretory phospholipase A2 expression in guinea-pig alveolar macrophages. Biochem. Pharmacol., 1997, 54(9), 1055-1058.
[http://dx.doi.org/10.1016/S0006-2952(97)00328-6] [PMID: 9374427]
[23]
Wu, Y-Z.; Medjane, S.; Chabot, S.; Kubrusly, F.S.; Raw, I.; Chignard, M.; Touqui, L. Surfactant protein-A and phosphatidylglycerol suppress type IIA phospholipase A2 synthesis via nuclear factor-kappaB. Am. J. Respir. Crit. Care Med., 2003, 168(6), 692-699.
[http://dx.doi.org/10.1164/rccm.200304-467OC] [PMID: 12882758]
[24]
Hite, R.D.; Seeds, M.C.; Safta, A.M.; Jacinto, R.B.; Gyves, J.I.; Bass, D.A.; Waite, B.M. Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A(2)-mediated surfactant dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288(4), L618-L624.
[http://dx.doi.org/10.1152/ajplung.00274.2004] [PMID: 15516491]
[25]
Blanco, O.; Pérez-Gil, J. Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur. J. Pharmacol., 2007, 568(1-3), 1-15.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.035] [PMID: 17543939]
[26]
Autilio, C.; Echaide, M.; Dell’Orto, V.; Perez-Gil, J.; De Luca, D. Effect of Whole Body Hypothermia on Surfactant Function When Amniotic Fluid Is Meconium Stained. Ther. Hypothermia Temp. Manag., 2020, 10(3), 186-189.
[http://dx.doi.org/10.1089/ther.2017.0012] [PMID: 28708464]
[27]
Autilio, C.; Echaide, M.; De Luca, D.; Pérez-Gil, J. Controlled hypothermia may improve surfactant function in asphyxiated neonates with or without meconium aspiration syndrome. PLoS One, 2018, 13(2)e0192295
[http://dx.doi.org/10.1371/journal.pone.0192295] [PMID: 29420583]
[28]
Rüdiger, M.; Kolleck, I.; Putz, G.; Wauer, R.R.; Stevens, P.; Rüstow, B. Plasmalogens effectively reduce the surface tension of surfactant-like phospholipid mixtures. Am. J. Physiol., 1998, 274(1), L143-L148.
[http://dx.doi.org/10.1152/ajplung.1998.274.1.L143] [PMID: 9458812]
[29]
Guo, X.; Luo, S.; Amidani, D.; Rivetti, C.; Pieraccini, G.; Pioselli, B.; Catinella, S.; Murgia, X.; Salomone, F.; Xu, Y.; Dong, Y.; Sun, B. In vitro characterization and in vivo comparison of the pulmonary outcomes of Poractant alfa and Calsurf in ventilated preterm rabbits. PLoS One, 2020, 15(3)e0230229
[http://dx.doi.org/10.1371/journal.pone.0230229] [PMID: 32168331]
[30]
Yang, R.; Zhang, Y.; Qian, W.; Peng, L.; Lin, L.; Xu, J.; Xie, T.; Ji, J.; Zhan, X.; Shan, J. Surfactant Lipidomics of Alveolar Lavage Fluid in Mice Based on Ultra-High-Performance Liquid Chromatography Coupled to Hybrid Quadrupole-Exactive Orbitrap Mass Spectrometry. Metabolites, 2019, 9(4)E80
[http://dx.doi.org/10.3390/metabo9040080] [PMID: 31027159]
[31]
Calkovska, A.; Linderholm, B.; Haegerstrand-Björkman, M.; Pioselli, B.; Pelizzi, N.; Johansson, J.; Curstedt, T. Phospholipid Composition in Synthetic Surfactants Is Important for Tidal Volumes and Alveolar Stability in Surfactant-Treated Preterm Newborn Rabbits. Neonatology, 2016, 109(3), 177-185.
[http://dx.doi.org/10.1159/000442874] [PMID: 26757268]
[32]
Bunt, J.E.; Zimmermann, L.J.; Wattimena, J.L.; van Beek, R.H.; Sauer, P.J.; Carnielli, V.P. Endogenous surfactant turnover in preterm infants measured with stable isotopes. Am. J. Respir. Crit. Care Med., 1998, 157(3 Pt 1), 810-814.
[http://dx.doi.org/10.1164/ajrccm.157.3.9612054] [PMID: 9517595]
[33]
Torresin, M.; Zimmermann, L.J.; Cogo, P.E.; Cavicchioli, P.; Badon, T.; Giordano, G.; Zacchello, F.; Sauer, P.J.; Carnielli, V.P. Exogenous surfactant kinetics in infant respiratory distress syndrome: A novel method with stable isotopes. Am. J. Respir. Crit. Care Med., 2000, 161(5), 1584-1589.
[http://dx.doi.org/10.1164/ajrccm.161.5.9905088] [PMID: 10806159]
[34]
Simonato, M.; Baritussio, A.; Ori, C.; Vedovelli, L.; Rossi, S.; Dalla Massara, L.; Rizzi, S.; Carnielli, V.P.; Cogo, P.E. Disaturated-phosphatidylcholine and surfactant protein-B turnover in human acute lung injury and in control patients. Respir. Res., 2011, 12(1), 36.
[http://dx.doi.org/10.1186/1465-9921-12-36] [PMID: 21429235]
[35]
Cogo, P.E.; Zimmermann, L.J.I.; Meneghini, L.; Mainini, N.; Bordignon, L.; Suma, V.; Buffo, M.; Carnielli, V.P. Pulmonary surfactant disaturated-phosphatidylcholine (DSPC) turnover and pool size in newborn infants with congenital diaphragmatic hernia (CDH). Pediatr. Res., 2003, 54(5), 653-658.
[http://dx.doi.org/10.1203/01.PDR.0000084344.42409.C6] [PMID: 12904604]
[36]
Cogo, P.E.; Zimmermann, L.J.I.; Rosso, F.; Tormena, F.; Gamba, P.; Verlato, G.; Baritussio, A.; Carnielli, V.P. Surfactant synthesis and kinetics in infants with congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med., 2002, 166(2), 154-158.
[http://dx.doi.org/10.1164/rccm.2108028] [PMID: 12119226]
[37]
Vedovelli, L.; Baritussio, A.; Carnielli, V.P.; Simonato, M.; Giusti, P.; Cogo, P.E. Simultaneous measurement of phosphatidylglycerol and disaturated-phosphatidylcholine palmitate kinetics from alveolar surfactant. Study in infants with stable isotope tracer, coupled with isotope ratio mass spectrometry. J. Mass Spectrom., 2011, 46(10), 986-992.
[http://dx.doi.org/10.1002/jms.1979] [PMID: 22012664]
[38]
Schröder; Sollfrank; Paulsen; Bräuer; Schicht. Recombinant Expression of Surfactant Protein H (SFTA3) in Escherichia Coli. Ann. Anat., 2016, 208, 129-134.
[http://dx.doi.org/10.1016/j.aanat.2016.05.006]
[39]
Lopez-Rodriguez, E.; Pascual, A.; Arroyo, R.; Floros, J.; Perez-Gil, J. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films. Biophys. J., 2016, 111(3), 524-536.
[http://dx.doi.org/10.1016/j.bpj.2016.06.025] [PMID: 27508436]
[40]
Schicht, M.; Rausch, F.; Finotto, S.; Mathews, M.; Mattil, A.; Schubert, M.; Koch, B.; Traxdorf, M.; Bohr, C.; Worlitzsch, D.; Brandt, W.; Garreis, F.; Sel, S.; Paulsen, F.; Bräuer, L. SFTA3, a novel protein of the lung: three-dimensional structure, characterisation and immune activation. Eur. Respir. J., 2014, 44(2), 447-456.
[http://dx.doi.org/10.1183/09031936.00179813] [PMID: 24743970]
[41]
Wang, G.; Guo, X.; Diangelo, S.; Thomas, N.J.; Floros, J. Humanized SFTPA1 and SFTPA2 transgenic mice reveal functional divergence of SP-A1 and SP-A2: formation of tubular myelin in vivo requires both gene products. J. Biol. Chem., 2010, 285(16), 11998-12010.
[http://dx.doi.org/10.1074/jbc.M109.046243] [PMID: 20048345]
[42]
Whitsett, J.A.; Weaver, T.E. Hydrophobic surfactant proteins in lung function and disease. N. Engl. J. Med., 2002, 347(26), 2141-2148.
[http://dx.doi.org/10.1056/NEJMra022387] [PMID: 12501227]
[43]
Ariki, S.; Nishitani, C.; Kuroki, Y. Diverse functions of pulmonary collectins in host defense of the lung. J. Biomed. Biotechnol., 2012, 2012532071
[http://dx.doi.org/10.1155/2012/532071] [PMID: 22675254]
[44]
Nogee, L.M. Genetic causes of surfactant protein abnormalities. Curr. Opin. Pediatr., 2019, 31(3), 330-339.
[http://dx.doi.org/10.1097/MOP.0000000000000751] [PMID: 31090574]
[45]
Gower, W.A.; Wert, S.E.; Nogee, L.M. Inherited Surfactant Disorders. Neoreviews, 2008, 9(10), E458-E467.
[http://dx.doi.org/10.1542/neo.9-10-e458]
[46]
Autilio, C.; Echaide, M.; Shankar-Aguilera, S.; Bragado, R.; Amidani, D.; Salomone, F.; Pérez-Gil, J.; De Luca, D. Surfactant Injury in the Early Phase of Severe Meconium Aspiration Syndrome. Am. J. Respir. Cell Mol. Biol., 2020, 63(3), 327-337.
[http://dx.doi.org/10.1165/rcmb.2019-0413OC] [PMID: 32348683]
[47]
Cañadas, O.; Olmeda, B.; Alonso, A.; Pérez-Gil, J. Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int. J. Mol. Sci., 2020, 21(10)E3708
[http://dx.doi.org/10.3390/ijms21103708] [PMID: 32466119]
[48]
Ketko, A.K.; Donn, S.M. Surfactant-associated proteins: structure, function and clinical implications. Curr. Pediatr. Rev., 2014, 10(2), 162-167.
[http://dx.doi.org/10.2174/157339631130900006] [PMID: 25088270]
[49]
Hobi; Giolai; Olmeda; Miklavc; Felder; Walther; Dietl; Frick; Pérez-Gil; Haller. A Small Key Unlocks a Heavy Door: The Essential Function of the Small Hydrophobic Proteins SP-B and SP-C to Trigger Adsorption of Pulmonary Surfactant Lamellar Bodies. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(8), 2124-2134.
[http://dx.doi.org/10.1016/j.bbamcr.2016.04.028]
[50]
Bühling, F.; Waldburg, N.; Reisenauer, A.; Heimburg, A.; Golpon, H.; Welte, T. Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur. Respir. J., 2004, 23(4), 620-628.
[http://dx.doi.org/10.1183/09031936.04.00105304] [PMID: 15083765]
[51]
Ueno, T.; Linder, S.; Na, C-L.; Rice, W.R.; Johansson, J.; Weaver, T.E. Processing of pulmonary surfactant protein B by napsin and cathepsin H. J. Biol. Chem., 2004, 279(16), 16178-16184.
[http://dx.doi.org/10.1074/jbc.M312029200] [PMID: 14766755]
[52]
Olmeda, B.; García-Álvarez, B.; Pérez-Gil, J. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. Eur. Biophys. J., 2013, 42(2-3), 209-222.
[http://dx.doi.org/10.1007/s00249-012-0858-9] [PMID: 22996193]
[53]
Bernardino de la Serna, J.; Vargas, R.; Picardi, V.; Cruz, A.; Arranz, R.; Valpuesta, J.M.; Mateu, L.; Pérez-Gil, J. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss., 2013, 161, 535-548.
[http://dx.doi.org/10.1039/C2FD20096A] [PMID: 23805757]
[54]
Liekkinen, J.; Enkavi, G.; Javanainen, M.; Olmeda, B.; Pérez-Gil, J.; Vattulainen, I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J. Mol. Biol., 2020, 432(10), 3251-3268.
[http://dx.doi.org/10.1016/j.jmb.2020.02.028] [PMID: 32135191]
[55]
Martinez-Calle; Prieto; Olmeda; Fedorov; Loura; Pérez-Gil, Pulmonary Surfactant Protein SP-B Nanorings Induce the Multilamellar Organization of Surfactant Complexes. Biochim. Biophys. Acta Biomembr., 2020, 1862(6)
[http://dx.doi.org/10.1016/j.bbamem.2020.183216]
[56]
Olmeda; Villén; Cruz; Orellana; Perez-Gil., Pulmonary Surfactant Layers Accelerate O2 Diffusion through the Air-Water Interface. Biochim. Biophys. Acta Biomembr., 2010, 1798(6), 1281-1284.
[http://dx.doi.org/10.1016/j.bbamem.2010.03.008]
[57]
Johansson, J.; Curstedt, T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J. Intern. Med., 2019, 285(2), 165-186.
[http://dx.doi.org/10.1111/joim.12845] [PMID: 30357986]
[58]
Johansson, J.; Szyperski, T.; Curstedt, T.; Wüthrich, K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry, 1994, 33(19), 6015-6023.
[http://dx.doi.org/10.1021/bi00185a042] [PMID: 8180229]
[59]
Baumgart, F.; Ospina, O.L.; Mingarro, I.; Rodríguez-Crespo, I.; Pérez-Gil, J. Palmitoylation of pulmonary surfactant protein SP-C is critical for its functional cooperation with SP-B to sustain compression/expansion dynamics in cholesterol-containing surfactant films. Biophys. J., 2010, 99(10), 3234-3243.
[http://dx.doi.org/10.1016/j.bpj.2010.08.070] [PMID: 21081071]
[60]
Zhong, Q.; Zhou, B.; Ann, D.K.; Minoo, P.; Liu, Y.; Banfalvi, A.; Krishnaveni, M.S.; Dubourd, M.; Demaio, L.; Willis, B.C.; Kim, K.J.; duBois, R.M.; Crandall, E.D.; Beers, M.F.; Borok, Z. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol. Biol., 2011, 45(3), 498-509.
[http://dx.doi.org/10.1165/rcmb.2010-0347OC] [PMID: 21169555]
[61]
Beers, M.F.; Mulugeta, S. Surfactant protein C biosynthesis and its emerging role in conformational lung disease. Annu. Rev. Physiol., 2005, 67, 663-696.
[http://dx.doi.org/10.1146/annurev.physiol.67.040403.101937] [PMID: 15709974]
[62]
Beers, M.F.; Hawkins, A.; Maguire, J.A.; Kotorashvili, A.; Zhao, M.; Newitt, J.L.; Ding, W.; Russo, S.; Guttentag, S.; Gonzales, L.; Mulugeta, S. A nonaggregating surfactant protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling. Traffic, 2011, 12(9), 1196-1210.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01223.x] [PMID: 21707890]
[63]
Walther, F.J.; Gordon, L.M.; Waring, A.J. Advances in synthetic lung surfactant protein technology. Expert Rev. Respir. Med., 2019, 13(6), 499-501.
[http://dx.doi.org/10.1080/17476348.2019.1589372] [PMID: 30817233]
[64]
Ma, J.; Koppenol, S.; Yu, H.; Zografi, G. Effects of a cationic and hydrophobic peptide, KL4, on model lung surfactant lipid monolayers. Biophys. J., 1998, 74(4), 1899-1907.
[http://dx.doi.org/10.1016/S0006-3495(98)77899-3] [PMID: 9545051]
[65]
Seehase, M.; Collins, J.J.; Kuypers, E.; Jellema, R.K.; Ophelders, D.R.; Ospina, O.L.; Perez-Gil, J.; Bianco, F.; Garzia, R.; Razzetti, R.; Kramer, B.W. New surfactant with SP-B and C analogs gives survival benefit after inactivation in preterm lambs. PLoS One, 2012, 7(10)e47631
[http://dx.doi.org/10.1371/journal.pone.0047631] [PMID: 23091635]
[66]
Almlén, A.; Walther, F.J.; Waring, A.J.; Robertson, B.; Johansson, J.; Curstedt, T. Synthetic surfactant based on analogues of SP-B and SP-C is superior to single-peptide surfactants in ventilated premature rabbits. Neonatology, 2010, 98(1), 91-99.
[http://dx.doi.org/10.1159/000276980] [PMID: 20110733]
[67]
Ronda, L.; Pioselli, B.; Catinella, S.; Salomone, F.; Marchetti, M.; Bettati, S. Quenching of tryptophan fluorescence in a highly scattering solution: Insights on protein localization in a lung surfactant formulation. PLoS One, 2018, 13(8)e0201926
[http://dx.doi.org/10.1371/journal.pone.0201926] [PMID: 30075031]
[68]
Ronda; Faggiano; Paredi; Michielon; Sartor; Raschini; Cavatorta; Sgarbi; Bettati; Mozzarelli, SP-B and SP-C Analogues within CHF5633 Synthetic Surfactant Probed by Fluorescence Labeling. J. Mol. Liq., 2020, 298.
[http://dx.doi.org/10.1016/j.molliq.2019.111983]
[69]
D’Aronco, S.; Simonato, M.; Vedovelli, L.; Baritussio, A.; Verlato, G.; Nobile, S.; Giorgetti, C.; Nespeca, M.; Carnielli, V.P.; Cogo, P.E. Surfactant protein B and A concentrations are increased in neonatal pneumonia. Pediatr. Res., 2015, 78(4), 401-406.
[http://dx.doi.org/10.1038/pr.2015.123] [PMID: 26107393]
[70]
Hite, R.D.; Grier, B.L.; Waite, B.M.; Veldhuizen, R.A.; Possmayer, F.; Yao, L-J.; Seeds, M.C. Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(2), L257-L265.
[http://dx.doi.org/10.1152/ajplung.00054.2011] [PMID: 22037357]
[71]
Palaniyar, N.; Ridsdale, R.A.; Holterman, C.E.; Inchley, K.; Possmayer, F.; Harauz, G. Structural changes of surfactant protein A induced by cations reorient the protein on lipid bilayers. J. Struct. Biol., 1998, 122(3), 297-310.
[http://dx.doi.org/10.1006/jsbi.1998.4004] [PMID: 9774534]
[72]
Arroyo; Martín-González; Echaide; Jain; Brondyk; Rosenbaum; Moreno-Herrero; Pérez-Gil, Supramolecular Assembly of Human Pulmonary Surfactant Protein SP-D. J. Mol. Biol., 2018, 430(10), 1495-1509.
[http://dx.doi.org/10.1016/j.jmb.2018.03.027] [PMID: 29626540]
[73]
Wright, J.R. Pulmonary surfactant: A front line of lung host defense. J. Clin. Invest., 2003, 111(10), 1453-1455.
[http://dx.doi.org/10.1172/JCI200318650] [PMID: 12750392]
[74]
Yu, S-H.; McCormack, F.X.; Voelker, D.R.; Possmayer, F. Interactions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains. J. Lipid Res., 1999, 40(5), 920-929.
[http://dx.doi.org/10.1016/S0022-2275(20)32127-1] [PMID: 10224161]
[75]
Pérez-Gil, J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim. Biophys. Acta, 2008, 1778(7-8), 1676-1695.
[http://dx.doi.org/10.1016/j.bbamem.2008.05.003] [PMID: 18515069]
[76]
Arroyo, R.; Grant, S.N.; Gouwens, K.R.; Miller, D.M.; Kingma, P.S. Evaluation of recombinant human SP-D in the rat premature lung model. Ann. Anat., 2021, 235151670
[http://dx.doi.org/10.1016/j.aanat.2020.151670] [PMID: 33444741]
[77]
Arbibe, L.; Koumanov, K.; Vial, D.; Rougeot, C.; Faure, G.; Havet, N.; Longacre, S.; Vargaftig, B.B.; Béréziat, G.; Voelker, D.R.; Wolf, C.; Touqui, L. Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J. Clin. Invest., 1998, 102(6), 1152-1160.
[http://dx.doi.org/10.1172/JCI3236] [PMID: 9739049]
[78]
Colonna, M. Editorial Overview: Sense and react: how the innate immune system detects threats and generates protective responses. Curr. Opin. Immunol., 2017, 44, v-vii.
[http://dx.doi.org/10.1016/j.coi.2017.05.001] [PMID: 28559047]
[79]
Hoffmann, J.; Akira, S. Innate immunity. Curr. Opin. Immunol., 2013, 25(1), 1-3.
[http://dx.doi.org/10.1016/j.coi.2013.01.008] [PMID: 23452839]
[80]
Vieira, F.; Kung, J.W.; Bhatti, F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann. Anat., 2017, 211, 184-201.
[http://dx.doi.org/10.1016/j.aanat.2017.03.002] [PMID: 28351530]
[81]
Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 2011, 216(3), 322-333.
[http://dx.doi.org/10.1016/j.imbio.2010.07.003] [PMID: 20828865]
[82]
Murugaiah, V.; Tsolaki, A.G.; Kishore, U. Collectins: Innate Immune Pattern Recognition Molecules. Adv. Exp. Med. Biol., 2020, 1204, 75-127.
[http://dx.doi.org/10.1007/978-981-15-1580-4_4] [PMID: 32152944]
[83]
Haagsman, H.P.; Hogenkamp, A.; Van Eijk, M. Collectin-Mediated Innate Immune Defense in the Lung. J. Organ Dysfunct., 2009, 2(4), 230-236.
[http://dx.doi.org/10.1080/17471060600736829]
[84]
Kishore, U.; Bulla, R.; Madan, T. Editorial: Odyssey of Surfactant Proteins SP-A and SP-D: Innate Immune Surveillance Molecules. Front. Immunol., 2020, 11, 394.
[http://dx.doi.org/10.3389/fimmu.2020.00394] [PMID: 32218785]
[85]
Awasthi, S. Surfactant protein (SP)-A and SP-D as antimicrobial and immunotherapeutic agents. Recent Pat Antiinfect Drug Discov, 2010, 5(2), 115-123.
[http://dx.doi.org/10.2174/157489110791233559] [PMID: 20230362]
[86]
Kaur, A.; Riaz, M.S.; Murugaiah, V.; Varghese, P.M.; Singh, S.K.; Kishore, U. A Recombinant Fragment of Human Surfactant Protein D induces Apoptosis in Pancreatic Cancer Cell Lines via Fas-Mediated Pathway. Front. Immunol., 2018, 9, 1126.
[http://dx.doi.org/10.3389/fimmu.2018.01126] [PMID: 29915574]
[87]
Holmskov, U.; Thiel, S.; Jensenius, J.C. Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol., 2003, 21(1), 547-578.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.140954] [PMID: 12524383]
[88]
Hartshorn, K.L.; Crouch, E.; White, M.R.; Colamussi, M.L.; Kakkanatt, A.; Tauber, B.; Shepherd, V.; Sastry, K.N. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am. J. Physiol., 1998, 274(6), L958-L969.
[http://dx.doi.org/10.1152/ajplung.1998.274.6.L958] [PMID: 9609735]
[89]
Wang, J.Y.; Shieh, C.C.; You, P.F.; Lei, H.Y.; Reid, K.B. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med., 1998, 158(2), 510-518.
[http://dx.doi.org/10.1164/ajrccm.158.2.9709111] [PMID: 9700129]
[90]
Wang, J.Y.; Kishore, U.; Lim, B.L.; Strong, P.; Reid, K.B. Interaction of human lung surfactant proteins A and D with mite (Dermatophagoides pteronyssinus) allergens. Clin. Exp. Immunol., 1996, 106(2), 367-373.
[http://dx.doi.org/10.1046/j.1365-2249.1996.d01-838.x] [PMID: 8918587]
[91]
Bufler, P.; Schikor, D.; Schmidt, B.; Griese, M. Cytokine stimulation by Pseudomonas aeruginosa--strain variation and modulation by pulmonary surfactant. Exp. Lung Res., 2004, 30(3), 163-179.
[http://dx.doi.org/10.1080/01902140490276294] [PMID: 15195551]
[92]
Atochina, E.N.; Beck, J.M.; Preston, A.M.; Haczku, A.; Tomer, Y.; Scanlon, S.T.; Fusaro, T.; Casey, J.; Hawgood, S.; Gow, A.J.; Beers, M.F. Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice: Attenuation of cytokine responses and reactive oxygen-nitrogen species. Infect. Immun., 2004, 72(10), 6002-6011.
[http://dx.doi.org/10.1128/IAI.72.10.6002-6011.2004] [PMID: 15385504]
[93]
Liu, J.; Hu, F.; Wang, G.; Zhou, Q.; Ding, G. Lipopolysaccharide-induced expression of surfactant proteins A1 and A2 in human renal tubular epithelial cells. J. Inflamm. (Lond.), 2013, 10(1), 2.
[http://dx.doi.org/10.1186/1476-9255-10-2] [PMID: 23311887]
[94]
Lee, D-C.; Romero, R.; Kim, C.J.; Chaiworapongsa, T.; Tarca, A.L.; Lee, J.; Suh, Y-L.; Mazaki-Tovi, S.; Vaisbuch, E.; Mittal, P.; Draghici, S.; Erez, O.; Kusanovic, J.P.; Hassan, S.S.; Kim, J.S. Surfactant protein-A as an anti-inflammatory component in the amnion: implications for human pregnancy. J. Immunol., 2010, 184(11), 6479-6491.
[http://dx.doi.org/10.4049/jimmunol.0903867] [PMID: 20439915]
[95]
Luo, J.M.; Liu, Z.Q.; Eugene, C.Y. Overexpression of pulmonary surfactant protein A like molecules in inflammatory bowel disease tissues. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2008, 33(11), 979-986.
[PMID: 19060364]
[96]
Bräuer, L.; Kindler, C.; Jäger, K.; Sel, S.; Nölle, B.; Pleyer, U.; Ochs, M.; Paulsen, F.P. Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest. Ophthalmol. Vis. Sci., 2007, 48(9), 3945-3953.
[http://dx.doi.org/10.1167/iovs.07-0201] [PMID: 17724171]
[97]
Schob, S.; Schicht, M.; Sel, S.; Stiller, D.; Kekulé, A.S.; Paulsen, F.; Maronde, E.; Bräuer, L.; Bräuer, L. The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS. PLoS One, 2013, 8(9)e74412
[http://dx.doi.org/10.1371/journal.pone.0074412] [PMID: 24098648]
[98]
Qaseem, A.S.; Singh, I.; Pathan, A.A.; Layhadi, J.A.; Parkin, R.; Alexandra, F.; Durham, S.R.; Kishore, U.; Shamji, M.H. A Recombinant Fragment of Human Surfactant Protein D Suppresses Basophil Activation and T-Helper Type 2 and B-Cell Responses in Grass Pollen-induced Allergic Inflammation. Am. J. Respir. Crit. Care Med., 2017, 196(12), 1526-1534.
[http://dx.doi.org/10.1164/rccm.201701-0225OC] [PMID: 28915062]
[99]
Cerrada, A.; Haller, T.; Cruz, A.; Pérez-Gil, J. Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity. Biophys. J., 2015, 109(11), 2295-2306.
[http://dx.doi.org/10.1016/j.bpj.2015.10.022] [PMID: 26636941]
[100]
Fehrenbach, H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res., 2001, 2(1), 33-46.
[http://dx.doi.org/10.1186/rr36] [PMID: 11686863]
[101]
Schmitz, G.; Müller, G. Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J. Lipid Res., 1991, 32(10), 1539-1570.
[http://dx.doi.org/10.1016/S0022-2275(20)41642-6] [PMID: 1797938]
[102]
Young, S.L.; Fram, E.K.; Spain, C.L.; Larson, E.W. Development of type II pneumocytes in rat lung. Am. J. Physiol., 1991, 260(2 Pt 1), L113-L122.
[http://dx.doi.org/10.1152/ajplung.1991.260.2.L113] [PMID: 1996654]
[103]
Perez-Gil, J.; Weaver, T.E. Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda), 2010, 25(3), 132-141.
[http://dx.doi.org/10.1152/physiol.00006.2010] [PMID: 20551227]
[104]
Lopez-Rodriguez, E.; Gay-Jordi, G.; Mucci, A.; Lachmann, N.; Serrano-Mollar, A. Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res., 2017, 367(3), 721-735.
[http://dx.doi.org/10.1007/s00441-016-2520-9] [PMID: 27783217]
[105]
Andreeva, A.V.; Kutuzov, M.A.; Voyno-Yasenetskaya, T.A. Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(2), L259-L271.
[http://dx.doi.org/10.1152/ajplung.00112.2007] [PMID: 17496061]
[106]
Beers, M.F.; Mulugeta, S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res., 2017, 367(3), 481-493.
[http://dx.doi.org/10.1007/s00441-016-2554-z] [PMID: 28025703]
[107]
Ravasio, A.; Olmeda, B.; Bertocchi, C.; Haller, T.; Pérez-Gil, J. Lamellar bodies form solid three-dimensional films at the respiratory air-liquid interface. J. Biol. Chem., 2010, 285(36), 28174-28182.
[http://dx.doi.org/10.1074/jbc.M110.106518] [PMID: 20558742]
[108]
Schindlbeck, U.; Wittmann, T.; Höppner, S.; Kinting, S.; Liebisch, G.; Hegermann, J.; Griese, M. ABCA3 missense mutations causing surfactant dysfunction disorders have distinct cellular phenotypes. Hum. Mutat., 2018, 39(6), 841-850.
[http://dx.doi.org/10.1002/humu.23416] [PMID: 29505158]
[109]
Ban, N.; Matsumura, Y.; Sakai, H.; Takanezawa, Y.; Sasaki, M.; Arai, H.; Inagaki, N. ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J. Biol. Chem., 2007, 282(13), 9628-9634.
[http://dx.doi.org/10.1074/jbc.M611767200] [PMID: 17267394]
[110]
Cheong, N.; Zhang, H.; Madesh, M.; Zhao, M.; Yu, K.; Dodia, C.; Fisher, A.B.; Savani, R.C.; Shuman, H. ABCA3 is critical for lamellar body biogenesis in vivo. J. Biol. Chem., 2007, 282(33), 23811-23817.
[http://dx.doi.org/10.1074/jbc.M703927200] [PMID: 17540762]
[111]
Osanai, K.; Mason, R.J.; Voelker, D.R. Pulmonary Surfactant Phosphatidylcholine Transport Bypasses the Brefeldin A Sensitive Compartment of Alveolar Type II Cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2001, 1531(3), 222-229.
[http://dx.doi.org/10.1016/S1388-1981(01)00104-4]
[112]
Osanai, K.; Mizuno, S.; Toga, H.; Takahashi, K. Trafficking of newly synthesized surfactant protein B to the lamellar body in alveolar type II cells. Cell Tissue Res., 2020, 381(3), 427-438.
[http://dx.doi.org/10.1007/s00441-020-03232-7] [PMID: 32556725]
[113]
Martínez-Calle, M.; Olmeda, B.; Dietl, P.; Frick, M.; Pérez-Gil, J. Pulmonary surfactant protein SP-B promotes exocytosis of lamellar bodies in alveolar type II cells. FASEB J., 2018, 32(8), 4600-4611.
[http://dx.doi.org/10.1096/fj.201701462RR] [PMID: 29543530]
[114]
Foster, C.D.; Zhang, P.X.; Gonzales, L.W.; Guttentag, S.H. In vitro surfactant protein B deficiency inhibits lamellar body formation. Am. J. Respir. Cell Mol. Biol., 2003, 29(2), 259-266.
[http://dx.doi.org/10.1165/rcmb.2002-0149OC] [PMID: 12649122]
[115]
Weaver, T.E.; Conkright, J.J. Function of surfactant proteins B and C. Annu. Rev. Physiol., 2001, 63(1), 555-578.
[http://dx.doi.org/10.1146/annurev.physiol.63.1.555] [PMID: 11181967]
[116]
Fisher, A.B.; Dodia, C.; Ruckert, P.; Tao, J-Q.; Bates, S.R. Pathway to lamellar bodies for surfactant protein A. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299(1), L51-L58.
[http://dx.doi.org/10.1152/ajplung.00066.2010] [PMID: 20382745]
[117]
Rooney, S.A. Regulation of surfactant secretion. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2001, 129(1), 233-243.
[http://dx.doi.org/10.1016/S1095-6433(01)00320-8] [PMID: 11369548]
[118]
Brackenbury, A.M.; Malloy, J.L.; McCaig, L.A.; Yao, L.J.; Veldhuizen, R.A.W.; Lewis, J.F. Evaluation of alveolar surfactant aggregates In vitro and in vivo. Eur. Respir. J., 2002, 19(1), 41-46.
[http://dx.doi.org/10.1183/09031936.02.00211202] [PMID: 11852893]
[119]
Carnielli, V.P.; Giorgetti, C.; Simonato, M.; Vedovelli, L.; Cogo, P. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies. Neonatology, 2016, 109(4), 325-333.
[http://dx.doi.org/10.1159/000444891] [PMID: 27251153]
[120]
Ochs, M.; Johnen, G.; Müller, K-M.; Wahlers, T.; Hawgood, S.; Richter, J.; Brasch, F. Intracellular and intraalveolar localization of surfactant protein A (SP-A) in the parenchymal region of the human lung. Am. J. Respir. Cell Mol. Biol., 2002, 26(1), 91-98.
[http://dx.doi.org/10.1165/ajrcmb.26.1.4570] [PMID: 11751208]
[121]
Korfhagen, T.R.; Bruno, M.D.; Ross, G.F.; Huelsman, K.M.; Ikegami, M.; Jobe, A.H.; Wert, S.E.; Stripp, B.R.; Morris, R.E.; Glasser, S.W.; Bachurski, C.J.; Iwamoto, H.S.; Whitsett, J.A. Altered surfactant function and structure in SP-A gene targeted mice. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9594-9599.
[http://dx.doi.org/10.1073/pnas.93.18.9594] [PMID: 8790375]
[122]
Wang, Z.; Hall, S.B.; Notter, R.H. Roles of different hydrophobic constituents in the adsorption of pulmonary surfactant. J. Lipid Res., 1996, 37(4), 790-798.
[http://dx.doi.org/10.1016/S0022-2275(20)37577-5] [PMID: 8732779]
[123]
Parra, E.; Alcaraz, A.; Cruz, A.; Aguilella, V.M.; Pérez-Gil, J. Hydrophobic pulmonary surfactant proteins SP-B and SP-C induce pore formation in planar lipid membranes: evidence for proteolipid pores. Biophys. J., 2013, 104(1), 146-155.
[http://dx.doi.org/10.1016/j.bpj.2012.11.014] [PMID: 23332067]
[124]
Ochs, M.; Nyengaard, J.R.; Jung, A.; Knudsen, L.; Voigt, M.; Wahlers, T.; Richter, J.; Gundersen, H.J.G. The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med., 2004, 169(1), 120-124.
[http://dx.doi.org/10.1164/rccm.200308-1107OC] [PMID: 14512270]
[125]
Donahoe, M.; Rogers, R.M.; Wilson, D.O.; Pennock, B.E. Oxygen consumption of the respiratory muscles in normal and in malnourished patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 1989, 140(2), 385-391.
[http://dx.doi.org/10.1164/ajrccm/140.2.385] [PMID: 2764376]
[126]
Zuo, Y.Y.; Veldhuizen, R.A.W.; Neumann, A.W.; Petersen, N.O.; Possmayer, F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. Biochim. Biophys. Acta, 2008, 1778(10), 1947-1977.
[http://dx.doi.org/10.1016/j.bbamem.2008.03.021] [PMID: 18433715]
[127]
Piknova, B.; Schram, V.; Hall, S.B. Pulmonary surfactant: phase behavior and function. Curr. Opin. Struct. Biol., 2002, 12(4), 487-494.
[http://dx.doi.org/10.1016/S0959-440X(02)00352-4] [PMID: 12163072]
[128]
Casals, C.; Cañadas, O. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochim. Biophys. Acta, 2012, 1818(11), 2550-2562.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.024] [PMID: 22659676]
[129]
Roldan; Goormaghtigh; Pérez-Gil; Garcia-Alvarez. Palmitoylation as a Key Factor to Modulate SP-C-Lipid Interactions in Lung Surfactant Membrane Multilayers. Biochim. Biophys. Acta Biomembr., 2015, 1848(1), 184-191.
[http://dx.doi.org/10.1016/j.bbamem.2014.10.009]
[130]
Ruwisch, J.; Sehlmeyer, K.; Roldan, N.; Garcia-Alvarez, B.; Perez-Gil, J.; Weaver, T.E.; Ochs, M.; Knudsen, L.; Lopez-Rodriguez, E. Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. Am. J. Respir. Cell Mol. Biol., 2020, 62(4), 466-478.
[http://dx.doi.org/10.1165/rcmb.2019-0358OC] [PMID: 31922895]
[131]
Yehya, N. Lessons learned in acute respiratory distress syndrome from the animal laboratory. Ann. Transl. Med., 2019, 7(19), 503.
[http://dx.doi.org/10.21037/atm.2019.09.33] [PMID: 31728356]
[132]
Glasser, S.W.; Witt, T.L.; Senft, A.P.; Baatz, J.E.; Folger, D.; Maxfield, M.D.; Akinbi, H.T.; Newton, D.A.; Prows, D.R.; Korfhagen, T.R. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(1), L64-L72.
[http://dx.doi.org/10.1152/ajplung.90640.2008] [PMID: 19304906]
[133]
Ricci, F.; Salomone, F.; Kuypers, E.; Ophelders, D.; Nikiforou, M.; Willems, M.; Krieger, T.; Murgia, X.; Hütten, M.; Kramer, B.W.; Bianco, F. In vivo Evaluation of the Acute Pulmonary Response to Poractant Alfa and Bovactant Treatments in Lung-Lavaged Adult Rabbits and in Preterm Lambs with Respiratory Distress Syndrome. Front Pediatr., 2017, 5, 186.
[http://dx.doi.org/10.3389/fped.2017.00186] [PMID: 28913327]
[134]
Beers, M.F.; Knudsen, L.; Tomer, Y.; Maronn, J.; Zhao, M.; Ochs, M.; Mulugeta, S. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene. Ann. Anat., 2017, 210, 135-146.
[http://dx.doi.org/10.1016/j.aanat.2016.11.015] [PMID: 28034695]
[135]
Jobe, A.H. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease. Front. Med. (Lausanne), 2015, 2, 49.
[http://dx.doi.org/10.3389/fmed.2015.00049] [PMID: 26301222]
[136]
Melton, K.R.; Nesslein, L.L.; Ikegami, M.; Tichelaar, J.W.; Clark, J.C.; Whitsett, J.A.; Weaver, T.E. SP-B deficiency causes respiratory failure in adult mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(3), L543-L549.
[http://dx.doi.org/10.1152/ajplung.00011.2003] [PMID: 12639841]
[137]
Glasser, S.W.; Burhans, M.S.; Korfhagen, T.R.; Na, C-L.; Sly, P.D.; Ross, G.F.; Ikegami, M.; Whitsett, J.A. Altered stability of pulmonary surfactant in SP-C-deficient mice. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6366-6371.
[http://dx.doi.org/10.1073/pnas.101500298] [PMID: 11344267]
[138]
Weaver, T.E.; Beck, D.C. Use of knockout mice to study surfactant protein structure and function. Biol. Neonate, 1999, 76(Suppl. 1), 15-18.
[http://dx.doi.org/10.1159/000047041] [PMID: 10393388]
[139]
Autilio, C.; Pérez-Gil, J. Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Arch. Dis. Child. Fetal Neonatal Ed., 2019, 104(4), F443-F451.
[http://dx.doi.org/10.1136/archdischild-2018-315413] [PMID: 30552091]
[140]
Parra, E.; Pérez-Gil, J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids, 2015, 185, 153-175.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.09.002] [PMID: 25260665]
[141]
Echaide, M.; Autilio, C.; López-Rodríguez, E.; Cruz, A.; Pérez-Gil, J. In vitro Functional and Structural Characterization of A Synthetic Clinical Pulmonary Surfactant with Enhanced Resistance to Inhibition. Sci. Rep., 2020, 10(1), 1385.
[http://dx.doi.org/10.1038/s41598-020-58248-4] [PMID: 31992800]
[142]
Zhang, H.; Fan, Q.; Wang, Y.E.; Neal, C.R.; Zuo, Y.Y. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim. Biophys. Acta, 2011, 1808(7), 1832-1842.
[http://dx.doi.org/10.1016/j.bbamem.2011.03.006] [PMID: 21439262]
[143]
Zuo, Y.Y.; Tadayyon, S.M.; Keating, E.; Zhao, L.; Veldhuizen, R.A.W.; Petersen, N.O.; Amrein, M.W.; Possmayer, F. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: Albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys. J., 2008, 95(6), 2779-2791.
[http://dx.doi.org/10.1529/biophysj.108.130732] [PMID: 18539636]
[144]
Cruz, A.; Vázquez, L.; Vélez, M.; Pérez-Gil, J. Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films. Biophys. J., 2004, 86(1 Pt 1), 308-320.
[http://dx.doi.org/10.1016/S0006-3495(04)74106-5] [PMID: 14695272]
[145]
Takamoto, D.Y.; Lipp, M.M.; von Nahmen, A.; Lee, K.Y.C.; Waring, A.J.; Zasadzinski, J.A. Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J., 2001, 81(1), 153-169.
[http://dx.doi.org/10.1016/S0006-3495(01)75688-3] [PMID: 11423403]
[146]
Keating, E.; Zuo, Y.Y.; Tadayyon, S.M.; Petersen, N.O.; Possmayer, F.; Veldhuizen, R.A.W. A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochim. Biophys. Acta, 2012, 1818(5), 1225-1234.
[http://dx.doi.org/10.1016/j.bbamem.2011.12.007] [PMID: 22206628]
[147]
Mao, G.; Desai, J.; Flach, C.R.; Mendelsohn, R. Structural characterization of the monolayer-multilayer transition in a pulmonary surfactant model: IR studies of films transferred at continuously varying surface pressures. Langmuir, 2008, 24(5), 2025-2034.
[http://dx.doi.org/10.1021/la702612p] [PMID: 18198907]
[148]
Wang, L.; Cai, P.; Galla, H-J.; He, H.; Flach, C.R.; Mendelsohn, R. Monolayer-multilayer transitions in a lung surfactant model: IR reflection-absorption spectroscopy and atomic force microscopy. Eur. Biophys. J., 2005, 34(3), 243-254.
[http://dx.doi.org/10.1007/s00249-004-0446-8] [PMID: 15645307]
[149]
Keating, E.; Rahman, L.; Francis, J.; Petersen, A.; Possmayer, F.; Veldhuizen, R.; Petersen, N.O. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys. J., 2007, 93(4), 1391-1401.
[http://dx.doi.org/10.1529/biophysj.106.099762] [PMID: 17526587]
[150]
Bourdos, N.; Kollmer, F.; Benninghoven, A.; Ross, M.; Sieber, M.; Galla, H.J. Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys. J., 2000, 79(1), 357-369.
[http://dx.doi.org/10.1016/S0006-3495(00)76297-7] [PMID: 10866961]
[151]
Xu, L.; Yang, Y.; Zuo, Y.Y. Atomic Force Microscopy Imaging of Adsorbed Pulmonary Surfactant Films. Biophys. J., 2020, 119(4), 756-766.
[http://dx.doi.org/10.1016/j.bpj.2020.06.033] [PMID: 32702292]
[152]
Autilio, C.; Echaide, M.; Benachi, A.; Marfaing-Koka, A.; Capoluongo, E.D.; Pérez-Gil, J.; De Luca, D. A Noninvasive Surfactant Adsorption Test Predicting the Need for Surfactant Therapy in Preterm Infants Treated with Continuous Positive Airway Pressure. J. Pediatr., 2017, 182, 66-73.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.11.057] [PMID: 27989413]
[153]
De Luca, D.; Vázquez-Sánchez, S.; Minucci, A.; Echaide, M.; Piastra, M.; Conti, G.; Capoluongo, E.D.; Pérez-Gil, J. Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. Eur. Respir. J., 2014, 44(6), 1708-1710.
[http://dx.doi.org/10.1183/09031936.00117714] [PMID: 25142478]
[154]
Daniels, C.B.; Orgeig, S. Pulmonary surfactant: the key to the evolution of air breathing. News Physiol. Sci., 2003, 18, 151-157.
[http://dx.doi.org/10.1152/nips.01438.2003] [PMID: 12869615]
[155]
Bernhard, W.; Hoffmann, S.; Dombrowsky, H.; Rau, G.A.; Kamlage, A.; Kappler, M.; Haitsma, J.J.; Freihorst, J.; von der Hardt, H.; Poets, C.F. Phosphatidylcholine molecular species in lung surfactant: composition in relation to respiratory rate and lung development. Am. J. Respir. Cell Mol. Biol., 2001, 25(6), 725-731.
[http://dx.doi.org/10.1165/ajrcmb.25.6.4616] [PMID: 11726398]
[156]
Tridente, A.; De Martino, L.; De Luca, D. Porcine vs bovine surfactant therapy for preterm neonates with RDS: systematic review with biological plausibility and pragmatic meta-analysis of respiratory outcomes. Respir. Res., 2019, 20(1), 28.
[http://dx.doi.org/10.1186/s12931-019-0979-0] [PMID: 30728009]
[157]
Singh, N.; Halliday, H.L.; Stevens, T.P.; Suresh, G.; Soll, R.; Rojas-Reyes, M.X. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst. Rev., 2015, 2015(12)CD010249
[http://dx.doi.org/10.1002/14651858.CD010249.pub2] [PMID: 26690260]
[158]
Alonso, C.; Alig, T.; Yoon, J.; Bringezu, F.; Warriner, H.; Zasadzinski, J.A. More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys. J., 2004, 87(6), 4188-4202.
[http://dx.doi.org/10.1529/biophysj.104.051201] [PMID: 15454404]
[159]
King, D.M.; Wang, Z.; Palmer, H.J.; Holm, B.A.; Notter, R.H. Bulk shear viscosities of endogenous and exogenous lung surfactants. Am. J. Physiol. Lung Cell. Mol. Physiol., 2002, 282(2), L277-L284.
[http://dx.doi.org/10.1152/ajplung.00199.2001] [PMID: 11792632]
[160]
Orgeig, S.; Morrison, J.L.; Daniels, C.B. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr. Physiol., 2015, 6(1), 363-422.
[http://dx.doi.org/10.1002/cphy.c150003] [PMID: 26756637]
[161]
C. B.; ORGEIG, S.; WOOD, P. G.; SULLIVAN, L. C.; LOPATKO, O. V.; SMITS, A. W. The Changing State of Surfactant Lipids: New Insights from Ancient Animals. Am. Zool., 1998, 38(2), 305-320.
[http://dx.doi.org/10.1093/icb/38.2.305]
[162]
Zhang, H.; Wang, Y.E.; Fan, Q.; Zuo, Y.Y. On the low surface tension of lung surfactant. Langmuir, 2011, 27(13), 8351-8358.
[http://dx.doi.org/10.1021/la201482n] [PMID: 21650180]
[163]
Zhang, H.; Wang, Y.E.; Neal, C.R.; Zuo, Y.Y. Differential effects of cholesterol and budesonide on biophysical properties of clinical surfactant. Pediatr. Res., 2012, 71(4 Pt 1), 316-323.
[http://dx.doi.org/10.1038/pr.2011.78] [PMID: 22391630]
[164]
Leonenko, Z.; Gill, S.; Baoukina, S.; Monticelli, L.; Doehner, J.; Gunasekara, L.; Felderer, F.; Rodenstein, M.; Eng, L.M.; Amrein, M. An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. Biophys. J., 2007, 93(2), 674-683.
[http://dx.doi.org/10.1529/biophysj.107.106310] [PMID: 17483162]
[165]
Sato, A.; Whitsett, J.A.; Scheule, R.K.; Ikegami, M. Surfactant protein-d inhibits lung inflammation caused by ventilation in premature newborn lambs. Am. J. Respir. Crit. Care Med., 2010, 181(10), 1098-1105.
[http://dx.doi.org/10.1164/rccm.200912-1818OC] [PMID: 20133924]
[166]
Watson, A.; Phipps, M.J.S.; Clark, H.W.; Skylaris, C-K.; Madsen, J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J. Innate Immun., 2019, 11(1), 13-28.
[http://dx.doi.org/10.1159/000492974] [PMID: 30293076]
[167]
Nathan; Taytard; Duquesnoy; Thouvenin; Corvol; Amselem; Clement. Surfactant Protein A: A Key Player in Lung Homeostasis. Int. J. Biochem. Cell Biol., 2016, 81, 151-155.
[http://dx.doi.org/10.1016/j.biocel.2016.11.003]
[168]
Minutti, C.M.; García-Fojeda, B.; Sáenz, A.; de Las Casas-Engel, M.; Guillamat-Prats, R.; de Lorenzo, A.; Serrano-Mollar, A.; Corbí, Á.L.; Casals, C. Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages. J. Immunol., 2016, 197(2), 590-598.
[http://dx.doi.org/10.4049/jimmunol.1501032] [PMID: 27271568]
[169]
Sun, B.; Curstedt, T.; Lindgren, G.; Franzén, B.; Alaiya, A.A.; Calkovská, A.; Robertson, B. Biophysical and physiological properties of a modified porcine surfactant enriched with surfactant protein A. Eur. Respir. J., 1997, 10(9), 1967-1974.
[http://dx.doi.org/10.1183/09031936.97.10091967] [PMID: 9311487]
[170]
Foligno, S.; De Luca, D. Porcine versus bovine surfactant therapy for RDS in preterm neonates: pragmatic meta-analysis and review of physiopathological plausibility of the effects on extra-pulmonary outcomes. Respir. Res., 2020, 21(1), 8.
[http://dx.doi.org/10.1186/s12931-019-1267-8] [PMID: 31910825]
[171]
Thai, L.P.A.; Mousseau, F.; Oikonomou, E.K.; Berret, J.F. On the rheology of pulmonary surfactant: Effects of concentration and consequences for the surfactant replacement therapy. Colloids Surf. B Biointerfaces, 2019, 178, 337-345.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.020] [PMID: 30897431]
[172]
King, D.M.; Wang, Z.; Kendig, J.W.; Palmer, H.J.; Holm, B.A.; Notter, R.H. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions. Chem. Phys. Lipids, 2001, 112(1), 11-19.
[http://dx.doi.org/10.1016/S0009-3084(01)00150-5] [PMID: 11518568]
[173]
Lu, K.W.; Pérez-Gil, J.; Taeusch, H. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochim. Biophys. Acta, 2009, 1788(3), 632-637.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.005] [PMID: 19366601]
[174]
Antonova, N.; Todorov, R.; Exerowa, D. Rheological behavior and parameters of the In vitro model of lung surfactant systems: the role of the main phospholipid component. Biorheology, 2003, 40(5), 531-543.
[PMID: 12897419]
[175]
Tolle, A.; Meier, W.; Greune, G.; Rudiger, M.; Peter Hofmann, K.; Rustow, B. Plasmalogens Reduce the Viscosity of a Surfactant-like Phospholipid Monolayer. Chem. Phys. Lipids, 1999, 100(1-2), 81-87.
[http://dx.doi.org/10.1016/S0009-3084(99)00042-0]
[176]
Rüdiger, M.; Tölle, A.; Meier, W.; Rüstow, B. Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288(2), L379-L383.
[http://dx.doi.org/10.1152/ajplung.00176.2004] [PMID: 15501950]
[177]
Günther, A.; Ruppert, C.; Schmidt, R.; Markart, P.; Grimminger, F.; Walmrath, D.; Seeger, W. Surfactant alteration and replacement in acute respiratory distress syndrome. Respir. Res., 2001, 2(6), 353-364.
[http://dx.doi.org/10.1186/rr86] [PMID: 11737935]
[178]
Huang, W.; McCaig, L.A.; Veldhuizen, R.A.W.; Yao, L-J.; Lewis, J.F. Mechanisms responsible for surfactant changes in sepsis-induced lung injury. Eur. Respir. J., 2005, 26(6), 1074-1079.
[http://dx.doi.org/10.1183/09031936.05.00085805] [PMID: 16319338]
[179]
Wright, T.W.; Notter, R.H.; Wang, Z.; Harmsen, A.G.; Gigliotti, F. Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. Infect. Immun., 2001, 69(2), 758-764.
[http://dx.doi.org/10.1128/IAI.69.2.758-764.2001] [PMID: 11159965]
[180]
Hamvas, A.; Heins, H.B.; Guttentag, S.H.; Wegner, D.J.; Trusgnich, M.A.; Bennet, K.W.; Yang, P.; Carlson, C.S.; An, P.; Cole, F.S. Developmental and genetic regulation of human surfactant protein B in vivo. Neonatology, 2009, 95(2), 117-124.
[http://dx.doi.org/10.1159/000153095] [PMID: 18776725]
[181]
Stahlman, M.T.; Besnard, V.; Wert, S.E.; Weaver, T.E.; Dingle, S.; Xu, Y.; von Zychlin, K.; Olson, S.J.; Whitsett, J.A. Expression of ABCA3 in developing lung and other tissues. J. Histochem. Cytochem., 2007, 55(1), 71-83.
[http://dx.doi.org/10.1369/jhc.6A6962.2006] [PMID: 16982851]
[182]
Ikegami, M. Surfactant catabolism. Respirology, 2006, 11(Suppl.), S24-S27.
[http://dx.doi.org/10.1111/j.1440-1843.2006.00803.x] [PMID: 16423266]
[183]
Gurel, O.; Ikegami, M.; Chroneos, Z.C.; Jobe, A.H. Macrophage and type II cell catabolism of SP-A and saturated phosphatidylcholine in mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 280(6), L1266-L1272.
[http://dx.doi.org/10.1152/ajplung.2001.280.6.L1266] [PMID: 11350807]
[184]
Reed, J.A.; Ikegami, M.; Robb, L.; Begley, C.G.; Ross, G.; Whitsett, J.A. Distinct changes in pulmonary surfactant homeostasis in common β-chain- and GM-CSF-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 278(6), L1164-L1171.
[http://dx.doi.org/10.1152/ajplung.2000.278.6.L1164] [PMID: 10835321]
[185]
Ikegami, M.; Ueda, T.; Hull, W.; Whitsett, J.A.; Mulligan, R.C.; Dranoff, G.; Jobe, A.H. Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am. J. Physiol., 1996, 270(4 Pt 1), L650-L658.
[http://dx.doi.org/10.1152/ajplung.1996.270.4.L650] [PMID: 8928826]
[186]
McCarthy, C.; Lee, E.; Bridges, J.P.; Sallese, A.; Suzuki, T.; Woods, J.C.; Bartholmai, B.J.; Wang, T.; Chalk, C.; Carey, B.C.; Arumugam, P.; Shima, K.; Tarling, E.J.; Trapnell, B.C. Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat. Commun., 2018, 9(1), 3127.
[http://dx.doi.org/10.1038/s41467-018-05491-z] [PMID: 30087322]
[187]
Tanaka, T.; Motoi, N.; Tsuchihashi, Y.; Tazawa, R.; Kaneko, C.; Nei, T.; Yamamoto, T.; Hayashi, T.; Tagawa, T.; Nagayasu, T.; Kuribayashi, F.; Ariyoshi, K.; Nakata, K.; Morimoto, K. Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB. J. Med. Genet., 2011, 48(3), 205-209.
[http://dx.doi.org/10.1136/jmg.2010.082586] [PMID: 21075760]
[188]
Suzuki, T.; Maranda, B.; Sakagami, T.; Catellier, P.; Couture, C-Y.; Carey, B.C.; Chalk, C.; Trapnell, B.C. Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur. Respir. J., 2011, 37(1), 201-204.
[http://dx.doi.org/10.1183/09031936.00090610] [PMID: 21205713]
[189]
Weaver, T.E. Synthesis, processing and secretion of surfactant proteins B and C. Biochim. Biophys. Acta, 1998, 1408(2-3), 173-179.
[http://dx.doi.org/10.1016/S0925-4439(98)00066-0] [PMID: 9813310]
[190]
Li, J.; Ikegami, M.; Na, C-L.; Hamvas, A.; Espinassous, Q.; Chaby, R.; Nogee, L.M.; Weaver, T.E.; Johansson, J. N-terminally extended surfactant protein (SP) C isolated from SP-B-deficient children has reduced surface activity and inhibited lipopolysaccharide binding. Biochemistry, 2004, 43(13), 3891-3898.
[http://dx.doi.org/10.1021/bi036218q] [PMID: 15049696]
[191]
Beers, M.F.; Hamvas, A.; Moxley, M.A.; Gonzales, L.W.; Guttentag, S.H.; Solarin, K.O.; Longmore, W.J.; Nogee, L.M.; Ballard, P.L. Pulmonary surfactant metabolism in infants lacking surfactant protein B. Am. J. Respir. Cell Mol. Biol., 2000, 22(3), 380-391.
[http://dx.doi.org/10.1165/ajrcmb.22.3.3645] [PMID: 10696076]
[192]
Nogee, L.M. Abnormal expression of surfactant protein C and lung disease. Am. J. Respir. Cell Mol. Biol., 2002, 26(6), 641-644.
[http://dx.doi.org/10.1165/ajrcmb.26.6.f241] [PMID: 12034561]
[193]
Wegner, D.J.; Hertzberg, T.; Heins, H.B.; Elmberger, G.; MacCoss, M.J.; Carlson, C.S.; Nogee, L.M.; Cole, F.S.; Hamvas, A. A major deletion in the surfactant protein-B gene causing lethal respiratory distress. Acta Paediatr., 2007, 96(4), 516-520.
[http://dx.doi.org/10.1111/j.1651-2227.2006.00188.x] [PMID: 17391469]
[194]
Avital, A.; Hevroni, A.; Godfrey, S.; Cohen, S.; Maayan, C.; Nusair, S.; Nogee, L.M.; Springer, C. Natural history of five children with surfactant protein C mutations and interstitial lung disease. Pediatr. Pulmonol., 2014, 49(11), 1097-1105.
[http://dx.doi.org/10.1002/ppul.22971] [PMID: 24347114]
[195]
Crossno, P.F.; Polosukhin, V.V.; Blackwell, T.S.; Johnson, J.E.; Markin, C.; Moore, P.E.; Worrell, J.A.; Stahlman, M.T.; Phillips, J.A., III; Loyd, J.E.; Cogan, J.D.; Lawson, W.E. Identification of early interstitial lung disease in an individual with genetic variations in ABCA3 and SFTPC. Chest, 2010, 137(4), 969-973.
[http://dx.doi.org/10.1378/chest.09-0790] [PMID: 20371530]
[196]
Bridges, J.P.; Xu, Y.; Na, C-L.; Wong, H.R.; Weaver, T.E. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J. Cell Biol., 2006, 172(3), 395-407.
[http://dx.doi.org/10.1083/jcb.200508016] [PMID: 16449190]
[197]
Cameron, H.S.; Somaschini, M.; Carrera, P.; Hamvas, A.; Whitsett, J.A.; Wert, S.E.; Deutsch, G.; Nogee, L.M. A common mutation in the surfactant protein C gene associated with lung disease. J. Pediatr., 2005, 146(3), 370-375.
[http://dx.doi.org/10.1016/j.jpeds.2004.10.028] [PMID: 15756222]
[198]
Litao, M.K.S.; Hayes, D., Jr; Chiwane, S.; Nogee, L.M.; Kurland, G.; Guglani, L. A novel surfactant protein C gene mutation associated with progressive respiratory failure in infancy. Pediatr. Pulmonol., 2017, 52(1), 57-68.
[http://dx.doi.org/10.1002/ppul.23493] [PMID: 27362365]
[199]
Whitsett, J.A.; Wert, S.E.; Weaver, T.E. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med., 2010, 61, 105-119.
[http://dx.doi.org/10.1146/annurev.med.60.041807.123500] [PMID: 19824815]
[200]
Amin, R.S.; Wert, S.E.; Baughman, R.P.; Tomashefski, J.F., Jr; Nogee, L.M.; Brody, A.S.; Hull, W.M.; Whitsett, J.A. Surfactant protein deficiency in familial interstitial lung disease. J. Pediatr., 2001, 139(1), 85-92.
[http://dx.doi.org/10.1067/mpd.2001.114545] [PMID: 11445799]
[201]
Gonçalves, J.P.; Pinheiro, L.; Costa, M.; Silva, A.; Gonçalves, A.; Pereira, A. Novel ABCA3 mutations as a cause of respiratory distress in a term newborn. Gene, 2014, 534(2), 417-420.
[http://dx.doi.org/10.1016/j.gene.2013.11.015] [PMID: 24269975]
[202]
Matsumura, Y.; Ban, N.; Ueda, K.; Inagaki, N. Characterization and classification of ATP-binding cassette transporter ABCA3 mutants in fatal surfactant deficiency. J. Biol. Chem., 2006, 281(45), 34503-34514.
[http://dx.doi.org/10.1074/jbc.M600071200] [PMID: 16959783]
[203]
Hammel, M.; Michel, G.; Hoefer, C.; Klaften, M.; Müller-Höcker, J.; de Angelis, M.H.; Holzinger, A. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies. Biochem. Biophys. Res. Commun., 2007, 359(4), 947-951.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.219] [PMID: 17577581]
[204]
Matsumura, Y.; Sakai, H.; Sasaki, M.; Ban, N.; Inagaki, N. ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells. FEBS Lett., 2007, 581(17), 3139-3144.
[http://dx.doi.org/10.1016/j.febslet.2007.05.078] [PMID: 17574245]
[205]
Brasch, F.; Schimanski, S.; Mühlfeld, C.; Barlage, S.; Langmann, T.; Aslanidis, C.; Boettcher, A.; Dada, A.; Schroten, H.; Mildenberger, E.; Prueter, E.; Ballmann, M.; Ochs, M.; Johnen, G.; Griese, M.; Schmitz, G. Alteration of the pulmonary surfactant system in full-term infants with hereditary ABCA3 deficiency. Am. J. Respir. Crit. Care Med., 2006, 174(5), 571-580.
[http://dx.doi.org/10.1164/rccm.200509-1535OC] [PMID: 16728712]
[206]
Jouza, M.; Jimramovsky, T.; Sloukova, E.; Pecl, J.; Seehofnerova, A.; Jezova, M.; Urik, M.; Kunovsky, L.; Slaba, K.; Stourac, P.; Klincova, M.; Hubacek, J.A.; Jabandziev, P. A Newly Observed Mutation of the ABCA3 Gene Causing Lethal Respiratory Failure of a Full-Term Newborn: A Case Report. Front. Genet., 2020, 11568303
[http://dx.doi.org/10.3389/fgene.2020.568303] [PMID: 33110422]
[207]
Deutsch, G.H.; Young, L.R.; Deterding, R.R.; Fan, L.L.; Dell, S.D.; Bean, J.A.; Brody, A.S.; Nogee, L.M.; Trapnell, B.C.; Langston, C.; Albright, E.A.; Askin, F.B.; Baker, P.; Chou, P.M.; Cool, C.M.; Coventry, S.C.; Cutz, E.; Davis, M.M.; Dishop, M.K.; Galambos, C.; Patterson, K.; Travis, W.D.; Wert, S.E.; White, F.V. Diffuse lung disease in young children: Application of a novel classification scheme. Am. J. Respir. Crit. Care Med., 2007, 176(11), 1120-1128.
[http://dx.doi.org/10.1164/rccm.200703-393OC] [PMID: 17885266]
[208]
Boggaram, V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin. Sci. (Lond.), 2009, 116(1), 27-35.
[http://dx.doi.org/10.1042/CS20080068] [PMID: 19037882]
[209]
Hamvas, A.; Deterding, R.R.; Wert, S.E.; White, F.V.; Dishop, M.K.; Alfano, D.N.; Halbower, A.C.; Planer, B.; Stephan, M.J.; Uchida, D.A.; Williames, L.D.; Rosenfeld, J.A.; Lebel, R.R.; Young, L.R.; Cole, F.S.; Nogee, L.M. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest, 2013, 144(3), 794-804.
[http://dx.doi.org/10.1378/chest.12-2502] [PMID: 23430038]
[210]
Guillot, L.; Carré, A.; Szinnai, G.; Castanet, M.; Tron, E.; Jaubert, F.; Broutin, I.; Counil, F.; Feldmann, D.; Clement, A.; Polak, M.; Epaud, R. NKX2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in “Brain-Lung-Thyroid Syndrome”. Hum. Mutat., 2010, 31(2), E1146-E1162.
[http://dx.doi.org/10.1002/humu.21183] [PMID: 20020530]
[211]
Doyle, D.A.; Gonzalez, I.; Thomas, B.; Scavina, M. Autosomal dominant transmission of congenital hypothyroidism, neonatal respiratory distress, and ataxia caused by a mutation of NKX2-1. J. Pediatr., 2004, 145(2), 190-193.
[http://dx.doi.org/10.1016/j.jpeds.2004.04.011] [PMID: 15289765]
[212]
Eldridge; Zhang; Faro; Sweet; Eghtesady; Hamvas; Cole; Wambach. Outcomes of Lung Transplantation for Infants and Children with Genetic Disorders of Surfactant Metabolism. J. Pediatr., 2017, 184, 157-164.
[http://dx.doi.org/10.1016/j.jpeds.2017.01.017]
[213]
Wang; Liu; Zeng. Interactions of Particulate Matter and Pulmonary Surfactant: Implications for Human Health. Adv. Colloid Interface Sci., 2020, 284.
[http://dx.doi.org/10.1016/j.cis.2020.102244]
[214]
Kim, J.; Koca, H.K.; Viklund, E.; Olin, A. ERS International Congress, Madrid, SpainSeptember 28-October 02, 20192019..
[215]
Agarwal, A.R.; Yin, F.; Cadenas, E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am. J. Respir. Cell Mol. Biol., 2014, 51(2), 284-293.
[http://dx.doi.org/10.1165/rcmb.2013-0523OC] [PMID: 24625219]
[216]
Stenger, P.C.; Alonso, C.; Zasadzinski, J.A.; Waring, A.J.; Jung, C.L.; Pinkerton, K.E. Environmental tobacco smoke effects on lung surfactant film organization. Biochim. Biophys. Acta, 2009, 1788(2), 358-370.
[http://dx.doi.org/10.1016/j.bbamem.2008.11.021] [PMID: 19118518]
[217]
Touqui, L.; Arbibe, L. A role for phospholipase A2 in ARDS pathogenesis. Mol. Med. Today, 1999, 5(6), 244-249.
[http://dx.doi.org/10.1016/S1357-4310(99)01470-7] [PMID: 10366819]
[218]
De Luca, D.; van Kaam, A.H.; Tingay, D.G.; Courtney, S.E.; Danhaive, O.; Carnielli, V.P.; Zimmermann, L.J.; Kneyber, M.C.J.; Tissieres, P.; Brierley, J.; Conti, G.; Pillow, J.J.; Rimensberger, P.C. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir. Med., 2017, 5(8), 657-666.
[http://dx.doi.org/10.1016/S2213-2600(17)30214-X] [PMID: 28687343]
[219]
Calfee, C.S.; Janz, D.R.; Bernard, G.R.; May, A.K.; Kangelaris, K.N.; Matthay, M.A.; Ware, L.B. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest, 2015, 147(6), 1539-1548.
[http://dx.doi.org/10.1378/chest.14-2454] [PMID: 26033126]
[220]
Moussa, M.D.; Santonocito, C.; Fagnoul, D.; Donadello, K.; Pradier, O.; Gaussem, P.; De Backer, D.; Vincent, J-L. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med., 2015, 41(2), 231-238.
[http://dx.doi.org/10.1007/s00134-014-3589-9] [PMID: 25510299]
[221]
Calfee, C.S.; Delucchi, K.; Parsons, P.E.; Thompson, B.T.; Ware, L.B.; Matthay, M.A. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med., 2014, 2(8), 611-620.
[http://dx.doi.org/10.1016/S2213-2600(14)70097-9] [PMID: 24853585]
[222]
Lee, J.W.; Gonzalez, R.F.; Chapin, C.J.; Busch, J.; Fineman, J.R.; Gutierrez, J.A. Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288(5), L950-L957.
[http://dx.doi.org/10.1152/ajplung.00210.2004] [PMID: 15640287]
[223]
Glumoff, V.; Väyrynen, O.; Kangas, T.; Hallman, M. Degree of lung maturity determines the direction of the interleukin-1- induced effect on the expression of surfactant proteins. Am. J. Respir. Cell Mol. Biol., 2000, 22(3), 280-288.
[http://dx.doi.org/10.1165/ajrcmb.22.3.3788] [PMID: 10696064]
[224]
Herrero, R.; Sanchez, G.; Lorente, J.A. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann. Transl. Med., 2018, 6(2), 32.
[http://dx.doi.org/10.21037/atm.2017.12.18] [PMID: 29430449]
[225]
Rennard, S. I.; Basset, G.; Lecossier, D.; O’Donnell, K. M.; Pinkston, P.; Martin, P. G.; Crystal, R. G. Estimation of Volume of Epithelial Lining Fluid Recovered by Lavage Using Urea as Marker of Dilution. J Appl Physiol (1985), 1986, 60(2), 532-538.,
[http://dx.doi.org/10.1152/jappl.1986.60.2.532]
[226]
Sprung, C.L.; Rackow, E.C.; Fein, I.A.; Jacob, A.I.; Isikoff, S.K. The spectrum of pulmonary edema: differentiation of cardiogenic, intermediate, and noncardiogenic forms of pulmonary edema. Am. Rev. Respir. Dis., 1981, 124(6), 718-722.
[PMID: 7316276]
[227]
Sprung, C.L.; Long, W.M.; Marcial, E.H.; Schein, R.M.; Parker, R.E.; Shomer, T.; Brigham, K.L. Distribution of proteins in pulmonary edema. The value of fractional concentrations. Am. Rev. Respir. Dis., 1987, 136(4), 957-963.
[http://dx.doi.org/10.1164/ajrccm/136.4.957] [PMID: 2959184]
[228]
Gunasekara, L.; Schoel, W.M.; Schürch, S.; Amrein, M.W. A comparative study of mechanisms of surfactant inhibition. Biochim. Biophys. Acta, 2008, 1778(2), 433-444.
[http://dx.doi.org/10.1016/j.bbamem.2007.10.027] [PMID: 18036553]
[229]
Ishizaka, A.; Matsuda, T.; Albertine, K.H.; Koh, H.; Tasaka, S.; Hasegawa, N.; Kohno, N.; Kotani, T.; Morisaki, H.; Takeda, J.; Nakamura, M.; Fang, X.; Martin, T.R.; Matthay, M.A.; Hashimoto, S. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 286(6), L1088-L1094.
[http://dx.doi.org/10.1152/ajplung.00420.2002] [PMID: 12959931]
[230]
Zasadzinski, J.A.; Stenger, P.C.; Shieh, I.; Dhar, P. Overcoming rapid inactivation of lung surfactant: Analogies between competitive adsorption and colloid stability. Biochim. Biophys. Acta, 2010, 1798(4), 801-828.
[http://dx.doi.org/10.1016/j.bbamem.2009.12.010] [PMID: 20026298]
[231]
Georgiev, G.A.; Vassilieff, C.; Jordanova, A.; Tsanova, A.; Lalchev, Z. Foam Film Study of Albumin Inhibited Lung Surfactant Preparations: Effect of Added Hydrophilic PolymersElectronic Supplementary Information (ESI). Available. Soft Matter, 2012, 8(48), 12072-12079.
[http://dx.doi.org/10.1039/c2sm25937k]
[232]
López-Rodríguez, E.; Ospina, O.L.; Echaide, M.; Taeusch, H.W.; Pérez-Gil, J. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer. Biophys. J., 2012, 103(7), 1451-1459.
[http://dx.doi.org/10.1016/j.bpj.2012.08.024] [PMID: 23062337]
[233]
Zasadzinski, J.A.; Alig, T.F.; Alonso, C.; Bernardino de la Serna, J.; Perez-Gil, J.; Taeusch, H.W. Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory. Biophys. J., 2005, 89(3), 1621-1629.
[http://dx.doi.org/10.1529/biophysj.105.062646] [PMID: 16006630]
[234]
Sáenz, A.; López-Sánchez, A.; Mojica-Lázaro, J.; Martínez-Caro, L.; Nin, N.; Bagatolli, L.A.; Casals, C. Fluidizing effects of C-reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB J., 2010, 24(10), 3662-3673.
[http://dx.doi.org/10.1096/fj.09-142646] [PMID: 20484671]
[235]
Lee, H-R.; Park, S.; Choi, S.Q. Irremovable Blood Stain in Lung: Air-to-Interface Transport of Albumin and Its Mechanical Response to Biaxial Compression/Expansion. ACS Appl. Bio Mater., 2019, 2(12), 5551-5558.
[http://dx.doi.org/10.1021/acsabm.9b00623]
[236]
Williams, I.; Squires, T.M. Evolution and mechanics of mixed phospholipid fibrinogen monolayers. J. R. Soc. Interface, 2018, 15(141)20170895
[http://dx.doi.org/10.1098/rsif.2017.0895] [PMID: 29618528]
[237]
Devraj, R.; Nag, K.; Nahak, P.; Manna, K.; Fritzen-Garcia, M.; Thompson, D.; Makino, K.; Ohshima, H.; Nakahara, H.; Shibata, O. Impairing Effect of Fibrinogen on the Mono-/Bi-Layer Form of Bovine Lung Surfactant. Colloid Polym. Sci., 2014, 292(11), 2765-2774.
[http://dx.doi.org/10.1007/s00396-014-3319-4]
[238]
Nag, K.; Vidyashankar, S.; Devraj, R.; Fritzen Garcia, M.; Panda, A.K. Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase. J. Colloid Interface Sci., 2010, 352(2), 456-464.
[http://dx.doi.org/10.1016/j.jcis.2010.08.058] [PMID: 20850129]
[239]
Nag, K.; Hillier, A.; Parsons, K.; Garcia, M.F. Interactions of serum with lung surfactant extract in the bronchiolar and alveolar airway models. Respir. Physiol. Neurobiol., 2007, 157(2-3), 411-424.
[http://dx.doi.org/10.1016/j.resp.2007.02.001] [PMID: 17350899]
[240]
Milos, S.; Hiansen, J.Q.; Banaschewski, B.; Zuo, Y.Y.; Yao, L-J.; McCaig, L.A.; Lewis, J.; Yamashita, C.M.; Veldhuizen, R.A.W. The effect of diet-induced serum hypercholesterolemia on the surfactant system and the development of lung injury. Biochem. Biophys. Rep., 2016, 7, 180-187.
[http://dx.doi.org/10.1016/j.bbrep.2016.06.009] [PMID: 28758151]
[241]
Gunasekara, L.; Al-Saiedy, M.; Green, F. Pulmonary Surfactant Dysfunction in Pediatric Cystic Fibrosis: Mechanisms and Reversal with a Lipid-Sequestering Drug. Journal of Cystic Fibros is, 2017, 16(5), 565-572.
[http://dx.doi.org/10.1016/j.jcf.2017.04.015]
[242]
Kopincova, J.; Calkovska, A. Meconium-induced inflammation and surfactant inactivation: specifics of molecular mechanisms. Pediatr. Res., 2016, 79(4), 514-521.
[http://dx.doi.org/10.1038/pr.2015.265] [PMID: 26679157]
[243]
Andersson, J.M.; Grey, C.; Larsson, M.; Ferreira, T.M.; Sparr, E. Effect of cholesterol on the molecular structure and transitions in a clinical-grade lung surfactant extract. Proc. Natl. Acad. Sci. USA, 2017, 114(18), E3592-E3601.
[http://dx.doi.org/10.1073/pnas.1701239114] [PMID: 28416656]
[244]
Vockeroth, D.; Gunasekara, L.; Amrein, M.; Possmayer, F.; Lewis, J.F.; Veldhuizen, R.A.W. Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 298(1), L117-L125.
[http://dx.doi.org/10.1152/ajplung.00218.2009] [PMID: 19897745]
[245]
Echaide, M.; Autilio, C.; Arroyo, R.; Perez-Gil, J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim. Biophys. Acta Biomembr., 2017, 1859(9 Pt B), 1725-1739.
[http://dx.doi.org/10.1016/j.bbamem.2017.03.015] [PMID: 28341439]
[246]
Lopez-Rodriguez, E.; Echaide, M.; Cruz, A.; Taeusch, H.W.; Perez-Gil, J. Meconium impairs pulmonary surfactant by a combined action of cholesterol and bile acids. Biophys. J., 2011, 100(3), 646-655.
[http://dx.doi.org/10.1016/j.bpj.2010.12.3715] [PMID: 21281579]
[247]
De Luca, D.; Minucci, A.; Zecca, E.; Piastra, M.; Pietrini, D.; Carnielli, V.P.; Zuppi, C.; Tridente, A.; Conti, G.; Capoluongo, E.D. Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med., 2009, 35(2), 321-326.
[http://dx.doi.org/10.1007/s00134-008-1321-3] [PMID: 18853138]
[248]
Ma, G.; Allen, H.C. Condensing effect of palmitic acid on DPPC in mixed Langmuir monolayers. Langmuir, 2007, 23(2), 589-597.
[http://dx.doi.org/10.1021/la061870i] [PMID: 17209610]
[249]
Hite, R.D.; Seeds, M.C.; Jacinto, R.B.; Grier, B.L.; Waite, B.M.; Bass, D.A. Lysophospholipid and fatty acid inhibition of pulmonary surfactant: non-enzymatic models of phospholipase A2 surfactant hydrolysis. Biochim. Biophys. Acta, 2005, 1720(1-2), 14-21.
[http://dx.doi.org/10.1016/j.bbamem.2005.10.014] [PMID: 16376294]
[250]
Sevastou, I.; Kaffe, E.; Mouratis, M.A.; Aidinis, V. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim. Biophys. Acta, 2013, 1831(1), 42-60.
[http://dx.doi.org/10.1016/j.bbalip.2012.07.019] [PMID: 22867755]
[251]
De Luca, D.; Capoluongo, E.; Rigo, V. Secretory phospholipase A2 pathway in various types of lung injury in neonates and infants: A multicentre translational study. BMC Pediatr., 2011, 11, 101.
[http://dx.doi.org/10.1186/1471-2431-11-101] [PMID: 22067747]
[252]
de Luca, D.; Carnielli, V.; Minucci, A.; Tripodi, D.; Piastra, M.; Pietrini, D.; Capoluongo, E.D.; Conti, G. Poster presentations: lung, respiration. Pediatric Research, 2011, 70, 508.
[253]
Al-Saiedy, M.; Pratt, R.; Lai, P.; Kerek, E.; Joyce, H.; Prenner, E.; Green, F.; Ling, C.C.; Veldhuizen, R.; Ghandorah, S.; Amrein, M. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(4), 1040-1049.
[http://dx.doi.org/10.1016/j.bbagen.2018.01.008] [PMID: 29413906]
[254]
Rodríguez-Capote, K.; Manzanares, D.; Haines, T.; Possmayer, F. Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Biophys. J., 2006, 90(8), 2808-2821.
[http://dx.doi.org/10.1529/biophysj.105.073106] [PMID: 16443649]
[255]
Putman, E.; van Golde, L.M.; Haagsman, H.P. Toxic oxidant species and their impact on the pulmonary surfactant system. Lung, 1997, 175(2), 75-103.
[http://dx.doi.org/10.1007/PL00007561] [PMID: 9042666]
[256]
Starosta, V.; Griese, M. Oxidative damage to surfactant protein D in pulmonary diseases. Free Radic. Res., 2006, 40(4), 419-425.
[http://dx.doi.org/10.1080/10715760600571248] [PMID: 16517507]
[257]
Kuzmenko, A.I.; Wu, H.; Bridges, J.P.; McCormack, F.X. Surfactant lipid peroxidation damages surfactant protein A and inhibits interactions with phospholipid vesicles. J. Lipid Res., 2004, 45(6), 1061-1068.
[http://dx.doi.org/10.1194/jlr.M300360-JLR200] [PMID: 15026426]
[258]
Enami, S.; Colussi, A.J. OH-Radical Oxidation of Lung Surfactant Protein B on Aqueous Surfaces. Mass Spectrom. (Tokyo), 2018, 7(2), S0077.
[http://dx.doi.org/10.5702/massspectrometry.S0077] [PMID: 30533342]
[259]
Kim, H.I.; Kim, H.; Shin, Y.S.; Beegle, L.W.; Jang, S.S.; Neidholdt, E.L.; Goddard, W.A.; Heath, J.R.; Kanik, I.; Beauchamp, J.L. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system. J. Am. Chem. Soc., 2010, 132(7), 2254-2263.
[http://dx.doi.org/10.1021/ja908477w] [PMID: 20121208]
[260]
Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Plavka, R.; Saugstad, O.D.; Simeoni, U.; Speer, C.P.; Vento, M.; Halliday, H.L. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants--2013 update. Neonatology, 2013, 103(4), 353-368.
[http://dx.doi.org/10.1159/000349928] [PMID: 23736015]
[261]
Cavicchioli, P.; Zimmermann, L.J.; Cogo, P.E.; Badon, T.; Giordano, G.; Torresin, M.; Zacchello, F.; Carnielli, V.P. Endogenous surfactant turnover in preterm infants with respiratory distress syndrome studied with stable isotope lipids. Am. J. Respir. Crit. Care Med., 2001, 163(1), 55-60.
[http://dx.doi.org/10.1164/ajrccm.163.1.2005029] [PMID: 11208626]
[262]
Bahadue, F.L.; Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev., 2012, 11CD001456
[http://dx.doi.org/10.1002/14651858.CD001456.pub2] [PMID: 23152207]
[263]
Suresh, G.K.; Soll, R.F. Overview of surfactant replacement trials. J. Perinatol., 2005, 25(S2)(Suppl. 2), S40-S44.
[http://dx.doi.org/10.1038/sj.jp.7211320] [PMID: 15861172]
[264]
Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; Speer, C.P.; Vento, M.; Visser, G.H.A.; Halliday, H.L. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology, 2019, 115(4), 432-450.
[http://dx.doi.org/10.1159/000499361] [PMID: 30974433]
[265]
Ramanathan, R. Animal-derived surfactants: where are we? The evidence from randomized, controlled clinical trials. J. Perinatol., 2009, 29(S2)(Suppl. 2), S38-S43.
[http://dx.doi.org/10.1038/jp.2009.31] [PMID: 19399008]
[266]
Ardell, S.; Pfister, R.H.; Soll, R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst. Rev., 2015, 8CD000144
[http://dx.doi.org/10.1002/14651858.CD000144.pub3] [PMID: 26301526]
[267]
Phibbs, R.H.; Ballard, R.A.; Clements, J.A.; Heilbron, D.C.; Phibbs, C.S.; Schlueter, M.A.; Sniderman, S.H.; Tooley, W.H.; Wakeley, A. Initial clinical trial of EXOSURF, a protein-free synthetic surfactant, for the prophylaxis and early treatment of hyaline membrane disease. Pediatrics, 1991, 88(1), 1-9.
[PMID: 2057244]
[268]
Zhang, L.; Cao, H.Y.; Zhao, S.; Yuan, L.J.; Han, D.; Jiang, H.; Wu, S.; Wu, H.M. Effect of exogenous pulmonary surfactants on mortality rate in neonatal respiratory distress syndrome: A network meta-analysis of randomized controlled trials. Pulm. Pharmacol. Ther., 2015, 34, 46-54.
[http://dx.doi.org/10.1016/j.pupt.2015.08.005] [PMID: 26296793]
[269]
Pfister, R.H.; Soll, R.F.; Wiswell, T. Protein containing synthetic surfactant versus animal derived surfactant extract for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst. Rev., 2007, (4)CD006069
[http://dx.doi.org/10.1002/14651858.CD006069.pub3] [PMID: 17943881]
[270]
Sinha, S.K.; Lacaze-Masmonteil, T.; Valls i Soler, A.; Wiswell, T.E.; Gadzinowski, J.; Hajdu, J.; Bernstein, G.; Sanchez-Luna, M.; Segal, R.; Schaber, C.J.A.; Massaro, J.; d’Agostino, R. A multicenter, randomized, controlled trial of lucinactant versus poractant alfa among very premature infants at high risk for respiratory distress syndrome. Pediatrics, 2005, 115(4), 1030-1038.
[http://dx.doi.org/10.1542/peds.2004-2231] [PMID: 15805381]
[271]
Moya, F.R.; Gadzinowski, J.; Bancalari, E.; Salinas, V.; Kopelman, B.; Bancalari, A.; Kornacka, M.K.; Merritt, T.A.; Segal, R.; Schaber, C.J.A.; Tsai, H.; Massaro, J.; d’Agostino, R. A multicenter, randomized, masked, comparison trial of lucinactant, colfosceril palmitate, and beractant for the prevention of respiratory distress syndrome among very preterm infants. Pediatrics, 2005, 115(4), 1018-1029.
[http://dx.doi.org/10.1542/peds.2004-2183] [PMID: 15805380]
[272]
Mazela, J.; Merritt, T.A.; Gadzinowski, J.; Sinha, S. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases. Acta Paediatr., 2006, 95(9), 1036-1048.
[http://dx.doi.org/10.1080/08035250600615168] [PMID: 16938747]
[273]
Moya, F.R.; Hoffman, D.R.; Zhao, B.; Johnston, J.M. Platelet-activating factor in surfactant preparations. Lancet, 1993, 341(8849), 858-860.
[http://dx.doi.org/10.1016/0140-6736(93)93062-6] [PMID: 8096563]
[274]
Curosurf (Poractant Alfa) Intratracheal Suspension [Prescribing Information]., 2020.
[275]
BERNHARD, W.; MOTTAGHIAN, J.; GEBERT, A.; RAU, G. A.; von der HARDT, H.; POETS, C. F. Commercial versus Native Surfactants. Am. J. Respir. Crit. Care Med., 2000, 162(4), 1524-1533.
[http://dx.doi.org/10.1164/ajrccm.162.4.9908104]
[276]
Lugones, Y.; Blanco, O.; López-Rodríguez, E.; Echaide, M.; Cruz, A.; Pérez-Gil, J. Inhibition and counterinhibition of Surfacen, a clinical lung surfactant of natural origin. PLoS One, 2018, 13(9)e0204050
[http://dx.doi.org/10.1371/journal.pone.0204050] [PMID: 30235278]
[277]
Vázquez, O.M.; López, M.L.; Dieppa, F.D.; López, M.A.P.; Abad, A.A.; Rivero, G.J.; Tapia, D.M. Estudio de La Eficacia Del Surfacen En El Distress Respiratorio Del Recién Nacido. Rev. Cubana Pediatr., 1999, 71(2) [Article In Cuban].,
[278]
Manzanares, D.; Díaz, E.; Alfonso, W.; Escobar, A.; Colomé, H.; Muñoz, M.C.; Noa, M.; Rabell, S.; Hidalgo, A. Surfactante Pulmonar Porcino. República de Cuba (Article In Cuban), 1995, 35-42.,
[279]
Cimato; Hoyos Obando; Facorro; Martínez Sarrasague. Analysis of the Structure and Surfactant Activity of Novel Formulations Containing Exogenous Pulmonary Surfactant and Glucocorticoids. Respir. Physiol. Neurobiol., 2016, 233, 33-40.
[http://dx.doi.org/10.1016/j.resp.2016.07.009] [PMID: 27476933]
[280]
Nialtec. Prosurf. Available from:. http://Www.Nialtec.Com
[281]
Hager, A.; De Paoli, T. Method for Extracting and Purifying Pulmonary Surfactant. U.S. Patent 6172203B1, . 2001.
[282]
Survanta (Beractant) [Prescribing Information].AbbVie Inc: North Chicago, IL, 2019;
[283]
Seeger, W.; Grube, C.; Günther, A.; Schmidt, R. Surfactant inhibition by plasma proteins: differential sensitivity of various surfactant preparations. Eur. Respir. J., 1993, 6(7), 971-977.
[284]
Gregoriadis, G. Interactions of Liposomes with the Biological Milieu In: Liposome Technology; Gregoriadis, G., Ed.; , 2019; 3, pp. 327-345.
[285]
Inpharma Weekly, 2003, 1395(1), 22..
[http://dx.doi.org/10.2165/00128413-200313950-00047]
[286]
Bautin, A.E.; Osovskikh, V.V.; Khubulava, G.G.; Granov, D.A.; Kozlov, I.A.; Erokhin, V.V. Multicenter Clinical Trials of Surfactant-BL for the Treatment of Adult Respiratory Distress Syndrome. Clinical Research of Drugs in Russia., 2002, (2), 18-23. [Article In Russian].,
[287]
Infasurf (Calfactant).[Prescribing Information]; ONY Biotech Inc: Amherst, NY, 2018.
[288]
Bloom, B.T.; Kattwinkel, J.; Hall, R.T.; Delmore, P.M.; Egan, E.A.; Trout, J.R.; Malloy, M.H.; Brown, D.R.; Holzman, I.R.; Coghill, C.H.; Carlo, W.A.; Pramanik, A.K.; McCaffree, M.A.; Toubas, P.L.; Laudert, S.; Gratny, L.L.; Weatherstone, K.B.; Seguin, J.H.; Willett, L.D.; Gutcher, G.R.; Mueller, D.H.; Topper, W.H. Comparison of Infasurf (calf lung surfactant extract) to Survanta (Beractant) in the treatment and prevention of respiratory distress syndrome. Pediatrics, 1997, 100(1), 31-38.
[http://dx.doi.org/10.1542/peds.100.1.31] [PMID: 9200357]
[289]
Kahn, M.C.; Anderson, G.J.; Anyan, W.R.; Hall, S.B. Phosphatidylcholine molecular species of calf lung surfactant. Am. J. Physiol., 1995, 269(5 Pt 1), L567-L573.
[http://dx.doi.org/10.1152/ajplung.1995.269.5.L567] [PMID: 7491974]
[290]
Yalaz, M.; Arslanoglu, S.; Akisu, M.; Atik, T.; Ergun, O.; Kultursay, N. A comparison of efficacy between two natural exogenous surfactant preparations in premature infants with respiratory distress syndrome. Klin. Padiatr., 2004, 216(4), 230-235.
[http://dx.doi.org/10.1055/s-2004-44899] [PMID: 15284947]
[291]
Wauer. Respiratory Distress Syndrome.Wauer, R.R., Ed.; Surfactant Therapy: Basic Principles, Diagnosis, Therapy; Thieme Medical Publication: Stuttgart, Germany, 1998, pp. 2-19.,
[292]
Canadian BLES (Bovine Lipid Extract Surfactant) Product Monograph;. BLES Biochemicals Inc., 2012.
[293]
Government of Canada. Report on New Patented Drugs - BLES. Available from:. http://Www.Pmprb-Cepmb.Gc.ca/View.Asp?Ccid=592
[294]
Yu, S.; Harding, P.G.; Smith, N.; Possmayer, F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids, 1983, 18(8), 522-529.
[http://dx.doi.org/10.1007/BF02535391] [PMID: 6688646]
[295]
Package Insert Calf Pulmonary Surfactant for Injection, Calsurf..
[296]
Hentschel, R.; Bohlin, K.; van Kaam, A.; Fuchs, H.; Danhaive, O. Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr. Res., 2020, 88(2), 176-183.
[http://dx.doi.org/10.1038/s41390-020-0750-8] [PMID: 31926483]
[297]
Ramanathan, R.; Bhatia, J.J.; Sekar, K.; Ernst, F.R. Mortality in preterm infants with respiratory distress syndrome treated with poractant alfa, calfactant or beractant: A retrospective study. J. Perinatol., 2013, 33(2), 119-125.
[http://dx.doi.org/10.1038/jp.2011.125] [PMID: 21886094]
[298]
Sánchez-Mendiola, M.; Martínez-Natera, O.C.; Herrera-Maldonado, N.; Ortega-Arroyo, J. Treatment of hyaline membrane disease in the preterm newborn with exogenous lung surfactant: A controlled study. Gac. Med. Mex., 2005, 141(4), 267-271. [Article In Cuban].,
[PMID: 16164120]
[299]
Blanco, O.; Cruz, A.; Ospina, O.L.; López-Rodriguez, E.; Vázquez, L.; Pérez-Gil, J. Interfacial behavior and structural properties of a clinical lung surfactant from porcine source. Biochim. Biophys. Acta, 2012, 1818(11), 2756-2766.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.023] [PMID: 22771553]
[300]
Wang, H.; Gao, X.; Liu, C.; Yan, C.; Lin, X.; Yang, C.; Lin, Z.; Zhu, W.; Yang, Z.; Yu, F.; Qiu, Y.; Liu, X.; Zhou, X.; Chen, C.; Sun, B. Morbidity and mortality of neonatal respiratory failure in China: surfactant treatment in very immature infants. Pediatrics, 2012, 129(3), e731-e740.
[http://dx.doi.org/10.1542/peds.2011-0725] [PMID: 22331337]
[301]
Rong, Z.; Chang, L.; Cheng, H.; Wang, H.; Zhu, X.; Peng, F.; Fan, Q.; Lu, W.; Pan, R.; Xiong, L.; Jiao, R.; Sun, J.; Xia, S.; Xie, J. A Multicentered Randomized Study on Early versus Rescue Calsurf Administration for the Treatment of Respiratory Distress Syndrome in Preterm Infants. Am. J. Perinatol., 2019, 36(14), 1492-1497.
[http://dx.doi.org/10.1055/s-0039-1678530] [PMID: 30716790]
[302]
Kong, X.; Cui, Q.; Hu, Y.; Huang, W.; Ju, R.; Li, W.; Wang, R.; Xia, S.; Yu, J.; Zhu, T.; Feng, Z. Bovine Surfactant Replacement Therapy in Neonates of Less than 32 Weeks’ Gestation: A Multicenter Controlled Trial of Prophylaxis versus Early Treatment in China--a Pilot Study. Pediatr. Neonatol., 2016, 57(1), 19-26.
[http://dx.doi.org/10.1016/j.pedneo.2015.03.007] [PMID: 26059103]
[303]
Infasurf (Calfactant). [Prescribing Information]; ONY Biotech Inc: Amherst, NY, 2018.
[304]
Notter, R.H.; Egan, E.A.; Kwong, M.S.; Holm, B.A.; Shapiro, D.L. Lung surfactant replacement in premature lambs with extracted lipids from bovine lung lavage: effects of dose, dispersion technique, and gestational age. Pediatr. Res., 1985, 19(6), 569-577.
[http://dx.doi.org/10.1203/00006450-198506000-00014] [PMID: 3839302]
[305]
Glaser, K.; Wright, C.J. Aerosolized Calfactant in Infants With RDS: Surfactant Replacement 2.0? Pediatrics, 2020, 146(5)E2020021576
[http://dx.doi.org/10.1542/peds.2020-021576] [PMID: 33060257]
[306]
Cummings, J.J.; Gerday, E.; Minton, S.; Katheria, A.; Albert, G.; Flores-Torres, J.; Famuyide, M.; Lampland, A.; Guthrie, S.; Kuehn, D.; Weitkamp, J.H.; Fort, P.; Abu Jawdeh, E.G.; Ryan, R.M.; Martin, G.C.; Swanson, J.R.; Mulrooney, N.; Eyal, F.; Gerstmann, D.; Kumar, P.; Wilding, G.E.; Egan, E.A. Aerosolized Calfactant for Newborns With Respiratory Distress: A Randomized Trial. Pediatrics, 2020, 146(5)E20193967
[http://dx.doi.org/10.1542/peds.2019-3967] [PMID: 33060258]
[307]
Bianco, F.R.E. Surfactant Aerosolization: Technical Details That Matter. Pediatrics, 2020, 146(5)E20193967
[PMID: 33060258]
[308]
Onybiotech. Latest News: Aerosolized Surfactant, the Trial Results Are in. Available from:, Https://Www.Onybiotech. Com/Aerosolized-Surfactant-the-Trial-Results-Are-in/
[309]
Roberts, C. T.; Manley, B. J.; O’Shea, J. E.; Stark, M.; Andersen, C.; Davis, P. G.; Buckmaster, A. Supraglottic Airway Devices for Administration of Surfactant to Newborn Infants with Respiratory Distress Syndrome: A Narrative Review.Arch Dis Child Fetal Neonatal Ed prepub,319804.,
[http://dx.doi.org/10.1136/archdischild-2020-319804]
[310]
DiBlasi, R.; Micheletti, K.J.; Chan, M.; Zimmermann, J.; Telfer, C.; Fink, J.B. Abstracts: International Society for Aerosols in Medicine e.V. 21st ISAM Congress Santa Fe, NM June 3-7, 2017. J. Aerosol Med. Pulm. Drug Deliv., 2017, 30(3), A1-A38.
[http://dx.doi.org/10.1089/jamp.2017.ab01.abstracts] [PMID: 28504922]
[311]
Jardine, J.; Liley, H. AN OPEN‐LABEL STUDY OF SAFETY AND TOLERABILITY OF AEROFACTTM (AEROSOLIZED ALVEOFACT®) IN PRETERM INFANTS ON NCPAP AT RISK FOR WORSENING RESPIRATORY DISTRESS SYNDROME. J. Paediatr. Child Health, 2019, 55(Suppl. 1), 27..
[http://dx.doi.org/10.1111/jpc.14409_66]
[312]
Pillow, J.J.; Minocchieri, S. Innovation in surfactant therapy II: surfactant administration by aerosolization. Neonatology, 2012, 101(4), 337-344.
[http://dx.doi.org/10.1159/000337354] [PMID: 22940623]
[313]
Nord, A.; Linner, R.; Salomone, F.; Bianco, F.; Ricci, F.; Murgia, X.; Schlun, M.; Cunha-Goncalves, D.; Perez-de-Sa, V. Lung deposition of nebulized surfactant in newborn piglets: Nasal CPAP vs Nasal IPPV. Pediatr. Pulmonol., 2020, 55(2), 514-520.
[http://dx.doi.org/10.1002/ppul.24603] [PMID: 31833668]
[314]
Bianco, F.; Ricci, F.; Catozzi, C.; Murgia, X.; Schlun, M.; Bucholski, A.; Hetzer, U.; Bonelli, S.; Lombardini, M.; Pasini, E.; Nutini, M.; Pertile, M.; Minocchieri, S.; Simonato, M.; Rosa, B.; Pieraccini, G.; Moneti, G.; Lorenzini, L.; Catinella, S.; Villetti, G.; Civelli, M.; Pioselli, B.; Cogo, P.; Carnielli, V.; Dani, C.; Salomone, F. From bench to bedside: In vitro and in vivo evaluation of a neonate-focused nebulized surfactant delivery strategy. Respir. Res., 2019, 20(1), 134.
[http://dx.doi.org/10.1186/s12931-019-1096-9] [PMID: 31266508]
[315]
Minocchieri, S.; Knoch, S.; Schoel, W.M.; Ochs, M.; Nelle, M. Nebulizing poractant alfa versus conventional instillation: Ultrastructural appearance and preservation of surface activity. Pediatr. Pulmonol., 2014, 49(4), 348-356.
[http://dx.doi.org/10.1002/ppul.22838] [PMID: 24039226]
[316]
Minocchieri, S.; Burren, J.M.; Bachmann, M.A.; Stern, G.; Wildhaber, J.; Buob, S.; Schindel, R.; Kraemer, R.; Frey, U.P.; Nelle, M. Development of the premature infant nose throat-model (PrINT-Model): An upper airway replica of a premature neonate for the study of aerosol delivery. Pediatr. Res., 2008, 64(2), 141-146.
[http://dx.doi.org/10.1203/PDR.0b013e318175dcfa] [PMID: 18391845]
[317]
Rey-Santano, C.; Mielgo, V.; Gomez-Solaetxe, M.A.; Ricci, F.; Bianco, F.; Salomone, F.; Loureiro, B. Dose-Response Study on Surfactant Nebulization Therapy During Nasal Continuous Positive Airway Pressure Ventilation in Spontaneously Breathing Surfactant-Deficient Newborn Piglets. Pediatr. Crit. Care Med., 2020, 21(7), e456-e466.
[http://dx.doi.org/10.1097/PCC.0000000000002313] [PMID: 32195907]
[318]
Rey-Santano, C.; Mielgo, V.E.; Gomez-Solaetxe, M.A.; Bianco, F.; Salomone, F.; Loureiro, B. Nebulized Poractant Alfa Reduces the Risk of Respiratory Failure at 72 Hours in Spontaneously Breathing Surfactant-Deficient Newborn Piglets. Crit. Care Med., 2020, 48(6), e523-e531.
[http://dx.doi.org/10.1097/CCM.0000000000004318] [PMID: 32301841]
[319]
Minocchieri, S.; Berry, C.A.; Pillow, J.J. Nebulised surfactant to reduce severity of respiratory distress: A blinded, parallel, randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed., 2019, 104(3), F313-F319.
[http://dx.doi.org/10.1136/archdischild-2018-315051] [PMID: 30049729]
[320]
Narayanan, S.; Paul, V.K.; Singh, M.; Pande, J.N.; Rao, D.N.; Vijayaraghvan, M.; Deorari, A.K. Preparation & standardization of the goat lung surfactant extract. Indian J. Med. Res., 1998, 107, 113-117.
[PMID: 9599949]
[321]
Jain, K.; Nangia, S.; Ballambattu, V.B.; Sundaram, V.; Sankar, M.J.; Ramji, S.; Vishnubhatla, S.; Thukral, A.; Gupta, Y.K.; Plakkal, N.; Sundaram, M.; Jajoo, M.; Kumar, P.; Jayaraman, K.; Jain, A.; Saili, A.; Murugesan, A.; Chawla, D.; Murki, S.; Nanavati, R.; Rao, S.; Vaidya, U.; Mehta, A.; Arora, K.; Mondkar, J.; Arya, S.; Bahl, M.; Utture, A.; Manerkar, S.; Bhat, S.R.; Parikh, T.; Kumar, M.; Bajpai, A.; Sivanandan, S.; Dhawan, P.K.; Vishwakarma, G.; Bangera, S.; Kumar, S.; Gopalakrishnan, S.; Jindal, A.; Natarajan, C.K.; Saini, A.; Karunanidhi, S.; Malik, M.; Narang, P.; Kaur, G.; Yadav, C.P.; Deorari, A.; Paul, V.K.; Agarwal, R. Goat lung surfactant for treatment of respiratory distress syndrome among preterm neonates: A multi-site randomized non-inferiority trial. J. Perinatol., 2019, 39(Suppl. 1), 3-12.
[http://dx.doi.org/10.1038/s41372-019-0472-0] [PMID: 31485014]
[322]
Madsen, J.; Panchal, M.H.; Mackay, R.A.; Echaide, M.; Koster, G.; Aquino, G.; Pelizzi, N.; Perez-Gil, J.; Salomone, F.; Clark, H.W.; Postle, A.D. Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice. J. Lipid Res., 2018, 59(10), 1880-1892.
[http://dx.doi.org/10.1194/jlr.M085431] [PMID: 30108154]
[323]
Glaser, K.; Fehrholz, M.; Henrich, B.; Claus, H.; Papsdorf, M.; Speer, C.P. Anti-inflammatory effects of the new generation synthetic surfactant CHF5633 on Ureaplasma-induced cytokine responses in human monocytes. Expert Rev. Anti Infect. Ther., 2017, 15(2), 181-189.
[http://dx.doi.org/10.1080/14787210.2017.1259067] [PMID: 27828734]
[324]
Ricci, F.; Murgia, X.; Razzetti, R.; Pelizzi, N.; Salomone, F. In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633. Pediatr. Res., 2017, 81(2), 369-375.
[http://dx.doi.org/10.1038/pr.2016.231] [PMID: 27973472]
[325]
Sato, A. Ikegami, M. SP-B and SP-C containing new synthetic surfactant for treatment of extremely immature lamb lung. PLoS One, 2012, 7(7)e39392
[http://dx.doi.org/10.1371/journal.pone.0039392] [PMID: 22808033]
[326]
Ramanathan, R.; Biniwale, M.; Sekar, K.; Hanna, N.; Golombek, S.; Bhatia, J.; Naylor, M.; Fabbri, L.; Varoli, G.; Santoro, D.; Del Buono, D.; Piccinno, A.; Dammann, C.E. Synthetic Surfactant CHF5633 Compared with Poractant Alfa in the Treatment of Neonatal Respiratory Distress Syndrome: A Multicenter, Double-Blind, Randomized Controlled Clinical Trial. J. Pediatr., 2020, 225, 90-96.e1. Ramanathan; Biniwale; Sekar; Hanna; Golombek; Bhatia; Naylor; Fabbri; Varoli; Santoro; et al. Synthetic Surfactant CHF5633 Compared with Poractant Alfa in the Treatment of Neonatal Respiratory Distress Syndrome:.
[http://dx.doi.org/10.1016/j.jpeds.2020.06.024] [PMID: 32553868]
[327]
Sweet, D.G.; Turner, M.A.; Straňák, Z.; Plavka, R.; Clarke, P.; Stenson, B.J.; Singer, D.; Goelz, R.; Fabbri, L.; Varoli, G.; Piccinno, A.; Santoro, D.; Speer, C.P. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome. Arch. Dis. Child. Fetal Neonatal Ed., 2017, 102(6), F497-F503.
[http://dx.doi.org/10.1136/archdischild-2017-312722] [PMID: 28465315]
[328]
Guardia, C.; Simmons, P.; Segal, R.; Finer, N.; Moya, F.; Mazela, J.; Gregory, T.; Simonson, S. Abstracts 2019 Annual Meeting of the Pediatric Academic Societies (PAS), Baltimore, MD; USAApril 24-May 1, 20192019.
[329]
Mazela, J.; Finer, N.; Segal, R.; Simmons, P.; Weinstein, L.; Simonson, S. Abstracts: 7th Congress of the European Academy of Paediatric Societies Held Jointly with the 2018 Annual Meeting of the European Academy of Paediatrics( EAP) 2018 Annual Meeting of the European Society for Paediatric Research (ESPR) and European Society of Paediatric and Neonatal Intensive Care (ESPNIC),, 2018.
[330]
Airway Therapeutics: Pipeline Available from: . https://www.airwaytherapeutics.com/pipeline/
[331]
Ikegami, M.; Carter, K.; Bishop, K.; Yadav, A.; Masterjohn, E.; Brondyk, W.; Scheule, R.K.; Whitsett, J.A. Intratracheal recombinant surfactant protein d prevents endotoxin shock in the newborn preterm lamb. Am. J. Respir. Crit. Care Med., 2006, 173(12), 1342-1347.
[http://dx.doi.org/10.1164/rccm.200509-1485OC] [PMID: 16556693]
[332]
Zhang, L.; Ikegami, M.; Crouch, E.C.; Korfhagen, T.R.; Whitsett, J.A. Activity of pulmonary surfactant protein-D (SP-D) in vivo is dependent on oligomeric structure. J. Biol. Chem., 2001, 276(22), 19214-19219.
[http://dx.doi.org/10.1074/jbc.M010191200] [PMID: 11278637]
[333]
Ikegami, M.; Whitsett, J.A.; Jobe, A.; Ross, G.; Fisher, J.; Korfhagen, T. Surfactant metabolism in SP-D gene-targeted mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(3), L468-L476.
[http://dx.doi.org/10.1152/ajplung.2000.279.3.L468] [PMID: 10956621]
[334]
Korfhagen, T.R.; Sheftelyevich, V.; Burhans, M.S.; Bruno, M.D.; Ross, G.F.; Wert, S.E.; Stahlman, M.T.; Jobe, A.H.; Ikegami, M.; Whitsett, J.A.; Fisher, J.H. Surfactant protein-D regulates surfactant phospholipid homeostasis in vivo. J. Biol. Chem., 1998, 273(43), 28438-28443.
[http://dx.doi.org/10.1074/jbc.273.43.28438] [PMID: 9774472]
[336]
Acorda Therapeutics. ARCUS®: Innovative Technology Platform for Inhaled Medicines. Available from:. http://www.acorda.com/products/arcus-technology
[337]
Walther, F.J.; Gupta, M.; Lipp, M.M.; Chan, H.; Krzewick, J.; Gordon, L.M.; Waring, A.J. Aerosol delivery of dry powder synthetic lung surfactant to surfactant-deficient rabbits and preterm lambs on non-invasive respiratory support. Gates Open Res., 2019, 3, 6.
[http://dx.doi.org/10.12688/gatesopenres.12899.2] [PMID: 31131369]
[338]
Brown, N.J.; Lin, J.S.; Barron, A.E. Helical side chain chemistry of a peptoid-based SP-C analogue: Balancing structural rigidity and biomimicry. Biopolymers, 2019, 110(6)e23277
[http://dx.doi.org/10.1002/bip.23277] [PMID: 30972750]
[339]
Czyzewski, A.M.; McCaig, L.M.; Dohm, M.T.; Broering, L.A.; Yao, L-J.; Brown, N.J.; Didwania, M.K.; Lin, J.S.; Lewis, J.F.; Veldhuizen, R.; Barron, A.E. Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins. Sci. Rep., 2018, 8(1), 6795.
[http://dx.doi.org/10.1038/s41598-018-25009-3] [PMID: 29717157]
[340]
Brown, N.J.; Dohm, M.T.; Bernardino de la Serna, J.; Barron, A.E. Biomimetic N-terminal alkylation of peptoid analogues of surfactant protein C. Biophys. J., 2011, 101(5), 1076-1085.
[http://dx.doi.org/10.1016/j.bpj.2011.04.055] [PMID: 21889444]
[341]
Dohm, M.T.; Brown, N.J.; Seurynck-Servoss, S.L.; Bernardino de la Serna, J.; Barron, A.E. Mimicking SP-C palmitoylation on a peptoid-based SP-B analogue markedly improves surface activity. Biochim. Biophys. Acta, 2010, 1798(9), 1663-1678.
[http://dx.doi.org/10.1016/j.bbamem.2010.04.012] [PMID: 20441770]
[342]
Trimunocor: Our Solution. Available from:, http://www. trimunocor.com/solution.html
[343]
Clark, H.W. Untapped therapeutic potential of surfactant proteins: is there a case for recombinant SP-D supplementation in neonatal lung disease? Neonatology, 2010, 97(4), 380-387.
[http://dx.doi.org/10.1159/000297770] [PMID: 20551708]
[344]
Knudsen, L.; Wucherpfennig, K.; Mackay, R.M.; Townsend, P.; Mühlfeld, C.; Richter, J.; Hawgood, S.; Reid, K.; Clark, H.; Ochs, M. A recombinant fragment of human surfactant protein D lacking the short collagen-like stalk fails to correct morphological alterations in lungs of SP-D deficient mice. Anat. Rec. (Hoboken), 2009, 292(2), 183-189.
[http://dx.doi.org/10.1002/ar.20830] [PMID: 19177340]
[346]
van Rensburg, L.; van Zyl, J.M.; Smith, J. Deposition and transport of linezolid mediated by a synthetic surfactant Synsurf® within a pressurized metered dose inhaler: A Calu-3 model. Drug Des. Devel. Ther., 2018, 12, 1107-1118.
[http://dx.doi.org/10.2147/DDDT.S147035] [PMID: 29765201]
[347]
van Zyl, J.M. Smith, J Surfactant Treatment before First Breath for Respiratory Distress Syndrome in Preterm Lambs: Comparison of a Peptide-Containing Synthetic Lung Surfactant with Porcine-Derived Surfactant. Drug Des. Devel. Ther., 2013, 2013, 905-916.
[http://dx.doi.org/10.2147/DDDT.S47270]
[348]
Choi, Y-S.; Chung, S-H.; Bae, C-W. A Combination of Short and Simple Surfactant Protein B and C Analogues as a New Synthetic Surfactant: In vitro and Animal Experiments. Yonsei Med. J., 2017, 58(4), 823-828.
[http://dx.doi.org/10.3349/ymj.2017.58.4.823] [PMID: 28540997]
[349]
Bae, C-W.; Chung, S-H.; Choi, Y-S. Development of a Synthetic Surfactant Using a Surfactant Protein-C Peptide Analog: In vitro Studies of Surface Physical Properties. Yonsei Med. J., 2016, 57(1), 203-208.
[http://dx.doi.org/10.3349/ymj.2016.57.1.203] [PMID: 26632402]
[350]
Carnielli, V.P.; Zimmermann, L.J.I.; Hamvas, A.; Cogo, P.E. Pulmonary surfactant kinetics of the newborn infant: novel insights from studies with stable isotopes. J. Perinatol., 2009, 29(S2)(Suppl. 2), S29-S37.
[http://dx.doi.org/10.1038/jp.2009.32] [PMID: 19399007]
[351]
Jobe, A.H. Pharmacology Review: Why Surfactant Works for Respiratory Distress Syndrome. Neoreviews, 2006, 7(2), E95-E106.
[http://dx.doi.org/10.1542/neo.7-2-e95]
[352]
Smith, L.J.; McKay, K.O.; van Asperen, P.P.; Selvadurai, H.; Fitzgerald, D.A. Normal development of the lung and premature birth. Paediatr. Respir. Rev., 2010, 11(3), 135-142.
[http://dx.doi.org/10.1016/j.prrv.2009.12.006] [PMID: 20692626]
[353]
Jensen, E.A.; DeMauro, S.B.; Kornhauser, M.; Aghai, Z.H.; Greenspan, J.S.; Dysart, K.C. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants. JAMA Pediatr., 2015, 169(11), 1011-1017.
[http://dx.doi.org/10.1001/jamapediatrics.2015.2401] [PMID: 26414549]
[354]
Niemarkt, H.J.; Hütten, M.C.; Kramer, B.W. Surfactant for Respiratory Distress Syndrome: New Ideas on a Familiar Drug with Innovative Applications. Neonatology, 2017, 111(4), 408-414.
[http://dx.doi.org/10.1159/000458466] [PMID: 28538236]
[355]
Verder, H.; Albertsen, P.; Ebbesen, F.; Greisen, G.; Robertson, B.; Bertelsen, A.; Agertoft, L.; Djernes, B.; Nathan, E.; Reinholdt, J. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks’ gestation. Pediatrics, 1999, 103(2)E24
[http://dx.doi.org/10.1542/peds.103.2.e24] [PMID: 9925870]
[356]
Björklund, L.J.; Ingimarsson, J.; Curstedt, T.; John, J.; Robertson, B.; Werner, O.; Vilstrup, C.T. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr. Res., 1997, 42(3), 348-355.
[http://dx.doi.org/10.1203/00006450-199709000-00016] [PMID: 9284276]
[357]
A.; PILLEKAMP, F.; HÜNSELER, C.; VIERZIG, A.; ROTH, B. Early Administration of Surfactant in Spontaneous Breathing with NCPAP: Feasibility and Outcome in Extremely Premature Infants (Postmenstrual Age ≤27 Weeks). Paediatr. Anaesth., 2006, 17(4), 364-369.
[http://dx.doi.org/10.1111/j.1460-9592.2006.02126.x]
[358]
Isayama, T.; Iwami, H.; McDonald, S.; Beyene, J. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA, 2016, 316(6), 611-624.
[http://dx.doi.org/10.1001/jama.2016.10708] [PMID: 27532916]
[359]
Aldana-Aguirre, J.C.; Pinto, M.; Featherstone, R.M.; Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed., 2017, 102(1), F17-F23.
[http://dx.doi.org/10.1136/archdischild-2015-310299] [PMID: 27852668]
[360]
Bellos, I.; Fitrou, G.; Panza, R.; Pandita, A. Comparative efficacy of methods for surfactant administration: A network meta-analysis.Arch. Dis. Child. Fetal Neonatal Ed.,2021, fetalneonatal-2020-319763;
[http://dx.doi.org/10.1136/archdischild-2020-319763] [PMID: 33452218]
[361]
Lau, C.S.M.; Chamberlain, R.S.; Sun, S. Less Invasive Surfactant Administration Reduces the Need for Mechanical Ventilation in Preterm Infants: A Meta-Analysis. Glob. Pediatr. Health, 2017, 4X17696683
[http://dx.doi.org/10.1177/2333794X17696683] [PMID: 28540346]
[362]
Kribs, A.; Roll, C.; Göpel, W.; Wieg, C.; Groneck, P.; Laux, R.; Teig, N.; Hoehn, T.; Böhm, W.; Welzing, L.; Vochem, M.; Hoppenz, M.; Bührer, C.; Mehler, K.; Stützer, H.; Franklin, J.; Stöhr, A.; Herting, E.; Roth, B. Nonintubated Surfactant Application vs Conventional Therapy in Extremely Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr., 2015, 169(8), 723-730.
[http://dx.doi.org/10.1001/jamapediatrics.2015.0504] [PMID: 26053341]
[363]
Gupta, B.K.; Saha, A.K.; Mukherjee, S.; Saha, B. Minimally invasive surfactant therapy versus InSurE in preterm neonates of 28 to 34 weeks with respiratory distress syndrome on non-invasive positive pressure ventilation-a randomized controlled trial. Eur. J. Pediatr., 2020, 179(8), 1287-1293.
[http://dx.doi.org/10.1007/s00431-020-03682-9] [PMID: 32462483]
[364]
Herting, E. Ha rtel, C.; Go pel, W. Less Invasive Surfactant Administration (LISA). Chances and Limitations. Arch. Dis. Child. Fetal Neonatal Ed., 2019, 104(6), F655-F659.
[http://dx.doi.org/10.1136/archdischild-2018-316557] [PMID: 31296694]
[365]
van der Burg, P.S.; de Jongh, F.H.; Miedema, M.; Frerichs, I.; van Kaam, A.H. Effect of Minimally Invasive Surfactant Therapy on Lung Volume and Ventilation in Preterm Infants. J. Pediatr., 2016, 170, 67-72.
[http://dx.doi.org/10.1016/j.jpeds.2015.11.035] [PMID: 26724118]
[366]
Oncel, M.Y.; Arayici, S.; Uras, N.; Alyamac-Dizdar, E.; Sari, F.N.; Karahan, S.; Canpolat, F.E.; Oguz, S.S.; Dilmen, U. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed., 2016, 101(4), F323-F328.
[http://dx.doi.org/10.1136/archdischild-2015-308204] [PMID: 26553376]
[367]
Niemarkt, H.J.; Kuypers, E.; Jellema, R.; Ophelders, D.; Hütten, M.; Nikiforou, M.; Kribs, A.; Kramer, B.W. Effects of less-invasive surfactant administration on oxygenation, pulmonary surfactant distribution, and lung compliance in spontaneously breathing preterm lambs. Pediatr. Res., 2014, 76(2), 166-170.
[http://dx.doi.org/10.1038/pr.2014.66] [PMID: 24796373]
[368]
Ricci, F.; Bresesti, I.; LaVerde, P.A.M.; Salomone, F.; Casiraghi, C.; Mersanne, A.; Storti, M.; Catozzi, C.; Tigli, L.; Zecchi, R.; Franceschi, P.; Murgia, X.; Simonato, M.; Cogo, P.; Carnielli, V.; Lista, G. Surfactant lung delivery with LISA and InSurE in adult rabbits with respiratory distress. Pediatr. Res., 2021.
[http://dx.doi.org/10.1038/s41390-020-01324-2] [PMID: 33452472]
[369]
Rey-Santano, C.; Mielgo, V.E.; Gomez-Solaetxe, M.A.; Salomone, F.; Gastiasoro, E.; Loureiro, B. Cerebral oxygenation associated with INSURE versus LISA procedures in surfactant-deficient newborn piglet RDS model. Pediatr. Pulmonol., 2019, 54(5), 644-654.
[http://dx.doi.org/10.1002/ppul.24277] [PMID: 30775857]
[370]
Bertini, G.; Coviello, C.; Gozzini, E.; Bianconi, T.; Bresci, C.; Leonardi, V.; Dani, C. Change of Cerebral Oxygenation during Surfactant Treatment in Preterm Infants: “LISA” versus “InSurE” Procedures. Neuropediatrics, 2017, 48(2), 98-103.
[http://dx.doi.org/10.1055/s-0037-1598647] [PMID: 28245505]
[371]
Lamberska, T.; Settelmayerova, E.; Smisek, J.; Luksova, M.; Maloskova, G.; Plavka, R. Oropharyngeal surfactant can improve initial stabilisation and reduce rescue intubation in infants born below 25 weeks of gestation. Acta Paediatr., 2018, 107(1), 73-78.
[http://dx.doi.org/10.1111/apa.14060] [PMID: 28871620]
[372]
Calevo, M.G.; Veronese, N.; Cavallin, F.; Paola, C.; Micaglio, M.; Trevisanuto, D. Supraglottic airway devices for surfactant treatment: systematic review and meta-analysis. J. Perinatol., 2019, 39(2), 173-183.
[http://dx.doi.org/10.1038/s41372-018-0281-x] [PMID: 30518796]
[373]
Ten centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. Br. Med. J. (Clin. Res. Ed.), 1987, 294(6578), 991-996.
[http://dx.doi.org/10.1136/bmj.294.6578.991] [PMID: 2890398]
[374]
Kattwinkel, J.; Robinson, M.; Bloom, B.T.; Delmore, P.; Ferguson, J.E. Technique for intrapartum administration of surfactant without requirement for an endotracheal tube. J. Perinatol., 2004, 24(6), 360-365.
[http://dx.doi.org/10.1038/sj.jp.7211103] [PMID: 15085166]
[375]
Murphy, M.C.; Galligan, M.; Molloy, B.; Hussain, R.; Doran, P.; O’Donnell, C. Study protocol for the POPART study-Prophylactic Oropharyngeal surfactant for Preterm infants: A Randomised Trial. BMJ Open, 2020, 10(7)e035994
[http://dx.doi.org/10.1136/bmjopen-2019-035994] [PMID: 32690739]
[376]
Trevisanuto, D.; Micaglio, M.; Ferrarese, P.; Zanardo, V. The laryngeal mask airway: potential applications in neonates. Arch. Dis. Child. Fetal Neonatal Ed., 2004, 89(6), F485-F489.
[http://dx.doi.org/10.1136/adc.2003.038430] [PMID: 15499137]
[377]
Bansal, S.C.; Caoci, S.; Dempsey, E.; Trevisanuto, D.; Roehr, C.C. The Laryngeal Mask Airway and Its Use in Neonatal Resuscitation: A Critical Review of Where We Are in 2017/2018. Neonatology, 2018, 113(2), 152-161.
[http://dx.doi.org/10.1159/000481979] [PMID: 29232665]
[378]
van Esch, B.F.; Stegeman, I.; Smit, A.L. Comparison of laryngeal mask airway vs tracheal intubation: A systematic review on airway complications. J. Clin. Anesth., 2017, 36, 142-150.
[http://dx.doi.org/10.1016/j.jclinane.2016.10.004] [PMID: 28183554]
[379]
Arroe, M.; Pedersen-Bjergaard, L.; Albertsen, P.; Bode, S.; Greisen, G. Inhalation of Aerosolized Surfactant Exosurf to Neonates Treated with Nasal Continuous Positive Airway Pressure. Prenat. Neonatal Med., 1998, 3, 346-352.
[380]
Jorch, G.; Hartl, H.; Roth, B.; Kribs, A.; Gortner, L.; Schaible, T.; Hennecke, K.H. Surfactant Aerosol Treatment of Respiratory Distress Syndrome in Spontaneously Breathing Premature Infants. Pediatr. Pulmonol., 1997, 24(3), 222-224.
[381]
Berggren, E.; Liljedahl, M.; Winbladh, B.; Andreasson, B.; Curstedt, T.; Robertson, B.; Schollin, J. Pilot study of nebulized surfactant therapy for neonatal respiratory distress syndrome. Acta Paediatr., 2000, 89(4), 460-464.
[http://dx.doi.org/10.1111/j.1651-2227.2000.tb00084.x] [PMID: 10830460]
[382]
Mazela, J.; Polin, R.A. Aerosol delivery to ventilated newborn infants: historical challenges and new directions. Eur. J. Pediatr., 2011, 170(4), 433-444.
[http://dx.doi.org/10.1007/s00431-010-1292-6] [PMID: 20878336]
[383]
Köhler, E.; Jilg, G.; Avenarius, S.; Jorch, G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed., 2008, 93(4), F275-F279.
[http://dx.doi.org/10.1136/adc.2007.121285] [PMID: 18192330]
[384]
Dubus, J.C.; Vecellio, L.; De Monte, M.; Fink, J.B.; Grimbert, D.; Montharu, J.; Valat, C.; Behan, N.; Diot, P. Aerosol deposition in neonatal ventilation. Pediatr. Res., 2005, 58(1), 10-14.
[http://dx.doi.org/10.1203/01.PDR.0000156244.84422.55] [PMID: 15774850]
[385]
Finer, N.N.; Merritt, T.A.; Bernstein, G.; Job, L.; Mazela, J.; Segal, R. An open label, pilot study of Aerosurf® combined with nCPAP to prevent RDS in preterm neonates. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(5), 303-309.
[http://dx.doi.org/10.1089/jamp.2009.0758] [PMID: 20455772]
[386]
Bianco, F.; Pasini, E.; Nutini, M.; Murgia, X.; Stoeckl, C.; Schlun, M.; Hetzer, U.; Bonelli, S.; Lombardini, M.; Milesi, I.; Pertile, M.; Minocchieri, S.; Salomone, F.; Bucholski, A. In vitro Performance of an Investigational Vibrating-Membrane Nebulizer with Surfactant under Simulated, Non-Invasive Neonatal Ventilation Conditions: Influence of Continuous Positive Airway Pressure Interface and Nebulizer Positioning on the Lung Dose. Pharmaceutics, 2020, 12(3)E257
[http://dx.doi.org/10.3390/pharmaceutics12030257] [PMID: 32178276]
[387]
Gregory, T.J.; Irshad, H.; Chand, R.; Kuehl, P.J. Deposition of Aerosolized Lucinactant in Nonhuman Primates. J. Aerosol Med. Pulm. Drug Deliv., 2020, 33(1), 21-33.
[http://dx.doi.org/10.1089/jamp.2018.1505] [PMID: 31436493]
[388]
Nord, A.; Bianco, F.; Salomone, F.; Ricci, F.; Schlun, M.; Linner, R.; Cunha-Goncalves, D. Nebulization of High-Dose Poractant Alfa in Newborn Piglets on Nasal Continuous Positive Airway Pressure Yields Therapeutic Lung Doses of Phospholipids. Am. J. Perinatol., 2020.
[http://dx.doi.org/10.1055/s-0040-1721392] [PMID: 33242911]
[389]
Bianco, F.; Salomone, F.; Milesi, I.; Murgia, X.; Bonelli, S.; Pasini, E.; Dellacà, R.; Ventura, M.L.; Pillow, J. Aerosol drug delivery to spontaneously-breathing preterm neonates: lessons learned. Respir. Res., 2021, 22(1), 71.
[http://dx.doi.org/10.1186/s12931-020-01585-9] [PMID: 33637075]
[390]
Foligno, S.; Loi, B.; Pezza, L.; Piastra, M.; Autilio, C.; De Luca, D. Extrapulmonary Surfactant Therapy: Review of Available Data and Research/Development Issues. J. Clin. Pharmacol., 2020, 60(12), 1561-1572.
[http://dx.doi.org/10.1002/jcph.1675] [PMID: 32578234]
[391]
Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23), 2526-2533.
[http://dx.doi.org/10.1001/jama.2012.5669] [PMID: 22797452]
[392]
Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med., 2015, 16(5)(Suppl. 1), S23-S40.
[http://dx.doi.org/10.1097/PCC.0000000000000432] [PMID: 26035358]
[393]
Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers, 2019, 5(1), 18.
[http://dx.doi.org/10.1038/s41572-019-0069-0] [PMID: 30872586]
[394]
Matthay, M.A.; Zimmerman, G.A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol., 2005, 33(4), 319-327.
[http://dx.doi.org/10.1165/rcmb.F305] [PMID: 16172252]
[395]
Schmidt, R.; Markart, P.; Ruppert, C.; Wygrecka, M.; Kuchenbuch, T.; Walmrath, D.; Seeger, W.; Guenther, A. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration. Respir. Res., 2007, 8, 55.
[http://dx.doi.org/10.1186/1465-9921-8-55] [PMID: 17662121]
[396]
Raghavendran, K.; Willson, D.; Notter, R.H. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit. Care Clin., 2011, 27(3), 525-559.
[http://dx.doi.org/10.1016/j.ccc.2011.04.005] [PMID: 21742216]
[397]
Willson, D.F.; Truwit, J.D.; Conaway, M.R.; Traul, C.S.; Egan, E.E. The Adult Calfactant in Acute Respiratory Distress Syndrome Trial. Chest, 2015, 148(2), 356-364.
[http://dx.doi.org/10.1378/chest.14-1139] [PMID: 25855884]
[398]
Spragg, R.G.; Taut, F.J.H.; Lewis, J.F.; Schenk, P.; Ruppert, C.; Dean, N.; Krell, K.; Karabinis, A.; Günther, A. Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am. J. Respir. Crit. Care Med., 2011, 183(8), 1055-1061.
[http://dx.doi.org/10.1164/rccm.201009-1424OC] [PMID: 21148720]
[399]
Meng, S-S.; Chang, W.; Lu, Z-H.; Xie, J-F.; Qiu, H-B.; Yang, Y.; Guo, F-M. Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. BMC Pulm. Med., 2019, 19(1), 9.
[http://dx.doi.org/10.1186/s12890-018-0761-y] [PMID: 30626363]
[400]
Deliloglu, B.; Tuzun, F.; Cengiz, M.M.; Ozkan, H.; Duman, N. Endotracheal Surfactant Combined With Budesonide for Neonatal ARDS. Front Pediatr., 2020, 8, 210.
[http://dx.doi.org/10.3389/fped.2020.00210] [PMID: 32432062]
[401]
Anzueto, A.; Baughman, R.P.; Guntupalli, K.K.; Weg, J.G.; Wiedemann, H.P.; Raventós, A.A.; Lemaire, F.; Long, W.; Zaccardelli, D.S.; Pattishall, E.N. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. N. Engl. J. Med., 1996, 334(22), 1417-1421.
[http://dx.doi.org/10.1056/NEJM199605303342201] [PMID: 8618579]
[402]
Gregory, T.J.; Steinberg, K.P.; Spragg, R.; Gadek, J.E.; Hyers, T.M.; Longmore, W.J.; Moxley, M.A.; Cai, G.Z.; Hite, R.D.; Smith, R.M.; Hudson, L.D.; Crim, C.; Newton, P.; Mitchell, B.R.; Gold, A.J. Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 1997, 155(4), 1309-1315.
[http://dx.doi.org/10.1164/ajrccm.155.4.9105072] [PMID: 9105072]
[403]
Filoche, M.; Tai, C-F.; Grotberg, J.B. Three-dimensional model of surfactant replacement therapy. Proc. Natl. Acad. Sci. USA, 2015, 112(30), 9287-9292.
[http://dx.doi.org/10.1073/pnas.1504025112] [PMID: 26170310]
[404]
Busani, S.; Girardis, M. Exogenous Surfactant, a Role in the Adult Acute Respiratory Distress Syndrome? Acta Biomed., 2012, 83, 56-59.
[405]
Kneyber, M.C.J.; Zhang, H.; Slutsky, A.S. Ventilator-induced lung injury. Similarity and differences between children and adults. Am. J. Respir. Crit. Care Med., 2014, 190(3), 258-265.
[http://dx.doi.org/10.1164/rccm.201401-0168CP] [PMID: 25003705]
[406]
De Luca, D. Personalising care of acute respiratory distress syndrome according to patients’ age. Lancet Respir. Med., 2019, 7(2), 100-101.
[http://dx.doi.org/10.1016/S2213-2600(18)30429-6] [PMID: 30361118]
[407]
Koumbourlis, A.C.; Motoyama, E.K. Lung Mechanics in COVID-19 Resemble Respiratory Distress Syndrome, Not Acute Respiratory Distress Syndrome: Could Surfactant Be a Treatment? Am. J. Respir. Crit. Care Med., 2020, 202(4), 624-626.
[http://dx.doi.org/10.1164/rccm.202004-1471LE] [PMID: 32579022]
[408]
WHO Coronavirus Disease (COVID-19) Dashboard. Available from:. Https://Covid19.Who.Int/
[409]
Li, Y.; Wu, Q.; Sun, X.; Shen, J.; Chen, H. Organoids as a Powerful Model for Respiratory Diseases. Stem Cells Int., 2020, 20205847876
[http://dx.doi.org/10.1155/2020/5847876] [PMID: 32256609]
[410]
Takano. Pulmonary Surfactant Itself Must Be a Strong Defender against SARS-CoV-2. Med. Hypotheses, 2020, 144.
[http://dx.doi.org/10.1016/j.mehy.2020.110020]
[411]
Ghati, A.; Dam, P.; Tasdemir, D.; Kati, A.; Sellami, H.; Sezgin, G.C.; Ildiz, N.; Franco, O.L.; Mandal, A.K.; Ocsoy, I. Exogenous Pulmonary Surfactant: A Review Focused on Adjunctive Therapy for SARS CoV-2 Including SP-A and SP-D as Added Clinical Marker. Curr. Opin. Colloid Interface Sci., 2020, 101413.
[http://dx.doi.org/10.1016/j.cocis.2020.101413] [PMID: 33390762]
[412]
Veldhuizen, R.A.W.; Zuo, Y.Y.; Petersen, N.O.; Lewis, J.F.; Possmayer, F. The COVID-19 Pandemic: A Target for Surfactant Therapy? Expert Rev. Respir. Med., 2020.
[http://dx.doi.org/10.1080/17476348.2021.1865809] [PMID: 33331197]
[413]
Windtree Therapeutics. Press Releases: Windtree Announces FDA Acceptance of IND Application for a Phase 2 Clinical Trial Studying KL4 Surfactant in Acute Lung Injury in Adults with COVID-19. Available from: . http://windtreetx.investorroom.com/2020-09-29-Windtree-Announces-FDA-Acceptance-of-IND-Application-for-a-Phase-2-Clinical-Trial-Studying-KL4-Surfactant-in-Acute-Lung-Injury-in-Adults-with-COVID-19
[414]
Onybiotech: Our Company. Available from:. https://www. onybiotech.com/our-company/
[415]
iol.co.za. business-report, companies: Stellenbosch University and SA company joins global fight against Covid-19. Available from:. https://www.iol.co.za/business-report/companies/stellenbosch-university-and-sa-company-joinsglobal-fight-against-covid-19-45655950
[417]
Lindenskov, P.H.; Castellheim, A.; Saugstad, O.D.; Mollnes, T.E. Meconium aspiration syndrome: possible pathophysiological mechanisms and future potential therapies. Neonatology, 2015, 107(3), 225-230.
[http://dx.doi.org/10.1159/000369373] [PMID: 25721501]
[418]
Fischer, C.; Rybakowski, C.; Ferdynus, C.; Sagot, P.; Gouyon, J.B. A Population-Based Study of Meconium Aspiration Syndrome in Neonates Born between 37 and 43 Weeks of Gestation. Int. J. Pediatr., 2012, 2012321545
[http://dx.doi.org/10.1155/2012/321545] [PMID: 22187569]
[419]
Sippola, T.; Aho, H.; Peuravuori, H.; Lukkarinen, H.; Gunn, J.; Kääpä, P. Pancreatic phospholipase A2 contributes to lung injury in experimental meconium aspiration. Pediatr. Res., 2006, 59(5), 641-645.
[http://dx.doi.org/10.1203/01.pdr.0000214685.31232.6a] [PMID: 16627874]
[420]
De Luca, D.; Minucci, A.; Tripodi, D.; Piastra, M.; Pietrini, D.; Zuppi, C.; Conti, G.; Carnielli, V.P.; Capoluongo, E. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates. Intensive Care Med., 2011, 37(7), 1158-1165.
[http://dx.doi.org/10.1007/s00134-011-2243-z] [PMID: 21567110]
[421]
El Shahed, A.I.; Dargaville, P.A.; Ohlsson, A.; Soll, R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst. Rev., 2014, (12)CD002054
[http://dx.doi.org/10.1002/14651858.CD002054.pub3] [PMID: 25504256]
[422]
Natarajan, C.K.; Sankar, M.J.; Jain, K.; Agarwal, R.; Paul, V.K. Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: A systematic review and meta-analysis. J. Perinatol., 2016, 36(S1)(Suppl. 1), S49-S54.
[http://dx.doi.org/10.1038/jp.2016.32] [PMID: 27109092]
[423]
Boet, A.; Brat, R.; Aguilera, S.S.; Tissieres, P.; De Luca, D. Surfactant from neonatal to pediatric ICU: bench and bedside evidence. Minerva Anestesiol., 2014, 80(12), 1345-1356.
[PMID: 24504167]
[424]
Mikolka, P.; Kopincova, J.; Kosutova, P.; Kolomaznik, M.; Calkovska, A.; Mokra, D. Anti-IL-8 antibody potentiates the effect of exogenous surfactant in respiratory failure caused by meconium aspiration. Exp. Lung Res., 2018, 44(1), 40-50.
[http://dx.doi.org/10.1080/01902148.2017.1420272] [PMID: 29324051]
[425]
Amital, A.; Shitrit, D.; Raviv, Y.; Saute, M.; Bakal, I.; Medalion, B.; Kramer, M.R. Surfactant as salvage therapy in life threatening primary graft dysfunction in lung transplantation. Eur. J. Cardiothorac. Surg., 2009, 35(2), 299-303.
[http://dx.doi.org/10.1016/j.ejcts.2008.09.039] [PMID: 18996711]
[426]
Lung Lavage and Surfactant Replacement During Ex Vivo Lung Perfusion for Treatment of Gastric Acid Aspiration- Induced Donor Lung Injury.. J. Heart Lung Transplant., 2017, 36(5), 577-585.
[http://dx.doi.org/10.1016/j.healun.2016.11.010]
[427]
Sáenz, A. lvarez, L.; Santos, M.; L pez-S nchez, A.; Castillo-Olivares, J. L.; Varela, A.; Segal, R.; Casals, C. Beneficial Effects of Synthetic KL4 Surfactant in Experimental Lung Transplantation. Eur. Respir. J., 2011, 37(4), 925-932.
[http://dx.doi.org/10.1183/09031936.00020810] [PMID: 20650990]
[428]
Amital, A.; Shitrit, D.; Raviv, Y.; Saute, M.; Medalion, B.; Bakal, L.; Kramer, M.R. The use of surfactant in lung transplantation. Transplantation, 2008, 86(11), 1554-1559.
[http://dx.doi.org/10.1097/TP.0b013e31818a8418] [PMID: 19077889]
[429]
Strüber, M.; Fischer, S.; Niedermeyer, J.; Warnecke, G.; Gohrbandt, B.; Görler, A.; Simon, A.R.; Haverich, A.; Hohlfeld, J.M. Effects of exogenous surfactant instillation in clinical lung transplantation: A prospective, randomized trial. J. Thorac. Cardiovasc. Surg., 2007, 133(6), 1620-1625.
[http://dx.doi.org/10.1016/j.jtcvs.2006.12.057] [PMID: 17532965]
[430]
Strüber, M.; Hirt, S.W.; Cremer, J.; Harringer, W.; Haverich, A. Surfactant replacement in reperfusion injury after clinical lung transplantation. Intensive Care Med., 1999, 25(8), 862-864.
[http://dx.doi.org/10.1007/s001340050967] [PMID: 10447548]
[431]
Wittwer, T.; Madershahian, N.; Rahmanian, V.; Choi, Y.; Neef, K.; Ochs, M.; Wahlers, T. Donor Pretreatment Using the Surfactant Preparation Curosurf in Non-Heart-Beating Donor Lungs. In: Abstract at 25th EACTS; , 2011; p. S92;
[432]
Bertani; DeMonte; Vitulo; Soresi; Callari; Tuzzolino; Di Paola; Arcadipane; Gridelli. 640 The Administration of Exogenous Surfactant during Cold Preservation Can Improve Pulmonary Function after Lung Transplantation in a Swine Model of Prolonged Ischemia. J. Heart Lung Transplant., 2012, 31(4), S221.
[http://dx.doi.org/10.1016/j.healun.2012.01.654]
[433]
Novick, R.J.; MacDonald, J.; Veldhuizen, R.A.; Wan, F.; Duplan, J.; Denning, L.; Possmayer, F.; Gilpin, A.A.; Yao, L.J.; Bjarneson, D.; Lewis, J.F. Evaluation of surfactant treatment strategies after prolonged graft storage in lung transplantation. Am. J. Respir. Crit. Care Med., 1996, 154(1), 98-104.
[http://dx.doi.org/10.1164/ajrccm.154.1.8680706] [PMID: 8680706]
[434]
Inci, I.; Hillinger, S.; Arni, S.; Jungraithmayr, W.; Inci, D.; Vogt, P.; Leskosek, B.; Hansen, G.; Weder, W. Surfactant improves graft function after gastric acid-induced lung damage in lung transplantation. Ann. Thorac. Surg., 2013, 95(3), 1013-1019.
[http://dx.doi.org/10.1016/j.athoracsur.2012.10.027] [PMID: 23261115]
[435]
Lung Lavage and Surfactant Administration for the Ex Vivo Pre-Transplant Treatment of Donor Lungs Injured Due to Gastric Acid Aspiration.. J. Heart Lung Transplant., 2015, 34(4), S92.
[http://dx.doi.org/10.1016/j.healun.2015.01.245]
[436]
Khalife, T.; Sage, E.; Dorfmuller, P.; Eddahibi, S.; Fadel, E. Lung Injuries Induced by Gastric Acid Aspiration Are Attenuated by Exogenous Surfactant during Ex Vivo Reconditioning in Pigs. J. Heart Lung Transplant., 2013, 32(4), S47.
[http://dx.doi.org/10.1016/j.healun.2013.01.922]
[437]
Newth, C.J.L.; Hammer, J. Pulmonary function in ventilated infants with bronchiolitis. Pediatr. Pulmonol., 1998, 26(6), 438-441.
[http://dx.doi.org/10.1002/(SICI)1099-0496(199812)26:6<438:AID-PPUL10>3.0.CO;2-V] [PMID: 9888220]
[438]
Hammer, J.; Numa, A.; Newth, C.J.L. Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr. Pulmonol., 1997, 23(3), 176-183.
[http://dx.doi.org/10.1002/(SICI)1099-0496(199703)23:3<176:AID-PPUL2>3.0.CO;2-M] [PMID: 9094725]
[439]
Khemani, R.G.; Smith, L.; Lopez-Fernandez, Y.M.; Kwok, J.; Morzov, R.; Klein, M.J.; Yehya, N.; Willson, D.; Kneyber, M.C.J.; Lillie, J.; Fernandez, A.; Newth, C.J.L.; Jouvet, P.; Thomas, N.J. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): An international, observational study. Lancet Respir. Med., 2019, 7(2), 115-128.
[http://dx.doi.org/10.1016/S2213-2600(18)30344-8] [PMID: 30361119]
[440]
Dargaville, P.A.; South, M.; McDougall, P.N. Surfactant abnormalities in infants with severe viral bronchiolitis. Arch. Dis. Child., 1996, 75(2), 133-136.
[http://dx.doi.org/10.1136/adc.75.2.133] [PMID: 8869194]
[441]
Tibby, S.M.; Hatherill, M.; Wright, S.M.; Wilson, P.; Postle, A.D.; Murdoch, I.A. Exogenous surfactant supplementation in infants with respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med., 2000, 162(4 Pt 1), 1251-1256.
[http://dx.doi.org/10.1164/ajrccm.162.4.9909004] [PMID: 11029326]
[442]
Al-Saiedy, M.; Gunasekara, L.; Green, F.; Pratt, R.; Chiu, A.; Yang, A.; Dennis, J.; Pieron, C.; Bjornson, C.; Winston, B.; Amrein, M. Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired with Cyclodextrins. Mil. Med., 2018, 183(Suppl. 1), 207-215.
[http://dx.doi.org/10.1093/milmed/usx204] [PMID: 29635617]
[443]
Barreira, E.R.; Precioso, A.R.; Bousso, A. Pulmonary surfactant in respiratory syncytial virus bronchiolitis: the role in pathogenesis and clinical implications. Pediatr. Pulmonol., 2011, 46(5), 415-420.
[http://dx.doi.org/10.1002/ppul.21395] [PMID: 21194166]
[444]
De Luca, D.; Minucci, A.; Cogo, P.; Capoluongo, E.D.; Conti, G.; Pietrini, D.; Carnielli, V.P.; Piastra, M. Secretory phospholipase A2 pathway during pediatric acute respiratory distress syndrome: A preliminary study. Pediatr. Crit. Care Med., 2011, 12(1), e20-e24.
[http://dx.doi.org/10.1097/PCC.0b013e3181dbe95e] [PMID: 20351613]
[445]
Bruce, S.R.; Atkins, C.L.; Colasurdo, G.N.; Alcorn, J.L. Respiratory syncytial virus infection alters surfactant protein A expression in human pulmonary epithelial cells by reducing translation efficiency. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(4), L559-L567.
[http://dx.doi.org/10.1152/ajplung.90507.2008] [PMID: 19525387]
[446]
Torres-Cuevas, I.; Corral-Debrinski, M.; Gressens, P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic. Biol. Med., 2019, 142, 3-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.011] [PMID: 31226400]
[447]
A. L. Rationale for the Development of Recombinant Human CC10 as a Therapeutic for Inflammatory and Fibrotic Disease. Ann. N. Y. Acad. Sci., 2006, 923(1), 280-299.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05536.x]
[448]
Hallman, M.; Haataja, R. Surfactant protein polymorphisms and neonatal lung disease. Semin. Perinatol., 2006, 30(6), 350-361.
[http://dx.doi.org/10.1053/j.semperi.2006.09.002] [PMID: 17142161]
[449]
Wang, S.Z.; Doyle, I.R.; Nicholas, T.E.; Forsyth, K.D. Plasma surfactant protein-B is elevated in infants with respiratory syncytial virus-induced bronchiolitis. Pediatr. Res., 1999, 46(6), 731-734.
[http://dx.doi.org/10.1203/00006450-199912000-00023] [PMID: 10590031]
[450]
Kawasaki, Y.; Endo, K.; Suyama, K.; Sato, M.; Ito, M.; Hashimoto, K.; Hosoya, M. Serum SP-D levels as a biomarker of lung injury in respiratory syncytial virus bronchiolitis. Pediatr. Pulmonol., 2011, 46(1), 18-22.
[http://dx.doi.org/10.1002/ppul.21270] [PMID: 21171185]
[451]
Dahmer, M.K.; Flori, H.; Sapru, A.; Kohne, J.; Weeks, H.M.; Curley, M.A.Q.; Matthay, M.A.; Quasney, M.W. Surfactant Protein D Is Associated With Severe Pediatric ARDS, Prolonged Ventilation, and Death in Children With Acute Respiratory Failure. Chest, 2020, 158(3), 1027-1035.
[http://dx.doi.org/10.1016/j.chest.2020.03.041] [PMID: 32275979]
[452]
Jat, K.R.; Chawla, D. Surfactant therapy for bronchiolitis in critically ill infants. Cochrane Database Syst. Rev., 2015, (8)CD009194
[http://dx.doi.org/10.1002/14651858.CD009194.pub3] [PMID: 26299681]
[453]
Biban, P.; Conti, G.; Wolfler, A.M.; Carlassara, S.; Gitto, E.; Rulli, I.; Moscatelli, A.; Micalizzi, C.; Savron, F.; Sagredini, R.; Genoni, G.; Binotti, M.; Caramelli, F.; Fae, M.; Pettenazzo, A.; Stritoni, V.; D’Amato, L.; Zito Marinosci, G.; Calderini, E.; Scalia Catenacci, S.; Berardi, A.; Torcetta, F.; Bonanomi, E.; Bonacina, D.; Ivani, G.; Santuz, P. Efficacy and safety of exogenous surfactant therapy in patients under 12 months of age invasively ventilated for severe bronchiolitis (SURFABRON): protocol for a multicentre, randomised, double-blind, controlled, non-profit trial. BMJ Open, 2020, 10(10)e038780
[http://dx.doi.org/10.1136/bmjopen-2020-038780] [PMID: 33077567]
[454]
ISRCTN Registry. The Bronchiolitis Endotracheal Surfactant Study (BESS). Available from:. http://Www. Isrctn. Com/ISRCTN11746266
[455]
Baughman, R.P.; Henderson, R.F.; Whitsett, J.; Gunther, K.L.; Keeton, D.A.; Waide, J.J.; Zaccardelli, D.S.; Pattishall, E.N.; Rashkin, M.C. Surfactant replacement for ventilator-associated pneumonia: A preliminary report. Respiration, 2002, 69(1), 57-62.
[http://dx.doi.org/10.1159/000049371] [PMID: 11844964]
[456]
Griese, M.; Bufler, P.; Teller, J.; Reinhardt, D. Nebulization of a bovine surfactant in cystic fibrosis: A pilot study. Eur. Respir. J., 1997, 10(9), 1989-1994.
[http://dx.doi.org/10.1183/09031936.97.10091989] [PMID: 9311490]
[457]
Atkinson, H.; Wallis, S.; Coatesworth, A.P. Acute otitis media. Postgrad. Med., 2015, 127(4), 386-390.
[http://dx.doi.org/10.1080/00325481.2015.1028872] [PMID: 25913598]
[458]
Gaddey, H.L.; Wright, M.T.; Nelson, T.N. Otitis Media: Rapid Evidence Review. Am. Fam. Physician, 2019, 100(6), 350-356.
[PMID: 31524361]
[459]
Chandrasekhar, S.S.; Mautone, A.J. Otitis media: treatment with intranasal aerosolized surfactant. Laryngoscope, 2004, 114(3), 472-485.
[http://dx.doi.org/10.1097/00005537-200403000-00017] [PMID: 15091221]
[460]
Fornadley, J.A.; Burns, J.K.; Burns, J.K. The effect of surfactant on eustachian tube function in a gerbil model of otitis media with effusion. Otolaryngol. Head Neck Surg., 1994, 110(1), 110-114.
[http://dx.doi.org/10.1016/S0194-5998(94)70799-5] [PMID: 8290292]
[461]
Jang, C.H.; Cho, Y.B.; Oh, S.E.; Choi, J.U.; Park, H.; Choi, C.H. Effect of nebulized bovine surfactant for experimental otitis media with effusion. Clin. Exp. Otorhinolaryngol., 2010, 3(1), 13-17.
[http://dx.doi.org/10.3342/ceo.2010.3.1.13] [PMID: 20379396]
[462]
Jang, C.H.; Park, H.; Choi, C.H.; Cho, Y.B.; Park, I.Y. Efficacy of transnasal nebulized surfactant on experimental otitis media with effusion in guinea pig. Int. J. Pediatr. Otorhinolaryngol., 2010, 74(1), 71-74.
[http://dx.doi.org/10.1016/j.ijporl.2009.10.020] [PMID: 19931924]
[463]
Ma, Z.; Dai, C.; Yang, S.; Li, M.; Qi, L. Protective effect of pulmonary surfactant on cilia of Eustachian tube in otitis media with effusion. Int. J. Pediatr. Otorhinolaryngol., 2007, 71(12), 1889-1895.
[http://dx.doi.org/10.1016/j.ijporl.2007.08.017] [PMID: 17913247]
[464]
Zhu, Z.H.; Shan, Y.J.; Han, Y.; Zhu, L.W.; Ma, Z.X. Pathological study of otitis media with effusion after treatment with intranasal pulmonary surfactant. Laryngoscope, 2013, 123(12), 3148-3155.
[http://dx.doi.org/10.1002/lary.24166] [PMID: 23918455]
[465]
Johnson, D.; Chandrasekhar, S.S.; Mautone, A.J. Intranasal phenylephrine-surfactant treatment is not beneficial in otitis media with effusion. Int. J. Pediatr. Otorhinolaryngol., 2008, 72(7), 1085-1089.
[http://dx.doi.org/10.1016/j.ijporl.2008.03.019] [PMID: 18524392]
[466]
Guagliardo, R.; Pérez-Gil, J.; De Smedt, S.; Raemdonck, K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J. Control. Release, 2018, 291, 116-126.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.012] [PMID: 30321577]
[467]
Ghadiri, M.; Young, P.M.; Traini, D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[468]
Baer, B.; Souza, L.M.P.; Pimentel, A.S.; Veldhuizen, R.A.W. New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochem. Pharmacol., 2019, 164, 64-73.
[http://dx.doi.org/10.1016/j.bcp.2019.03.036] [PMID: 30928674]
[469]
Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Barrier or carrier? Pulmonary surfactant and drug delivery.Eur. J. Pharm. Biopharm., 2015, 95(Pt A), 117-127.,
[http://dx.doi.org/10.1016/j.ejpb.2015.02.014] [PMID: 25709061]
[470]
Hidalgo, A.; Salomone, F.; Fresno, N.; Orellana, G.; Cruz, A.; Perez-Gil, J. Efficient Interfacially Driven Vehiculization of Corticosteroids by Pulmonary Surfactant. Langmuir, 2017, 33(32), 7929-7939.
[http://dx.doi.org/10.1021/acs.langmuir.7b01177] [PMID: 28738158]
[471]
Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications. Biochim. Biophys. Acta Biomembr., 2017, 1859(9 Pt B), 1740-1748.
[http://dx.doi.org/10.1016/j.bbamem.2017.04.019] [PMID: 28450046]
[472]
Garcia-Mouton, C.; Hidalgo, A.; Cruz, A.; Pérez-Gil, J. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles. Eur. J. Pharm. Biopharm., 2019, 144, 230-243.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.020] [PMID: 31560956]
[473]
Estrada-L pez, E. D.; Murce, E.; Franca, M. P. P.; Pimentel, A. S. Prednisolone Adsorption on Lung Surfactant Models: Insights on the Formation of Nanoaggregates, Monolayer Collapse and Prednisolone Spreading. RSC Advances, 2017, 7(9), 5272-5281.
[http://dx.doi.org/10.1039/C6RA28422A]
[474]
Estrada-López; Pedreira; Picciani; Oliveira; Pimentel. Interaction of Levofloxacin with Lung Surfactant at the Air-Water Interface. Colloids Surf. B Biointerfaces, 2017, 158, 689-696.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.066]
[475]
Souza; Nascimento; Romeu; Estrada-López; Pimentel. Penetration of Antimicrobial Peptides in a Lung Surfactant Model. Colloids Surf. B Biointerfaces, 2018, 167, 345-353.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.030]
[476]
Baer, B.; Veldhuizen, E.J.A.; Possmayer, F.; Yamashita, C.; Veldhuizen, R. The wet bridge transfer system: A novel tool to assess exogenous surfactant as a vehicle for intrapulmonary drug delivery. Discov. Med., 2018, 26(144), 207-218.
[PMID: 30695680]
[477]
Palmer, D.; Schürch, S.; Belik, J. .Effect of Budesonide and Salbutamol on Surfactant Properties. J Appl Physiol (1985), 2000, 89(3), 884-890.,
[http://dx.doi.org/10.1152/jappl.2000.89.3.884]
[478]
van ’t Veen, A.; Mouton, J.W.; Gommers, D.; Kluytmans, J.A.; Dekkers, P.; Lachmann, B. Influence of pulmonary surfactant on In vitro bactericidal activities of amoxicillin, ceftazidime, and tobramycin. Antimicrob. Agents Chemother., 1995, 39(2), 329-333.
[http://dx.doi.org/10.1128/AAC.39.2.329] [PMID: 7726491]
[479]
Banaschewski, B.J.H.; Veldhuizen, E.J.A.; Keating, E.; Haagsman, H.P.; Zuo, Y.Y.; Yamashita, C.M.; Veldhuizen, R.A.W. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob. Agents Chemother., 2015, 59(6), 3075-3083.
[http://dx.doi.org/10.1128/AAC.04937-14] [PMID: 25753641]
[480]
Birkun, A. Exogenous pulmonary surfactant as a vehicle for antimicrobials: Assessment of surfactant-antibacterial interactions In vitro. Scientifica (Cairo), 2014, 2014930318
[http://dx.doi.org/10.1155/2014/930318] [PMID: 24876994]
[481]
van Dijk, A.; Molhoek, E.M.; Veldhuizen, E.J.A.; Bokhoven, J.L.; Wagendorp, E.; Bikker, F.; Haagsman, H.P. Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Mol. Immunol., 2009, 46(13), 2465-2473.
[http://dx.doi.org/10.1016/j.molimm.2009.05.019] [PMID: 19524300]
[482]
Haney, E.F.; Hancock, R.E.W. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 2013, 100(6), 572-583.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[483]
Wang, Y.E.; Zhang, H.; Fan, Q.; Neal, C.R.; Zuo, Y.Y. Biophysical interaction between corticosteroids and natural surfactant preparation: implications for pulmonary drug delivery using surfactant a a carrier. Soft Matter, 2012, 8(2), 504-511.
[http://dx.doi.org/10.1039/C1SM06444D] [PMID: 28747989]
[484]
Pham, S.; Wiedmann, T.S. Note: dissolution of aerosol particles of budesonide in Survanta, a model lung surfactant. J. Pharm. Sci., 2001, 90(1), 98-104.
[http://dx.doi.org/10.1002/1520-6017(200101)90:1<98:AID-JPS11>3.0.CO;2-5] [PMID: 11064383]
[485]
Wiedmann, T.S.; Bhatia, R.; Wattenberg, L.W. Drug solubilization in lung surfactant. J. Control. Release, 2000, 65(1-2), 43-47.
[http://dx.doi.org/10.1016/S0168-3659(99)00230-8] [PMID: 10699268]
[486]
Herting, E.; Gan, X.; Rauprich, P.; Jarstrand, C.; Robertson, B. Combined treatment with surfactant and specific immunoglobulin reduces bacterial proliferation in experimental neonatal group B streptococcal pneumonia. Am. J. Respir. Crit. Care Med., 1999, 159(6), 1862-1867.
[http://dx.doi.org/10.1164/ajrccm.159.6.9810047] [PMID: 10351931]
[487]
Banaschewski, B.J.H.; Baer, B.; Arsenault, C.; Jazey, T.; Veldhuizen, E.J.A.; Delport, J.; Gooyers, T.; Lewis, J.F.; Haagsman, H.P.; Veldhuizen, R.A.W.; Yamashita, C. The Antibacterial and Anti-inflammatory Activity of Chicken Cathelicidin-2 combined with Exogenous Surfactant for the Treatment of Cystic Fibrosis-Associated Pathogens. Sci. Rep., 2017, 7(1), 15545.
[http://dx.doi.org/10.1038/s41598-017-15558-4] [PMID: 29138462]
[488]
van’t Veen, A.; Mouton, J.W.; Gommers, D.; Lachmann, B. Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br. J. Pharmacol., 1996, 119(6), 1145-1148.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16016.x] [PMID: 8937717]
[489]
Basabe-Burgos, O.; Zebialowicz, J.; Stichtenoth, G.; Curstedt, T.; Bergman, P.; Johansson, J.; Rising, A. Natural Derived Surfactant Preparation As a Carrier of Polymyxin E for Treatment of Pseudomonas aeruginosa Pneumonia in a Near-Term Rabbit Model. J. Aerosol Med. Pulm. Drug Deliv., 2019, 32(2), 110-118.
[http://dx.doi.org/10.1089/jamp.2018.1468] [PMID: 30339061]
[490]
Coorens, M.; Banaschewski, B.J.H.; Baer, B.J.; Yamashita, C.; van Dijk, A.; Haagsman, H.P.; Veldhuizen, R.A.W.; Veldhuizen, E.J.A. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In vivo. Infect. Immun., 2017, 85(12), E17-E546.
[http://dx.doi.org/10.1128/IAI.00546-17] [PMID: 28947647]
[491]
Yang, C-F.; Jeng, M-J.; Soong, W-J.; Lee, Y-S.; Tsao, P-C.; Tang, R-B. Acute pathophysiological effects of intratracheal instillation of budesonide and exogenous surfactant in a neonatal surfactant-depleted piglet model. Pediatr. Neonatol., 2010, 51(4), 219-226.
[http://dx.doi.org/10.1016/S1875-9572(10)60042-3] [PMID: 20713286]
[492]
Huang, L-T.; Yeh, T-F.; Kuo, Y-L.; Chen, P-C.; Chen, C-M. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice. Pediatr. Neonatol., 2015, 56(1), 19-24.
[http://dx.doi.org/10.1016/j.pedneo.2014.04.009] [PMID: 25199848]
[493]
Kharasch, V.S.; Sweeney, T.D.; Fredberg, J.; Lehr, J.; Damokosh, A.I.; Avery, M.E.; Brain, J.D. Pulmonary surfactant as a vehicle for intratracheal delivery of technetium sulfur colloid and pentamidine in hamster lungs. Am. Rev. Respir. Dis., 1991, 144(4), 909-913.
[http://dx.doi.org/10.1164/ajrccm/144.4.909] [PMID: 1928969]
[494]
Nimmo, A.J.; Carstairs, J.R.; Patole, S.K.; Whitehall, J.; Davidson, K.; Vink, R. Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin. Exp. Pharmacol. Physiol., 2002, 29(8), 661-665.
[http://dx.doi.org/10.1046/j.1440-1681.2002.03712.x] [PMID: 12099996]
[495]
Katkin, J.P.; Husser, R.C.; Langston, C.; Welty, S.E. Exogenous surfactant enhances the delivery of recombinant adenoviral vectors to the lung. Hum. Gene Ther., 1997, 8(2), 171-176.
[http://dx.doi.org/10.1089/hum.1997.8.2-171] [PMID: 9017420]
[496]
Kothe, T.B.; Kemp, M.W.; Schmidt, A.; Royse, E.; Salomone, F.; Clarke, M.W.; Musk, G.C.; Jobe, A.H.; Hillman, N.H. Surfactant plus budesonide decreases lung and systemic inflammation in mechanically ventilated preterm sheep. Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(5), L888-L893.
[http://dx.doi.org/10.1152/ajplung.00477.2018] [PMID: 30838863]
[497]
Hillman, N.H.; Abugisisa, L.; Royse, E.; Fee, E.; Kemp, M.W.; Kramer, B.W.; Schmidt, A.F.; Salomone, F.; Clarke, M.W.; Musk, G.C.; Jobe, A.H. Dose of budesonide with surfactant affects lung and systemic inflammation after normal and injurious ventilation in preterm lambs. Pediatr. Res., 2020, 88(5), 726-732.
[http://dx.doi.org/10.1038/s41390-020-0809-6] [PMID: 32066138]
[498]
Kothe, T.B.; Royse, E.; Kemp, M.W.; Schmidt, A.; Salomone, F.; Saito, M.; Usuda, H.; Watanabe, S.; Musk, G.C.; Jobe, A.H.; Hillman, N.H. Effects of budesonide and surfactant in preterm fetal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 315(2), L193-L201.
[http://dx.doi.org/10.1152/ajplung.00528.2017] [PMID: 29671605]
[499]
Ricci, F.; Catozzi, C.; Ravanetti, F.; Murgia, X.; D’Aló, F.; Macchidani, N.; Sgarbi, E.; Di Lallo, V.; Saccani, F.; Pertile, M.; Cacchioli, A.; Catinella, S.; Villetti, G.; Civelli, M.; Amadei, F.; Stellari, F.F.; Pioselli, B.; Salomone, F. In vitro and in vivo characterization of poractant alfa supplemented with budesonide for safe and effective intratracheal administration. Pediatr. Res., 2017, 82(6), 1056-1063.
[http://dx.doi.org/10.1038/pr.2017.171] [PMID: 28723887]
[500]
Roberts, J.K.; Stockmann, C.; Dahl, M.J.; Albertine, K.H.; Egan, E.; Lin, Z.; Reilly, C.A.; Ballard, P.L.; Ballard, R.A.; Ward, R.M. Pharmacokinetics of Budesonide Administered with Surfactant in Premature Lambs: Implications for Neonatal Clinical Trials. Curr. Clin. Pharmacol., 2016, 11(1), 53-61.
[http://dx.doi.org/10.2174/1574884710666150929100210] [PMID: 26416605]
[501]
Yang, C.F.; Lin, C.H.; Chiou, S.Y.; Yang, Y.C.; Tsao, P.C.; Lee, Y.S.; Soong, W.J.; Jeng, M.J. Intratracheal budesonide supplementation in addition to surfactant improves pulmonary outcome in surfactant-depleted newborn piglets. Pediatr. Pulmonol., 2013, 48(2), 151-159.
[http://dx.doi.org/10.1002/ppul.22564] [PMID: 22489085]
[502]
P.; MOKRÁ, D.; KOPINCOVÁ, J.; TOMČÍKOVÁ-MIKUŠIAKOVÁ, L.; ČALKOVSKÁ, A. Budesonide Added to Modified Porcine Surfactant Curosurf May Additionally Improve the Lung Functions in Meconium Aspiration Syndrome. Physiol. Res., 2013, S191-S200.
[http://dx.doi.org/10.33549/physiolres.932606]
[503]
Chen, C.M.; Fang, C.L.; Chang, C.H. Surfactant and corticosteroid effects on lung function in a rat model of acute lung injury. Crit. Care Med., 2001, 29(11), 2169-2175.
[http://dx.doi.org/10.1097/00003246-200111000-00020] [PMID: 11700416]
[504]
Fajardo, C.; Levin, D.; Garcia, M.; Abrams, D.; Adamson, I. Surfactant versus saline as a vehicle for corticosteroid delivery to the lungs of ventilated rabbits. Pediatr. Res., 1998, 43(4 Pt 1), 542-547.
[http://dx.doi.org/10.1203/00006450-199804000-00018] [PMID: 9545012]
[505]
Dani, C.; Corsini, I.; Burchielli, S.; Cangiamila, V.; Romagnoli, R.; Jayonta, B.; Longini, M.; Paternostro, F.; Buonocore, G. Natural surfactant combined with beclomethasone decreases lung inflammation in the preterm lamb. Respiration, 2011, 82(4), 369-376.
[http://dx.doi.org/10.1159/000328928] [PMID: 21921671]
[506]
Dani, C.; Corsini, I.; Burchielli, S.; Cangiamila, V.; Longini, M.; Paternostro, F.; Buonocore, G.; Rubaltelli, F.F. Natural surfactant combined with beclomethasone decreases oxidative lung injury in the preterm lamb. Pediatr. Pulmonol., 2009, 44(12), 1159-1167.
[http://dx.doi.org/10.1002/ppul.21145] [PMID: 19911365]
[507]
Das, P.; Curstedt, T.; Agarwal, B.; Prahaladan, V.M.; Ramirez, J.; Bhandari, S.; Syed, M.A.; Salomone, F.; Casiraghi, C.; Pelizzi, N.; Bhandari, V. Small Molecule Inhibitor Adjuvant Surfactant Therapy Attenuates Ventilator- and Hyperoxia-Induced Lung Injury in Preterm Rabbits. Front. Physiol., 2020, 11, 266.
[http://dx.doi.org/10.3389/fphys.2020.00266] [PMID: 32327998]
[508]
Chen, C-M.; Chang, C-H.; Chao, C-H.; Wang, M-H.; Yeh, T-F. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv., 2019, 26(1), 604-611.
[http://dx.doi.org/10.1080/10717544.2019.1618418] [PMID: 31204848]
[509]
Mikolka, P.; Kopincova, J.; Tomcikova Mikusiakova, L.; Kosutova, P.; Antosova, M.; Calkovska, A.; Mokra, D. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury. J. Physiol. Pharmacol., 2016, 67(1), 57-65.
[PMID: 27010895]
[510]
P.; KOPINCOVÁ, J.; KOŠÚTOVÁ, P.; ČIERNY, D.; ČALKOVSKÁ, A.; MOKRÁ, D. Lung Inflammatory and Oxidative Alterations After Exogenous Surfactant Therapy Fortified With Budesonide in Rabbit Model of Meconium Aspiration Syndrome. Physiol. Res., 2016, S653-S662.
[http://dx.doi.org/10.33549/physiolres.933529]
[511]
Lewis, J.F.; Veldhuizen, R.A. The future of surfactant therapy during ALI/ARDS. Semin. Respir. Crit. Care Med., 2006, 27(4), 377-388.
[http://dx.doi.org/10.1055/s-2006-948291] [PMID: 16909371]
[512]
Heo, M.; Jeon, G.W. Intratracheal administration of budesonide with surfactant in very low birth weight infants to prevent bronchopulmonary dysplasia. Turk. J. Pediatr., 2020, 62(4), 551-559.
[http://dx.doi.org/10.24953/turkjped.2020.04.004] [PMID: 32779407]
[513]
Yeh, T.F.; Lin, H.C.; Chang, C.H.; Wu, T.S.; Su, B.H.; Li, T.C.; Pyati, S.; Tsai, C.H. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: A pilot study. Pediatrics, 2008, 121(5), e1310-e1318.
[http://dx.doi.org/10.1542/peds.2007-1973] [PMID: 18426851]
[514]
Yeh, T.F.; Chen, C.M.; Wu, S.Y.; Husan, Z.; Li, T.C.; Hsieh, W.S.; Tsai, C.H.; Lin, H.C. Intratracheal Administration of Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med., 2016, 193(1), 86-95.
[http://dx.doi.org/10.1164/rccm.201505-0861OC] [PMID: 26351971]
[515]
McEvoy, C.T.; Ballard, P.L.; Ward, R.M.; Rower, J.E.; Wadhawan, R.; Hudak, M.L.; Weitkamp, J-H.; Harris, J.; Asselin, J.; Chapin, C.; Ballard, R.A. Dose-escalation trial of budesonide in surfactant for prevention of bronchopulmonary dysplasia in extremely low gestational age high-risk newborns (SASSIE). Pediatr. Res., 2020, 88(4), 629-636.
[http://dx.doi.org/10.1038/s41390-020-0792-y] [PMID: 32006953]
[516]
Kronqvist, N.; Sarr, M.; Lindqvist, A.; Nordling, K.; Otikovs, M.; Venturi, L.; Pioselli, B.; Purhonen, P.; Landreh, M.; Biverstål, H.; Toleikis, Z.; Sjöberg, L.; Robinson, C.V.; Pelizzi, N.; Jörnvall, H.; Hebert, H.; Jaudzems, K.; Curstedt, T.; Rising, A.; Johansson, J. Efficient protein production inspired by how spiders make silk. Nat. Commun., 2017, 8, 15504.
[http://dx.doi.org/10.1038/ncomms15504] [PMID: 28534479]
[517]
Van’t Veen, A.; Gommers, D.; Verbrugge, S.J.C.; Wollmer, P.; Mouton, J.W.; Kooij, P.P.M.; Lachmann, B. Lung clearance of intratracheally instilled 99mTc-tobramycin using pulmonary surfactant as vehicle. Br. J. Pharmacol., 1999, 126(5), 1091-1096.
[http://dx.doi.org/10.1038/sj.bjp.0702405] [PMID: 10204995]
[518]
Kothe, T.B.; Sadiq, F.H.; Burleyson, N.; Williams, H.L.; Anderson, C.; Hillman, N.H. Surfactant and budesonide for respiratory distress syndrome: An observational study. Pediatr. Res., 2020, 87(5), 940-945.
[http://dx.doi.org/10.1038/s41390-019-0663-6] [PMID: 31715622]
[519]
Hidalgo, A.; Garcia-Mouton, C.; Autilio, C.; Carravilla, P.; Orellana, G.; Islam, M.N.; Bhattacharya, J.; Bhattacharya, S.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. J. Control. Release, 2021, 329, 205-222.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.042] [PMID: 33245954]
[520]
Kolomaznik, M.; Calkovska, A.; Herting, E.; Stichtenoth, G. Biophysical activity of animal-derived exogenous surfactants mixed with rifampicin. Adv. Exp. Med. Biol., 2015, 839, 31-39.
[http://dx.doi.org/10.1007/5584_2014_64] [PMID: 25252905]
[521]
Hillman, N.H.; Kothe, T.B.; Schmidt, A.F.; Kemp, M.W.; Royse, E.; Fee, E.; Salomone, F.; Clarke, M.W.; Musk, G.C.; Jobe, A.H. Surfactant plus budesonide decreases lung and systemic responses to injurious ventilation in preterm sheep. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(1), L41-L48.
[http://dx.doi.org/10.1152/ajplung.00203.2019] [PMID: 31617728]
[522]
Gie, A.G.; Regin, Y.; Salaets, T.; Casiraghi, C.; Salomone, F.; Deprest, J.; Vanoirbeek, J.; Toelen, J. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 319(6), L949-L956.
[http://dx.doi.org/10.1152/ajplung.00162.2020] [PMID: 32903026]
[523]
Hillman, N.H.; Kemp, M.W.; Fee, E.; Rittenschober-Böhm, J.; Royse, E.; Abugisisa, L.; Salomone, F.; Musk, G.C.; Jobe, A.H. Budesonide with surfactant decreases systemic responses in mechanically ventilated preterm lambs exposed to fetal intra-amniotic lipopolysaccharide. Pediatr. Res., 2020.
[http://dx.doi.org/10.1038/s41390-020-01267-8] [PMID: 33177678]
[524]
Baer, B.; Veldhuizen, E.J.A.; Molchanova, N.; Jekhmane, S.; Weingarth, M.; Jenssen, H.; Lin, J.S.; Barron, A.E.; Yamashita, C.; Veldhuizen, R. Optimizing Exogenous Surfactant as a Pulmonary Delivery Vehicle for Chicken Cathelicidin-2. Sci. Rep., 2020, 10(1), 9392.
[http://dx.doi.org/10.1038/s41598-020-66448-1] [PMID: 32523049]
[525]
Baer, B.; McCaig, L.; Yamashita, C.; Veldhuizen, R. Exogenous Surfactant as a Pulmonary Delivery Vehicle for Budesonide in vivo. Lung, 2020, 198(6), 909-916.
[http://dx.doi.org/10.1007/s00408-020-00399-2] [PMID: 33106891]
[526]
J.; MIKOLKA, P.; KOLOMAZNIK, M.; KOSUTOVA, P.; CALKOVSKA, A.; MOKRA, D. Selective Inhibition of NF-KB and Surfactant Therapy in Experimental Meconium-Induced Lung Injury. Physiol. Res., 2017, S227-S236.
[http://dx.doi.org/10.33549/physiolres.933678]
[527]
Kopincova, J.; Mikolka, P.; Kolomaznik, M.; Kosutova, P.; Calkovska, A.; Mokra, D. Modified porcine surfactant enriched by recombinant human superoxide dismutase for experimental meconium aspiration syndrome. Life Sci., 2018, 203, 121-128.
[http://dx.doi.org/10.1016/j.lfs.2018.04.036] [PMID: 29684443]
[528]
Kopincova, J.; Kolomaznik, M.; Mikolka, P.; Kosutova, P.; Topercerova, J.; Matasova, K., Jr; Calkovska, A.; Mokra, D. Recombinant Human Superoxide Dismutase and N-Acetylcysteine Addition to Exogenous Surfactant in the Treatment of Meconium Aspiration Syndrome. Molecules, 2019, 24(5), 905.
[http://dx.doi.org/10.3390/molecules24050905] [PMID: 30841517]
[529]
Bangham, A.D. Membrane models with phospholipids. Prog. Biophys. Mol. Biol., 1968, 18, 29-95.
[http://dx.doi.org/10.1016/0079-6107(68)90019-9] [PMID: 4894874]
[530]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[531]
Chang, H-I.; Yeh, M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine, 2012, 7, 49-60.
[http://dx.doi.org/10.2147/IJN.S26766] [PMID: 22275822]
[532]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[533]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 2017, 9(2)E12
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[534]
Li, Z.; Zhang, Y.; Wurtz, W.; Lee, J.K.; Malinin, V.S.; Durwas-Krishnan, S.; Meers, P.; Perkins, W.R. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size. J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(3), 245-254.
[http://dx.doi.org/10.1089/jamp.2008.0686] [PMID: 18759656]
[535]
FDA. FDA Approves a New Antibacterial Drug to Treat a Serious Lung Disease Using a Novel Pathway to Spur Innovation.Available from:, Https://Www.Fda.Gov/News-Events/Press-Announcements/Fda-Approves-New-Antibacterial-Drug-Treat-Serious-Lung-Disease-Using-Novel-Pathway-Spur-Innovation
[536]
Sirimanne, M.D.; Patel, J.A.; Kankam, M.; Vince, B.D.; Turkel, C.C. A Randomized Phase 1 Safety Study of Repeated Doses of Intranasal OP0201 Metered Dose Inhaler Compared to Placebo in Healthy Adults: A Potential Treatment for Otitis Media. BMC Pharmacology and Toxicology,, 2020.
[537]
Geller, D.E.; Weers, J.; Heuerding, S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J. Aerosol Med. Pulm. Drug Deliv., 2011, 24(4), 175-182.
[http://dx.doi.org/10.1089/jamp.2010.0855] [PMID: 21395432]
[538]
De Backer; Braeckmans; Stuart; Demeester; De Smedt; Raemdonck. Bio-Inspired Pulmonary Surfactant-Modified Nanogels: A Promising SiRNA Delivery System. J. Control. Release, 2015, 206, 177-186.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.015]
[539]
Surfactant Protein, B. (SP-B) Enhances the Cellular SiRNA Delivery of Proteolipid Coated Nanogels for Inhalation Therapy. Acta Biomater., 2018, 78, 236-246.
[http://dx.doi.org/10.1016/j.actbio.2018.08.012]
[540]
Ruge, C.A.; Schaefer, U.F.; Herrmann, J.; Kirch, J.; Cañadas, O.; Echaide, M.; Pérez-Gil, J.; Casals, C.; Müller, R.; Lehr, C.M. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One, 2012, 7(7)e40775
[http://dx.doi.org/10.1371/journal.pone.0040775] [PMID: 22802970]
[541]
Ruge, C.A.; Kirch, J.; Cañadas, O.; Schneider, M.; Perez-Gil, J.; Schaefer, U.F.; Casals, C.; Lehr, C.M. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine, 2011, 7(6), 690-693.
[http://dx.doi.org/10.1016/j.nano.2011.07.009] [PMID: 21839052]
[542]
Li, N.; Weng, D.; Wang, S-M.; Zhang, Y.; Chen, S-S.; Yin, Z-F.; Zhai, J.; Scoble, J.; Williams, C.C.; Chen, T.; Qiu, H.; Wu, Q.; Zhao, M.M.; Lu, L.Q.; Mulet, X.; Li, H.P. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv., 2017, 24(1), 1770-1781.
[http://dx.doi.org/10.1080/10717544.2017.1402217] [PMID: 29160134]
[543]
Sorensen, G.L. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front. Med. (Lausanne), 2018, 5, 18.
[http://dx.doi.org/10.3389/fmed.2018.00018] [PMID: 29473039]